// SPDX-License-Identifier: GPL-2.0-only /* * GPMC support functions * * Copyright (C) 2005-2006 Nokia Corporation * * Author: Juha Yrjola * * Copyright (C) 2009 Texas Instruments * Added OMAP4 support - Santosh Shilimkar */ #include #include #include #include #include #include #include #include #include #include #include #include /* GPIO descriptor enum */ #include #include #include #include #include #include #include #include #include #include #include #include #define DEVICE_NAME "omap-gpmc" /* GPMC register offsets */ #define GPMC_REVISION 0x00 #define GPMC_SYSCONFIG 0x10 #define GPMC_SYSSTATUS 0x14 #define GPMC_IRQSTATUS 0x18 #define GPMC_IRQENABLE 0x1c #define GPMC_TIMEOUT_CONTROL 0x40 #define GPMC_ERR_ADDRESS 0x44 #define GPMC_ERR_TYPE 0x48 #define GPMC_CONFIG 0x50 #define GPMC_STATUS 0x54 #define GPMC_PREFETCH_CONFIG1 0x1e0 #define GPMC_PREFETCH_CONFIG2 0x1e4 #define GPMC_PREFETCH_CONTROL 0x1ec #define GPMC_PREFETCH_STATUS 0x1f0 #define GPMC_ECC_CONFIG 0x1f4 #define GPMC_ECC_CONTROL 0x1f8 #define GPMC_ECC_SIZE_CONFIG 0x1fc #define GPMC_ECC1_RESULT 0x200 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */ #define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */ #define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */ #define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */ #define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */ #define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */ #define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */ /* GPMC ECC control settings */ #define GPMC_ECC_CTRL_ECCCLEAR 0x100 #define GPMC_ECC_CTRL_ECCDISABLE 0x000 #define GPMC_ECC_CTRL_ECCREG1 0x001 #define GPMC_ECC_CTRL_ECCREG2 0x002 #define GPMC_ECC_CTRL_ECCREG3 0x003 #define GPMC_ECC_CTRL_ECCREG4 0x004 #define GPMC_ECC_CTRL_ECCREG5 0x005 #define GPMC_ECC_CTRL_ECCREG6 0x006 #define GPMC_ECC_CTRL_ECCREG7 0x007 #define GPMC_ECC_CTRL_ECCREG8 0x008 #define GPMC_ECC_CTRL_ECCREG9 0x009 #define GPMC_CONFIG_LIMITEDADDRESS BIT(1) #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS BIT(0) #define GPMC_CONFIG2_CSEXTRADELAY BIT(7) #define GPMC_CONFIG3_ADVEXTRADELAY BIT(7) #define GPMC_CONFIG4_OEEXTRADELAY BIT(7) #define GPMC_CONFIG4_WEEXTRADELAY BIT(23) #define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6) #define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7) #define GPMC_CS0_OFFSET 0x60 #define GPMC_CS_SIZE 0x30 #define GPMC_BCH_SIZE 0x10 /* * The first 1MB of GPMC address space is typically mapped to * the internal ROM. Never allocate the first page, to * facilitate bug detection; even if we didn't boot from ROM. * As GPMC minimum partition size is 16MB we can only start from * there. */ #define GPMC_MEM_START 0x1000000 #define GPMC_MEM_END 0x3FFFFFFF #define GPMC_CHUNK_SHIFT 24 /* 16 MB */ #define GPMC_SECTION_SHIFT 28 /* 128 MB */ #define CS_NUM_SHIFT 24 #define ENABLE_PREFETCH (0x1 << 7) #define DMA_MPU_MODE 2 #define GPMC_REVISION_MAJOR(l) (((l) >> 4) & 0xf) #define GPMC_REVISION_MINOR(l) ((l) & 0xf) #define GPMC_HAS_WR_ACCESS 0x1 #define GPMC_HAS_WR_DATA_MUX_BUS 0x2 #define GPMC_HAS_MUX_AAD 0x4 #define GPMC_NR_WAITPINS 4 #define GPMC_CS_CONFIG1 0x00 #define GPMC_CS_CONFIG2 0x04 #define GPMC_CS_CONFIG3 0x08 #define GPMC_CS_CONFIG4 0x0c #define GPMC_CS_CONFIG5 0x10 #define GPMC_CS_CONFIG6 0x14 #define GPMC_CS_CONFIG7 0x18 #define GPMC_CS_NAND_COMMAND 0x1c #define GPMC_CS_NAND_ADDRESS 0x20 #define GPMC_CS_NAND_DATA 0x24 /* Control Commands */ #define GPMC_CONFIG_RDY_BSY 0x00000001 #define GPMC_CONFIG_DEV_SIZE 0x00000002 #define GPMC_CONFIG_DEV_TYPE 0x00000003 #define GPMC_CONFIG_WAITPINPOLARITY(pin) (BIT(pin) << 8) #define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31) #define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30) #define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29) #define GPMC_CONFIG1_READTYPE_SYNC (1 << 29) #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28) #define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27) #define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27) #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25) /** CLKACTIVATIONTIME Max Ticks */ #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2 #define GPMC_CONFIG1_PAGE_LEN(val) (((val) & 3) << 23) /** ATTACHEDDEVICEPAGELENGTH Max Value */ #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2 #define GPMC_CONFIG1_WAIT_READ_MON (1 << 22) #define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21) #define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18) /** WAITMONITORINGTIME Max Ticks */ #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2 #define GPMC_CONFIG1_WAIT_PIN_SEL(val) (((val) & 3) << 16) #define GPMC_CONFIG1_DEVICESIZE(val) (((val) & 3) << 12) #define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1) /** DEVICESIZE Max Value */ #define GPMC_CONFIG1_DEVICESIZE_MAX 1 #define GPMC_CONFIG1_DEVICETYPE(val) (((val) & 3) << 10) #define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0) #define GPMC_CONFIG1_MUXTYPE(val) (((val) & 3) << 8) #define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4) #define GPMC_CONFIG1_FCLK_DIV(val) ((val) & 3) #define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1)) #define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2)) #define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3)) #define GPMC_CONFIG7_CSVALID (1 << 6) #define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f #define GPMC_CONFIG7_CSVALID_MASK BIT(6) #define GPMC_CONFIG7_MASKADDRESS_OFFSET 8 #define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET) /* All CONFIG7 bits except reserved bits */ #define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \ GPMC_CONFIG7_CSVALID_MASK | \ GPMC_CONFIG7_MASKADDRESS_MASK) #define GPMC_DEVICETYPE_NOR 0 #define GPMC_DEVICETYPE_NAND 2 #define GPMC_CONFIG_WRITEPROTECT 0x00000010 #define WR_RD_PIN_MONITORING 0x00600000 /* ECC commands */ #define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */ #define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */ #define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */ #define GPMC_NR_NAND_IRQS 2 /* number of NAND specific IRQs */ enum gpmc_clk_domain { GPMC_CD_FCLK, GPMC_CD_CLK }; struct gpmc_cs_data { const char *name; #define GPMC_CS_RESERVED (1 << 0) u32 flags; struct resource mem; }; /* Structure to save gpmc cs context */ struct gpmc_cs_config { u32 config1; u32 config2; u32 config3; u32 config4; u32 config5; u32 config6; u32 config7; int is_valid; }; /* * Structure to save/restore gpmc context * to support core off on OMAP3 */ struct omap3_gpmc_regs { u32 sysconfig; u32 irqenable; u32 timeout_ctrl; u32 config; u32 prefetch_config1; u32 prefetch_config2; u32 prefetch_control; struct gpmc_cs_config cs_context[GPMC_CS_NUM]; }; struct gpmc_waitpin { u32 pin; u32 polarity; struct gpio_desc *desc; }; struct gpmc_device { struct device *dev; int irq; struct irq_chip irq_chip; struct gpio_chip gpio_chip; struct notifier_block nb; struct omap3_gpmc_regs context; struct gpmc_waitpin *waitpins; int nirqs; unsigned int is_suspended:1; struct resource *data; }; static struct irq_domain *gpmc_irq_domain; static struct resource gpmc_mem_root; static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM]; static DEFINE_SPINLOCK(gpmc_mem_lock); /* Define chip-selects as reserved by default until probe completes */ static unsigned int gpmc_cs_num = GPMC_CS_NUM; static unsigned int gpmc_nr_waitpins; static unsigned int gpmc_capability; static void __iomem *gpmc_base; static struct clk *gpmc_l3_clk; static irqreturn_t gpmc_handle_irq(int irq, void *dev); static void gpmc_write_reg(int idx, u32 val) { writel_relaxed(val, gpmc_base + idx); } static u32 gpmc_read_reg(int idx) { return readl_relaxed(gpmc_base + idx); } void gpmc_cs_write_reg(int cs, int idx, u32 val) { void __iomem *reg_addr; reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx; writel_relaxed(val, reg_addr); } static u32 gpmc_cs_read_reg(int cs, int idx) { void __iomem *reg_addr; reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx; return readl_relaxed(reg_addr); } /* TODO: Add support for gpmc_fck to clock framework and use it */ static unsigned long gpmc_get_fclk_period(void) { unsigned long rate = clk_get_rate(gpmc_l3_clk); rate /= 1000; rate = 1000000000 / rate; /* In picoseconds */ return rate; } /** * gpmc_get_clk_period - get period of selected clock domain in ps * @cs: Chip Select Region. * @cd: Clock Domain. * * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup * prior to calling this function with GPMC_CD_CLK. */ static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd) { unsigned long tick_ps = gpmc_get_fclk_period(); u32 l; int div; switch (cd) { case GPMC_CD_CLK: /* get current clk divider */ l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1); div = (l & 0x03) + 1; /* get GPMC_CLK period */ tick_ps *= div; break; case GPMC_CD_FCLK: default: break; } return tick_ps; } static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs, enum gpmc_clk_domain cd) { unsigned long tick_ps; /* Calculate in picosecs to yield more exact results */ tick_ps = gpmc_get_clk_period(cs, cd); return (time_ns * 1000 + tick_ps - 1) / tick_ps; } static unsigned int gpmc_ns_to_ticks(unsigned int time_ns) { return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK); } static unsigned int gpmc_ps_to_ticks(unsigned int time_ps) { unsigned long tick_ps; /* Calculate in picosecs to yield more exact results */ tick_ps = gpmc_get_fclk_period(); return (time_ps + tick_ps - 1) / tick_ps; } static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs, enum gpmc_clk_domain cd) { return ticks * gpmc_get_clk_period(cs, cd) / 1000; } unsigned int gpmc_ticks_to_ns(unsigned int ticks) { return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK); } static unsigned int gpmc_ticks_to_ps(unsigned int ticks) { return ticks * gpmc_get_fclk_period(); } static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps) { unsigned long ticks = gpmc_ps_to_ticks(time_ps); return ticks * gpmc_get_fclk_period(); } static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value) { u32 l; l = gpmc_cs_read_reg(cs, reg); if (value) l |= mask; else l &= ~mask; gpmc_cs_write_reg(cs, reg, l); } static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p) { gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1, GPMC_CONFIG1_TIME_PARA_GRAN, p->time_para_granularity); gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2, GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay); gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3, GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay); gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4, GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay); gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4, GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay); gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6, GPMC_CONFIG6_CYCLE2CYCLESAMECSEN, p->cycle2cyclesamecsen); gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6, GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN, p->cycle2cyclediffcsen); } #ifdef CONFIG_OMAP_GPMC_DEBUG /** * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it. * @cs: Chip Select Region * @reg: GPMC_CS_CONFIGn register offset. * @st_bit: Start Bit * @end_bit: End Bit. Must be >= @st_bit. * @max: Maximum parameter value (before optional @shift). * If 0, maximum is as high as @st_bit and @end_bit allow. * @name: DTS node name, w/o "gpmc," * @cd: Clock Domain of timing parameter. * @shift: Parameter value left shifts @shift, which is then printed instead of value. * @raw: Raw Format Option. * raw format: gpmc,name = * tick format: gpmc,name = /‍* x ns -- y ns; x ticks *‍/ * Where x ns -- y ns result in the same tick value. * When @max is exceeded, "invalid" is printed inside comment. * @noval: Parameter values equal to 0 are not printed. * @return: Specified timing parameter (after optional @shift). * */ static int get_gpmc_timing_reg( /* timing specifiers */ int cs, int reg, int st_bit, int end_bit, int max, const char *name, const enum gpmc_clk_domain cd, /* value transform */ int shift, /* format specifiers */ bool raw, bool noval) { u32 l; int nr_bits; int mask; bool invalid; l = gpmc_cs_read_reg(cs, reg); nr_bits = end_bit - st_bit + 1; mask = (1 << nr_bits) - 1; l = (l >> st_bit) & mask; if (!max) max = mask; invalid = l > max; if (shift) l = (shift << l); if (noval && (l == 0)) return 0; if (!raw) { /* DTS tick format for timings in ns */ unsigned int time_ns; unsigned int time_ns_min = 0; if (l) time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1; time_ns = gpmc_clk_ticks_to_ns(l, cs, cd); pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n", name, time_ns, time_ns_min, time_ns, l, invalid ? "; invalid " : " "); } else { /* raw format */ pr_info("gpmc,%s = <%u>;%s\n", name, l, invalid ? " /* invalid */" : ""); } return l; } #define GPMC_PRINT_CONFIG(cs, config) \ pr_info("cs%i %s: 0x%08x\n", cs, #config, \ gpmc_cs_read_reg(cs, config)) #define GPMC_GET_RAW(reg, st, end, field) \ get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0) #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \ get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0) #define GPMC_GET_RAW_BOOL(reg, st, end, field) \ get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1) #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \ get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1) #define GPMC_GET_TICKS(reg, st, end, field) \ get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0) #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \ get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0) #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \ get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0) static void gpmc_show_regs(int cs, const char *desc) { pr_info("gpmc cs%i %s:\n", cs, desc); GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1); GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2); GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3); GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4); GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5); GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6); } /* * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available, * see commit c9fb809. */ static void gpmc_cs_show_timings(int cs, const char *desc) { gpmc_show_regs(cs, desc); pr_info("gpmc cs%i access configuration:\n", cs); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity"); GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data"); GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1, GPMC_CONFIG1_DEVICESIZE_MAX, "device-width"); GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read"); GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4, GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX, "burst-length"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen"); GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen"); pr_info("gpmc cs%i timings configuration:\n", cs); GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns"); if (gpmc_capability & GPMC_HAS_MUX_AAD) { GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26, "adv-aad-mux-rd-off-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30, "adv-aad-mux-wr-off-ns"); } GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns"); if (gpmc_capability & GPMC_HAS_MUX_AAD) { GPMC_GET_TICKS(GPMC_CS_CONFIG4, 4, 6, "oe-aad-mux-on-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns"); } GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns"); GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19, GPMC_CONFIG1_WAITMONITORINGTIME_MAX, "wait-monitoring-ns", GPMC_CD_CLK); GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26, GPMC_CONFIG1_CLKACTIVATIONTIME_MAX, "clk-activation-ns", GPMC_CD_FCLK); GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns"); GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns"); } #else static inline void gpmc_cs_show_timings(int cs, const char *desc) { } #endif /** * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region. * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER * prior to calling this function with @cd equal to GPMC_CD_CLK. * * @cs: Chip Select Region. * @reg: GPMC_CS_CONFIGn register offset. * @st_bit: Start Bit * @end_bit: End Bit. Must be >= @st_bit. * @max: Maximum parameter value. * If 0, maximum is as high as @st_bit and @end_bit allow. * @time: Timing parameter in ns. * @cd: Timing parameter clock domain. * @name: Timing parameter name. * @return: 0 on success, -1 on error. */ static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max, int time, enum gpmc_clk_domain cd, const char *name) { u32 l; int ticks, mask, nr_bits; if (time == 0) ticks = 0; else ticks = gpmc_ns_to_clk_ticks(time, cs, cd); nr_bits = end_bit - st_bit + 1; mask = (1 << nr_bits) - 1; if (!max) max = mask; if (ticks > max) { pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n", __func__, cs, name, time, ticks, max); return -1; } l = gpmc_cs_read_reg(cs, reg); #ifdef CONFIG_OMAP_GPMC_DEBUG pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n", cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000, (l >> st_bit) & mask, time); #endif l &= ~(mask << st_bit); l |= ticks << st_bit; gpmc_cs_write_reg(cs, reg, l); return 0; } /** * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME * WAITMONITORINGTIME will be _at least_ as long as desired, i.e. * read --> don't sample bus too early * write --> data is longer on bus * * Formula: * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns) * / waitmonitoring_ticks) * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by * div <= 0 check. * * @wait_monitoring: WAITMONITORINGTIME in ns. * @return: -1 on failure to scale, else proper divider > 0. */ static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring) { int div = gpmc_ns_to_ticks(wait_monitoring); div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1; div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX; if (div > 4) return -1; if (div <= 0) div = 1; return div; } /** * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period. * @sync_clk: GPMC_CLK period in ps. * @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK. * Else, returns -1. */ int gpmc_calc_divider(unsigned int sync_clk) { int div = gpmc_ps_to_ticks(sync_clk); if (div > 4) return -1; if (div <= 0) div = 1; return div; } /** * gpmc_cs_set_timings - program timing parameters for Chip Select Region. * @cs: Chip Select Region. * @t: GPMC timing parameters. * @s: GPMC timing settings. * @return: 0 on success, -1 on error. */ int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t, const struct gpmc_settings *s) { int div, ret; u32 l; div = gpmc_calc_divider(t->sync_clk); if (div < 0) return -EINVAL; /* * See if we need to change the divider for waitmonitoringtime. * * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for * pure asynchronous accesses, i.e. both read and write asynchronous. * However, only do so if WAITMONITORINGTIME is actually used, i.e. * either WAITREADMONITORING or WAITWRITEMONITORING is set. * * This statement must not change div to scale async WAITMONITORINGTIME * to protect mixed synchronous and asynchronous accesses. * * We raise an error later if WAITMONITORINGTIME does not fit. */ if (!s->sync_read && !s->sync_write && (s->wait_on_read || s->wait_on_write) ) { div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring); if (div < 0) { pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n", __func__, t->wait_monitoring ); return -ENXIO; } } ret = 0; ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on, GPMC_CD_FCLK, "cs_on"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off, GPMC_CD_FCLK, "cs_rd_off"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off, GPMC_CD_FCLK, "cs_wr_off"); if (ret) return -ENXIO; ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on, GPMC_CD_FCLK, "adv_on"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off, GPMC_CD_FCLK, "adv_rd_off"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off, GPMC_CD_FCLK, "adv_wr_off"); if (ret) return -ENXIO; if (gpmc_capability & GPMC_HAS_MUX_AAD) { ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0, t->adv_aad_mux_on, GPMC_CD_FCLK, "adv_aad_mux_on"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0, t->adv_aad_mux_rd_off, GPMC_CD_FCLK, "adv_aad_mux_rd_off"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0, t->adv_aad_mux_wr_off, GPMC_CD_FCLK, "adv_aad_mux_wr_off"); if (ret) return -ENXIO; } ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on, GPMC_CD_FCLK, "oe_on"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off, GPMC_CD_FCLK, "oe_off"); if (gpmc_capability & GPMC_HAS_MUX_AAD) { ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0, t->oe_aad_mux_on, GPMC_CD_FCLK, "oe_aad_mux_on"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0, t->oe_aad_mux_off, GPMC_CD_FCLK, "oe_aad_mux_off"); } ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on, GPMC_CD_FCLK, "we_on"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off, GPMC_CD_FCLK, "we_off"); if (ret) return -ENXIO; ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle, GPMC_CD_FCLK, "rd_cycle"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle, GPMC_CD_FCLK, "wr_cycle"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access, GPMC_CD_FCLK, "access"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0, t->page_burst_access, GPMC_CD_FCLK, "page_burst_access"); if (ret) return -ENXIO; ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0, t->bus_turnaround, GPMC_CD_FCLK, "bus_turnaround"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0, t->cycle2cycle_delay, GPMC_CD_FCLK, "cycle2cycle_delay"); if (ret) return -ENXIO; if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) { ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0, t->wr_data_mux_bus, GPMC_CD_FCLK, "wr_data_mux_bus"); if (ret) return -ENXIO; } if (gpmc_capability & GPMC_HAS_WR_ACCESS) { ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0, t->wr_access, GPMC_CD_FCLK, "wr_access"); if (ret) return -ENXIO; } l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1); l &= ~0x03; l |= (div - 1); gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l); ret = 0; ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19, GPMC_CONFIG1_WAITMONITORINGTIME_MAX, t->wait_monitoring, GPMC_CD_CLK, "wait_monitoring"); ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26, GPMC_CONFIG1_CLKACTIVATIONTIME_MAX, t->clk_activation, GPMC_CD_FCLK, "clk_activation"); if (ret) return -ENXIO; #ifdef CONFIG_OMAP_GPMC_DEBUG pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n", cs, (div * gpmc_get_fclk_period()) / 1000, div); #endif gpmc_cs_bool_timings(cs, &t->bool_timings); gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings"); return 0; } static int gpmc_cs_set_memconf(int cs, u32 base, u32 size) { u32 l; u32 mask; /* * Ensure that base address is aligned on a * boundary equal to or greater than size. */ if (base & (size - 1)) return -EINVAL; base >>= GPMC_CHUNK_SHIFT; mask = (1 << GPMC_SECTION_SHIFT) - size; mask >>= GPMC_CHUNK_SHIFT; mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET; l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); l &= ~GPMC_CONFIG7_MASK; l |= base & GPMC_CONFIG7_BASEADDRESS_MASK; l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK; l |= GPMC_CONFIG7_CSVALID; gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); return 0; } static void gpmc_cs_enable_mem(int cs) { u32 l; l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); l |= GPMC_CONFIG7_CSVALID; gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); } static void gpmc_cs_disable_mem(int cs) { u32 l; l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); l &= ~GPMC_CONFIG7_CSVALID; gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); } static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size) { u32 l; u32 mask; l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); *base = (l & 0x3f) << GPMC_CHUNK_SHIFT; mask = (l >> 8) & 0x0f; *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT); } static int gpmc_cs_mem_enabled(int cs) { u32 l; l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); return l & GPMC_CONFIG7_CSVALID; } static void gpmc_cs_set_reserved(int cs, int reserved) { struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; gpmc->flags |= GPMC_CS_RESERVED; } static bool gpmc_cs_reserved(int cs) { struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; return gpmc->flags & GPMC_CS_RESERVED; } static unsigned long gpmc_mem_align(unsigned long size) { int order; size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1); order = GPMC_CHUNK_SHIFT - 1; do { size >>= 1; order++; } while (size); size = 1 << order; return size; } static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size) { struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; struct resource *res = &gpmc->mem; int r; size = gpmc_mem_align(size); spin_lock(&gpmc_mem_lock); res->start = base; res->end = base + size - 1; r = request_resource(&gpmc_mem_root, res); spin_unlock(&gpmc_mem_lock); return r; } static int gpmc_cs_delete_mem(int cs) { struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; struct resource *res = &gpmc->mem; int r; spin_lock(&gpmc_mem_lock); r = release_resource(res); res->start = 0; res->end = 0; spin_unlock(&gpmc_mem_lock); return r; } int gpmc_cs_request(int cs, unsigned long size, unsigned long *base) { struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; struct resource *res = &gpmc->mem; int r = -1; if (cs >= gpmc_cs_num) { pr_err("%s: requested chip-select is disabled\n", __func__); return -ENODEV; } size = gpmc_mem_align(size); if (size > (1 << GPMC_SECTION_SHIFT)) return -ENOMEM; spin_lock(&gpmc_mem_lock); if (gpmc_cs_reserved(cs)) { r = -EBUSY; goto out; } if (gpmc_cs_mem_enabled(cs)) r = adjust_resource(res, res->start & ~(size - 1), size); if (r < 0) r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0, size, NULL, NULL); if (r < 0) goto out; /* Disable CS while changing base address and size mask */ gpmc_cs_disable_mem(cs); r = gpmc_cs_set_memconf(cs, res->start, resource_size(res)); if (r < 0) { release_resource(res); goto out; } /* Enable CS */ gpmc_cs_enable_mem(cs); *base = res->start; gpmc_cs_set_reserved(cs, 1); out: spin_unlock(&gpmc_mem_lock); return r; } EXPORT_SYMBOL(gpmc_cs_request); void gpmc_cs_free(int cs) { struct gpmc_cs_data *gpmc; struct resource *res; spin_lock(&gpmc_mem_lock); if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) { WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs); spin_unlock(&gpmc_mem_lock); return; } gpmc = &gpmc_cs[cs]; res = &gpmc->mem; gpmc_cs_disable_mem(cs); if (res->flags) release_resource(res); gpmc_cs_set_reserved(cs, 0); spin_unlock(&gpmc_mem_lock); } EXPORT_SYMBOL(gpmc_cs_free); static bool gpmc_is_valid_waitpin(u32 waitpin) { return waitpin < gpmc_nr_waitpins; } static int gpmc_alloc_waitpin(struct gpmc_device *gpmc, struct gpmc_settings *p) { int ret; struct gpmc_waitpin *waitpin; struct gpio_desc *waitpin_desc; if (!gpmc_is_valid_waitpin(p->wait_pin)) return -EINVAL; waitpin = &gpmc->waitpins[p->wait_pin]; if (!waitpin->desc) { /* Reserve the GPIO for wait pin usage. * GPIO polarity doesn't matter here. Wait pin polarity * is set in GPMC_CONFIG register. */ waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip, p->wait_pin, "WAITPIN", GPIO_ACTIVE_HIGH, GPIOD_IN); ret = PTR_ERR(waitpin_desc); if (IS_ERR(waitpin_desc) && ret != -EBUSY) return ret; /* New wait pin */ waitpin->desc = waitpin_desc; waitpin->pin = p->wait_pin; waitpin->polarity = p->wait_pin_polarity; } else { /* Shared wait pin */ if (p->wait_pin_polarity != waitpin->polarity || p->wait_pin != waitpin->pin) { dev_err(gpmc->dev, "shared-wait-pin: invalid configuration\n"); return -EINVAL; } dev_info(gpmc->dev, "shared wait-pin: %d\n", waitpin->pin); } return 0; } static void gpmc_free_waitpin(struct gpmc_device *gpmc, int wait_pin) { if (gpmc_is_valid_waitpin(wait_pin)) gpiochip_free_own_desc(gpmc->waitpins[wait_pin].desc); } /** * gpmc_configure - write request to configure gpmc * @cmd: command type * @wval: value to write * @return status of the operation */ int gpmc_configure(int cmd, int wval) { u32 regval; switch (cmd) { case GPMC_CONFIG_WP: regval = gpmc_read_reg(GPMC_CONFIG); if (wval) regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */ else regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */ gpmc_write_reg(GPMC_CONFIG, regval); break; default: pr_err("%s: command not supported\n", __func__); return -EINVAL; } return 0; } EXPORT_SYMBOL(gpmc_configure); static bool gpmc_nand_writebuffer_empty(void) { if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS) return true; return false; } static struct gpmc_nand_ops nand_ops = { .nand_writebuffer_empty = gpmc_nand_writebuffer_empty, }; /** * gpmc_omap_get_nand_ops - Get the GPMC NAND interface * @reg: the GPMC NAND register map exclusive for NAND use. * @cs: GPMC chip select number on which the NAND sits. The * register map returned will be specific to this chip select. * * Returns NULL on error e.g. invalid cs. */ struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs) { int i; if (cs >= gpmc_cs_num) return NULL; reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET + GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs; reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET + GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs; reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET + GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs; reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1; reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2; reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL; reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS; reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG; reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL; reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG; reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT; for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) { reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 + GPMC_BCH_SIZE * i; reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 + GPMC_BCH_SIZE * i; reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 + GPMC_BCH_SIZE * i; reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 + GPMC_BCH_SIZE * i; reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 + i * GPMC_BCH_SIZE; reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 + i * GPMC_BCH_SIZE; reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 + i * GPMC_BCH_SIZE; } return &nand_ops; } EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops); static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t, struct gpmc_settings *s, int freq, int latency) { struct gpmc_device_timings dev_t; const int t_cer = 15; const int t_avdp = 12; const int t_cez = 20; /* max of t_cez, t_oez */ const int t_wpl = 40; const int t_wph = 30; int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo; switch (freq) { case 104: min_gpmc_clk_period = 9600; /* 104 MHz */ t_ces = 3; t_avds = 4; t_avdh = 2; t_ach = 3; t_aavdh = 6; t_rdyo = 6; break; case 83: min_gpmc_clk_period = 12000; /* 83 MHz */ t_ces = 5; t_avds = 4; t_avdh = 2; t_ach = 6; t_aavdh = 6; t_rdyo = 9; break; case 66: min_gpmc_clk_period = 15000; /* 66 MHz */ t_ces = 6; t_avds = 5; t_avdh = 2; t_ach = 6; t_aavdh = 6; t_rdyo = 11; break; default: min_gpmc_clk_period = 18500; /* 54 MHz */ t_ces = 7; t_avds = 7; t_avdh = 7; t_ach = 9; t_aavdh = 7; t_rdyo = 15; break; } /* Set synchronous read timings */ memset(&dev_t, 0, sizeof(dev_t)); if (!s->sync_write) { dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000; dev_t.t_wpl = t_wpl * 1000; dev_t.t_wph = t_wph * 1000; dev_t.t_aavdh = t_aavdh * 1000; } dev_t.ce_xdelay = true; dev_t.avd_xdelay = true; dev_t.oe_xdelay = true; dev_t.we_xdelay = true; dev_t.clk = min_gpmc_clk_period; dev_t.t_bacc = dev_t.clk; dev_t.t_ces = t_ces * 1000; dev_t.t_avds = t_avds * 1000; dev_t.t_avdh = t_avdh * 1000; dev_t.t_ach = t_ach * 1000; dev_t.cyc_iaa = (latency + 1); dev_t.t_cez_r = t_cez * 1000; dev_t.t_cez_w = dev_t.t_cez_r; dev_t.cyc_aavdh_oe = 1; dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period; gpmc_calc_timings(t, s, &dev_t); } int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq, int latency, struct gpmc_onenand_info *info) { int ret; struct gpmc_timings gpmc_t; struct gpmc_settings gpmc_s; gpmc_read_settings_dt(dev->of_node, &gpmc_s); info->sync_read = gpmc_s.sync_read; info->sync_write = gpmc_s.sync_write; info->burst_len = gpmc_s.burst_len; if (!gpmc_s.sync_read && !gpmc_s.sync_write) return 0; gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency); ret = gpmc_cs_program_settings(cs, &gpmc_s); if (ret < 0) return ret; return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s); } EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings); int gpmc_get_client_irq(unsigned int irq_config) { if (!gpmc_irq_domain) { pr_warn("%s called before GPMC IRQ domain available\n", __func__); return 0; } /* we restrict this to NAND IRQs only */ if (irq_config >= GPMC_NR_NAND_IRQS) return 0; return irq_create_mapping(gpmc_irq_domain, irq_config); } static int gpmc_irq_endis(unsigned long hwirq, bool endis) { u32 regval; /* bits GPMC_NR_NAND_IRQS to 8 are reserved */ if (hwirq >= GPMC_NR_NAND_IRQS) hwirq += 8 - GPMC_NR_NAND_IRQS; regval = gpmc_read_reg(GPMC_IRQENABLE); if (endis) regval |= BIT(hwirq); else regval &= ~BIT(hwirq); gpmc_write_reg(GPMC_IRQENABLE, regval); return 0; } static void gpmc_irq_disable(struct irq_data *p) { gpmc_irq_endis(p->hwirq, false); } static void gpmc_irq_enable(struct irq_data *p) { gpmc_irq_endis(p->hwirq, true); } static void gpmc_irq_mask(struct irq_data *d) { gpmc_irq_endis(d->hwirq, false); } static void gpmc_irq_unmask(struct irq_data *d) { gpmc_irq_endis(d->hwirq, true); } static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge) { u32 regval; /* NAND IRQs polarity is not configurable */ if (hwirq < GPMC_NR_NAND_IRQS) return; /* WAITPIN starts at BIT 8 */ hwirq += 8 - GPMC_NR_NAND_IRQS; regval = gpmc_read_reg(GPMC_CONFIG); if (rising_edge) regval &= ~BIT(hwirq); else regval |= BIT(hwirq); gpmc_write_reg(GPMC_CONFIG, regval); } static void gpmc_irq_ack(struct irq_data *d) { unsigned int hwirq = d->hwirq; /* skip reserved bits */ if (hwirq >= GPMC_NR_NAND_IRQS) hwirq += 8 - GPMC_NR_NAND_IRQS; /* Setting bit to 1 clears (or Acks) the interrupt */ gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq)); } static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger) { /* can't set type for NAND IRQs */ if (d->hwirq < GPMC_NR_NAND_IRQS) return -EINVAL; /* We can support either rising or falling edge at a time */ if (trigger == IRQ_TYPE_EDGE_FALLING) gpmc_irq_edge_config(d->hwirq, false); else if (trigger == IRQ_TYPE_EDGE_RISING) gpmc_irq_edge_config(d->hwirq, true); else return -EINVAL; return 0; } static int gpmc_irq_map(struct irq_domain *d, unsigned int virq, irq_hw_number_t hw) { struct gpmc_device *gpmc = d->host_data; irq_set_chip_data(virq, gpmc); if (hw < GPMC_NR_NAND_IRQS) { irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN); irq_set_chip_and_handler(virq, &gpmc->irq_chip, handle_simple_irq); } else { irq_set_chip_and_handler(virq, &gpmc->irq_chip, handle_edge_irq); } return 0; } static const struct irq_domain_ops gpmc_irq_domain_ops = { .map = gpmc_irq_map, .xlate = irq_domain_xlate_twocell, }; static irqreturn_t gpmc_handle_irq(int irq, void *data) { int hwirq, virq; u32 regval, regvalx; struct gpmc_device *gpmc = data; regval = gpmc_read_reg(GPMC_IRQSTATUS); regvalx = regval; if (!regval) return IRQ_NONE; for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) { /* skip reserved status bits */ if (hwirq == GPMC_NR_NAND_IRQS) regvalx >>= 8 - GPMC_NR_NAND_IRQS; if (regvalx & BIT(hwirq)) { virq = irq_find_mapping(gpmc_irq_domain, hwirq); if (!virq) { dev_warn(gpmc->dev, "spurious irq detected hwirq %d, virq %d\n", hwirq, virq); } generic_handle_irq(virq); } } gpmc_write_reg(GPMC_IRQSTATUS, regval); return IRQ_HANDLED; } static int gpmc_setup_irq(struct gpmc_device *gpmc) { u32 regval; int rc; /* Disable interrupts */ gpmc_write_reg(GPMC_IRQENABLE, 0); /* clear interrupts */ regval = gpmc_read_reg(GPMC_IRQSTATUS); gpmc_write_reg(GPMC_IRQSTATUS, regval); gpmc->irq_chip.name = "gpmc"; gpmc->irq_chip.irq_enable = gpmc_irq_enable; gpmc->irq_chip.irq_disable = gpmc_irq_disable; gpmc->irq_chip.irq_ack = gpmc_irq_ack; gpmc->irq_chip.irq_mask = gpmc_irq_mask; gpmc->irq_chip.irq_unmask = gpmc_irq_unmask; gpmc->irq_chip.irq_set_type = gpmc_irq_set_type; gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node, gpmc->nirqs, &gpmc_irq_domain_ops, gpmc); if (!gpmc_irq_domain) { dev_err(gpmc->dev, "IRQ domain add failed\n"); return -ENODEV; } rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc); if (rc) { dev_err(gpmc->dev, "failed to request irq %d: %d\n", gpmc->irq, rc); irq_domain_remove(gpmc_irq_domain); gpmc_irq_domain = NULL; } return rc; } static int gpmc_free_irq(struct gpmc_device *gpmc) { int hwirq; free_irq(gpmc->irq, gpmc); for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq)); irq_domain_remove(gpmc_irq_domain); gpmc_irq_domain = NULL; return 0; } static void gpmc_mem_exit(void) { int cs; for (cs = 0; cs < gpmc_cs_num; cs++) { if (!gpmc_cs_mem_enabled(cs)) continue; gpmc_cs_delete_mem(cs); } } static void gpmc_mem_init(struct gpmc_device *gpmc) { int cs; if (!gpmc->data) { /* All legacy devices have same data IO window */ gpmc_mem_root.start = GPMC_MEM_START; gpmc_mem_root.end = GPMC_MEM_END; } else { gpmc_mem_root.start = gpmc->data->start; gpmc_mem_root.end = gpmc->data->end; } /* Reserve all regions that has been set up by bootloader */ for (cs = 0; cs < gpmc_cs_num; cs++) { u32 base, size; if (!gpmc_cs_mem_enabled(cs)) continue; gpmc_cs_get_memconf(cs, &base, &size); if (gpmc_cs_insert_mem(cs, base, size)) { pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n", __func__, cs, base, base + size); gpmc_cs_disable_mem(cs); } } } static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk) { u32 temp; int div; div = gpmc_calc_divider(sync_clk); temp = gpmc_ps_to_ticks(time_ps); temp = (temp + div - 1) / div; return gpmc_ticks_to_ps(temp * div); } /* XXX: can the cycles be avoided ? */ static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t, struct gpmc_device_timings *dev_t, bool mux) { u32 temp; /* adv_rd_off */ temp = dev_t->t_avdp_r; /* XXX: mux check required ? */ if (mux) { /* XXX: t_avdp not to be required for sync, only added for tusb * this indirectly necessitates requirement of t_avdp_r and * t_avdp_w instead of having a single t_avdp */ temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh); temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); } gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp); /* oe_on */ temp = dev_t->t_oeasu; /* XXX: remove this ? */ if (mux) { temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach); temp = max_t(u32, temp, gpmc_t->adv_rd_off + gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe)); } gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp); /* access */ /* XXX: any scope for improvement ?, by combining oe_on * and clk_activation, need to check whether * access = clk_activation + round to sync clk ? */ temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk); temp += gpmc_t->clk_activation; if (dev_t->cyc_oe) temp = max_t(u32, temp, gpmc_t->oe_on + gpmc_ticks_to_ps(dev_t->cyc_oe)); gpmc_t->access = gpmc_round_ps_to_ticks(temp); gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1); gpmc_t->cs_rd_off = gpmc_t->oe_off; /* rd_cycle */ temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez); temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) + gpmc_t->access; /* XXX: barter t_ce_rdyz with t_cez_r ? */ if (dev_t->t_ce_rdyz) temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz); gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp); return 0; } static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t, struct gpmc_device_timings *dev_t, bool mux) { u32 temp; /* adv_wr_off */ temp = dev_t->t_avdp_w; if (mux) { temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh); temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); } gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp); /* wr_data_mux_bus */ temp = max_t(u32, dev_t->t_weasu, gpmc_t->clk_activation + dev_t->t_rdyo); /* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?, * and in that case remember to handle we_on properly */ if (mux) { temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh); temp = max_t(u32, temp, gpmc_t->adv_wr_off + gpmc_ticks_to_ps(dev_t->cyc_aavdh_we)); } gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp); /* we_on */ if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu); else gpmc_t->we_on = gpmc_t->wr_data_mux_bus; /* wr_access */ /* XXX: gpmc_capability check reqd ? , even if not, will not harm */ gpmc_t->wr_access = gpmc_t->access; /* we_off */ temp = gpmc_t->we_on + dev_t->t_wpl; temp = max_t(u32, temp, gpmc_t->wr_access + gpmc_ticks_to_ps(1)); temp = max_t(u32, temp, gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl)); gpmc_t->we_off = gpmc_round_ps_to_ticks(temp); gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off + dev_t->t_wph); /* wr_cycle */ temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk); temp += gpmc_t->wr_access; /* XXX: barter t_ce_rdyz with t_cez_w ? */ if (dev_t->t_ce_rdyz) temp = max_t(u32, temp, gpmc_t->cs_wr_off + dev_t->t_ce_rdyz); gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp); return 0; } static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t, struct gpmc_device_timings *dev_t, bool mux) { u32 temp; /* adv_rd_off */ temp = dev_t->t_avdp_r; if (mux) temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp); /* oe_on */ temp = dev_t->t_oeasu; if (mux) temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh); gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp); /* access */ temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */ gpmc_t->oe_on + dev_t->t_oe); temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce); temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa); gpmc_t->access = gpmc_round_ps_to_ticks(temp); gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1); gpmc_t->cs_rd_off = gpmc_t->oe_off; /* rd_cycle */ temp = max_t(u32, dev_t->t_rd_cycle, gpmc_t->cs_rd_off + dev_t->t_cez_r); temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez); gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp); return 0; } static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t, struct gpmc_device_timings *dev_t, bool mux) { u32 temp; /* adv_wr_off */ temp = dev_t->t_avdp_w; if (mux) temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp); /* wr_data_mux_bus */ temp = dev_t->t_weasu; if (mux) { temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh); temp = max_t(u32, temp, gpmc_t->adv_wr_off + gpmc_ticks_to_ps(dev_t->cyc_aavdh_we)); } gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp); /* we_on */ if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu); else gpmc_t->we_on = gpmc_t->wr_data_mux_bus; /* we_off */ temp = gpmc_t->we_on + dev_t->t_wpl; gpmc_t->we_off = gpmc_round_ps_to_ticks(temp); gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off + dev_t->t_wph); /* wr_cycle */ temp = max_t(u32, dev_t->t_wr_cycle, gpmc_t->cs_wr_off + dev_t->t_cez_w); gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp); return 0; } static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t, struct gpmc_device_timings *dev_t) { u32 temp; gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) * gpmc_get_fclk_period(); gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk( dev_t->t_bacc, gpmc_t->sync_clk); temp = max_t(u32, dev_t->t_ces, dev_t->t_avds); gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp); if (gpmc_calc_divider(gpmc_t->sync_clk) != 1) return 0; if (dev_t->ce_xdelay) gpmc_t->bool_timings.cs_extra_delay = true; if (dev_t->avd_xdelay) gpmc_t->bool_timings.adv_extra_delay = true; if (dev_t->oe_xdelay) gpmc_t->bool_timings.oe_extra_delay = true; if (dev_t->we_xdelay) gpmc_t->bool_timings.we_extra_delay = true; return 0; } static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t, struct gpmc_device_timings *dev_t, bool sync) { u32 temp; /* cs_on */ gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu); /* adv_on */ temp = dev_t->t_avdasu; if (dev_t->t_ce_avd) temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce_avd); gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp); if (sync) gpmc_calc_sync_common_timings(gpmc_t, dev_t); return 0; } /* * TODO: remove this function once all peripherals are confirmed to * work with generic timing. Simultaneously gpmc_cs_set_timings() * has to be modified to handle timings in ps instead of ns */ static void gpmc_convert_ps_to_ns(struct gpmc_timings *t) { t->cs_on /= 1000; t->cs_rd_off /= 1000; t->cs_wr_off /= 1000; t->adv_on /= 1000; t->adv_rd_off /= 1000; t->adv_wr_off /= 1000; t->we_on /= 1000; t->we_off /= 1000; t->oe_on /= 1000; t->oe_off /= 1000; t->page_burst_access /= 1000; t->access /= 1000; t->rd_cycle /= 1000; t->wr_cycle /= 1000; t->bus_turnaround /= 1000; t->cycle2cycle_delay /= 1000; t->wait_monitoring /= 1000; t->clk_activation /= 1000; t->wr_access /= 1000; t->wr_data_mux_bus /= 1000; } int gpmc_calc_timings(struct gpmc_timings *gpmc_t, struct gpmc_settings *gpmc_s, struct gpmc_device_timings *dev_t) { bool mux = false, sync = false; if (gpmc_s) { mux = gpmc_s->mux_add_data ? true : false; sync = (gpmc_s->sync_read || gpmc_s->sync_write); } memset(gpmc_t, 0, sizeof(*gpmc_t)); gpmc_calc_common_timings(gpmc_t, dev_t, sync); if (gpmc_s && gpmc_s->sync_read) gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux); else gpmc_calc_async_read_timings(gpmc_t, dev_t, mux); if (gpmc_s && gpmc_s->sync_write) gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux); else gpmc_calc_async_write_timings(gpmc_t, dev_t, mux); /* TODO: remove, see function definition */ gpmc_convert_ps_to_ns(gpmc_t); return 0; } /** * gpmc_cs_program_settings - programs non-timing related settings * @cs: GPMC chip-select to program * @p: pointer to GPMC settings structure * * Programs non-timing related settings for a GPMC chip-select, such as * bus-width, burst configuration, etc. Function should be called once * for each chip-select that is being used and must be called before * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1 * register will be initialised to zero by this function. Returns 0 on * success and appropriate negative error code on failure. */ int gpmc_cs_program_settings(int cs, struct gpmc_settings *p) { u32 config1; if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) { pr_err("%s: invalid width %d!", __func__, p->device_width); return -EINVAL; } /* Address-data multiplexing not supported for NAND devices */ if (p->device_nand && p->mux_add_data) { pr_err("%s: invalid configuration!\n", __func__); return -EINVAL; } if ((p->mux_add_data > GPMC_MUX_AD) || ((p->mux_add_data == GPMC_MUX_AAD) && !(gpmc_capability & GPMC_HAS_MUX_AAD))) { pr_err("%s: invalid multiplex configuration!\n", __func__); return -EINVAL; } /* Page/burst mode supports lengths of 4, 8 and 16 bytes */ if (p->burst_read || p->burst_write) { switch (p->burst_len) { case GPMC_BURST_4: case GPMC_BURST_8: case GPMC_BURST_16: break; default: pr_err("%s: invalid page/burst-length (%d)\n", __func__, p->burst_len); return -EINVAL; } } if (p->wait_pin != GPMC_WAITPIN_INVALID && p->wait_pin > gpmc_nr_waitpins) { pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin); return -EINVAL; } config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1)); if (p->sync_read) config1 |= GPMC_CONFIG1_READTYPE_SYNC; if (p->sync_write) config1 |= GPMC_CONFIG1_WRITETYPE_SYNC; if (p->wait_on_read) config1 |= GPMC_CONFIG1_WAIT_READ_MON; if (p->wait_on_write) config1 |= GPMC_CONFIG1_WAIT_WRITE_MON; if (p->wait_on_read || p->wait_on_write) config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin); if (p->device_nand) config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND); if (p->mux_add_data) config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data); if (p->burst_read) config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP; if (p->burst_write) config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP; if (p->burst_read || p->burst_write) { config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3); config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0; } gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1); if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_INVALID) { config1 = gpmc_read_reg(GPMC_CONFIG); if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_LOW) config1 &= ~GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin); else if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_HIGH) config1 |= GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin); gpmc_write_reg(GPMC_CONFIG, config1); } return 0; } #ifdef CONFIG_OF static void gpmc_cs_set_name(int cs, const char *name) { struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; gpmc->name = name; } static const char *gpmc_cs_get_name(int cs) { struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; return gpmc->name; } /** * gpmc_cs_remap - remaps a chip-select physical base address * @cs: chip-select to remap * @base: physical base address to re-map chip-select to * * Re-maps a chip-select to a new physical base address specified by * "base". Returns 0 on success and appropriate negative error code * on failure. */ static int gpmc_cs_remap(int cs, u32 base) { int ret; u32 old_base, size; if (cs >= gpmc_cs_num) { pr_err("%s: requested chip-select is disabled\n", __func__); return -ENODEV; } /* * Make sure we ignore any device offsets from the GPMC partition * allocated for the chip select and that the new base confirms * to the GPMC 16MB minimum granularity. */ base &= ~(SZ_16M - 1); gpmc_cs_get_memconf(cs, &old_base, &size); if (base == old_base) return 0; ret = gpmc_cs_delete_mem(cs); if (ret < 0) return ret; ret = gpmc_cs_insert_mem(cs, base, size); if (ret < 0) return ret; ret = gpmc_cs_set_memconf(cs, base, size); return ret; } /** * gpmc_read_settings_dt - read gpmc settings from device-tree * @np: pointer to device-tree node for a gpmc child device * @p: pointer to gpmc settings structure * * Reads the GPMC settings for a GPMC child device from device-tree and * stores them in the GPMC settings structure passed. The GPMC settings * structure is initialised to zero by this function and so any * previously stored settings will be cleared. */ void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p) { memset(p, 0, sizeof(struct gpmc_settings)); p->sync_read = of_property_read_bool(np, "gpmc,sync-read"); p->sync_write = of_property_read_bool(np, "gpmc,sync-write"); of_property_read_u32(np, "gpmc,device-width", &p->device_width); of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data); if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) { p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap"); p->burst_read = of_property_read_bool(np, "gpmc,burst-read"); p->burst_write = of_property_read_bool(np, "gpmc,burst-write"); if (!p->burst_read && !p->burst_write) pr_warn("%s: page/burst-length set but not used!\n", __func__); } p->wait_pin = GPMC_WAITPIN_INVALID; p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID; if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) { if (!gpmc_is_valid_waitpin(p->wait_pin)) { pr_err("%s: Invalid wait-pin (%d)\n", __func__, p->wait_pin); p->wait_pin = GPMC_WAITPIN_INVALID; } if (!of_property_read_u32(np, "ti,wait-pin-polarity", &p->wait_pin_polarity)) { if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_HIGH && p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_LOW) { pr_err("%s: Invalid wait-pin-polarity (%d)\n", __func__, p->wait_pin_polarity); p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID; } } p->wait_on_read = of_property_read_bool(np, "gpmc,wait-on-read"); p->wait_on_write = of_property_read_bool(np, "gpmc,wait-on-write"); if (!p->wait_on_read && !p->wait_on_write) pr_debug("%s: rd/wr wait monitoring not enabled!\n", __func__); } } static void __maybe_unused gpmc_read_timings_dt(struct device_node *np, struct gpmc_timings *gpmc_t) { struct gpmc_bool_timings *p; if (!np || !gpmc_t) return; memset(gpmc_t, 0, sizeof(*gpmc_t)); /* minimum clock period for syncronous mode */ of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk); /* chip select timtings */ of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on); of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off); of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off); /* ADV signal timings */ of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on); of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off); of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off); of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns", &gpmc_t->adv_aad_mux_on); of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns", &gpmc_t->adv_aad_mux_rd_off); of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns", &gpmc_t->adv_aad_mux_wr_off); /* WE signal timings */ of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on); of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off); /* OE signal timings */ of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on); of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off); of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns", &gpmc_t->oe_aad_mux_on); of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns", &gpmc_t->oe_aad_mux_off); /* access and cycle timings */ of_property_read_u32(np, "gpmc,page-burst-access-ns", &gpmc_t->page_burst_access); of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access); of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle); of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle); of_property_read_u32(np, "gpmc,bus-turnaround-ns", &gpmc_t->bus_turnaround); of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns", &gpmc_t->cycle2cycle_delay); of_property_read_u32(np, "gpmc,wait-monitoring-ns", &gpmc_t->wait_monitoring); of_property_read_u32(np, "gpmc,clk-activation-ns", &gpmc_t->clk_activation); /* only applicable to OMAP3+ */ of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access); of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns", &gpmc_t->wr_data_mux_bus); /* bool timing parameters */ p = &gpmc_t->bool_timings; p->cycle2cyclediffcsen = of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen"); p->cycle2cyclesamecsen = of_property_read_bool(np, "gpmc,cycle2cycle-samecsen"); p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay"); p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay"); p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay"); p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay"); p->time_para_granularity = of_property_read_bool(np, "gpmc,time-para-granularity"); } /** * gpmc_probe_generic_child - configures the gpmc for a child device * @pdev: pointer to gpmc platform device * @child: pointer to device-tree node for child device * * Allocates and configures a GPMC chip-select for a child device. * Returns 0 on success and appropriate negative error code on failure. */ static int gpmc_probe_generic_child(struct platform_device *pdev, struct device_node *child) { struct gpmc_settings gpmc_s; struct gpmc_timings gpmc_t; struct resource res; unsigned long base; const char *name; int ret, cs; u32 val; struct gpmc_device *gpmc = platform_get_drvdata(pdev); if (of_property_read_u32(child, "reg", &cs) < 0) { dev_err(&pdev->dev, "%pOF has no 'reg' property\n", child); return -ENODEV; } if (of_address_to_resource(child, 0, &res) < 0) { dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n", child); return -ENODEV; } /* * Check if we have multiple instances of the same device * on a single chip select. If so, use the already initialized * timings. */ name = gpmc_cs_get_name(cs); if (name && of_node_name_eq(child, name)) goto no_timings; ret = gpmc_cs_request(cs, resource_size(&res), &base); if (ret < 0) { dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs); return ret; } gpmc_cs_set_name(cs, child->full_name); gpmc_read_settings_dt(child, &gpmc_s); gpmc_read_timings_dt(child, &gpmc_t); /* * For some GPMC devices we still need to rely on the bootloader * timings because the devices can be connected via FPGA. * REVISIT: Add timing support from slls644g.pdf. */ if (!gpmc_t.cs_rd_off) { WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n", cs); gpmc_cs_show_timings(cs, "please add GPMC bootloader timings to .dts"); goto no_timings; } /* CS must be disabled while making changes to gpmc configuration */ gpmc_cs_disable_mem(cs); /* * FIXME: gpmc_cs_request() will map the CS to an arbitrary * location in the gpmc address space. When booting with * device-tree we want the NOR flash to be mapped to the * location specified in the device-tree blob. So remap the * CS to this location. Once DT migration is complete should * just make gpmc_cs_request() map a specific address. */ ret = gpmc_cs_remap(cs, res.start); if (ret < 0) { dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n", cs, &res.start); if (res.start < GPMC_MEM_START) { dev_info(&pdev->dev, "GPMC CS %d start cannot be lesser than 0x%x\n", cs, GPMC_MEM_START); } else if (res.end > GPMC_MEM_END) { dev_info(&pdev->dev, "GPMC CS %d end cannot be greater than 0x%x\n", cs, GPMC_MEM_END); } goto err; } if (of_node_name_eq(child, "nand")) { /* Warn about older DT blobs with no compatible property */ if (!of_property_read_bool(child, "compatible")) { dev_warn(&pdev->dev, "Incompatible NAND node: missing compatible"); ret = -EINVAL; goto err; } } if (of_node_name_eq(child, "onenand")) { /* Warn about older DT blobs with no compatible property */ if (!of_property_read_bool(child, "compatible")) { dev_warn(&pdev->dev, "Incompatible OneNAND node: missing compatible"); ret = -EINVAL; goto err; } } if (of_match_node(omap_nand_ids, child)) { /* NAND specific setup */ val = 8; of_property_read_u32(child, "nand-bus-width", &val); switch (val) { case 8: gpmc_s.device_width = GPMC_DEVWIDTH_8BIT; break; case 16: gpmc_s.device_width = GPMC_DEVWIDTH_16BIT; break; default: dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n", child); ret = -EINVAL; goto err; } /* disable write protect */ gpmc_configure(GPMC_CONFIG_WP, 0); gpmc_s.device_nand = true; } else { ret = of_property_read_u32(child, "bank-width", &gpmc_s.device_width); if (ret < 0 && !gpmc_s.device_width) { dev_err(&pdev->dev, "%pOF has no 'gpmc,device-width' property\n", child); goto err; } } /* Reserve wait pin if it is required and valid */ if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) { ret = gpmc_alloc_waitpin(gpmc, &gpmc_s); if (ret < 0) goto err; } gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings"); ret = gpmc_cs_program_settings(cs, &gpmc_s); if (ret < 0) goto err_cs; ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s); if (ret) { dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n", child); goto err_cs; } /* Clear limited address i.e. enable A26-A11 */ val = gpmc_read_reg(GPMC_CONFIG); val &= ~GPMC_CONFIG_LIMITEDADDRESS; gpmc_write_reg(GPMC_CONFIG, val); /* Enable CS region */ gpmc_cs_enable_mem(cs); no_timings: /* create platform device, NULL on error or when disabled */ if (!of_platform_device_create(child, NULL, &pdev->dev)) goto err_child_fail; /* create children and other common bus children */ if (of_platform_default_populate(child, NULL, &pdev->dev)) goto err_child_fail; return 0; err_child_fail: dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child); ret = -ENODEV; err_cs: gpmc_free_waitpin(gpmc, gpmc_s.wait_pin); err: gpmc_cs_free(cs); return ret; } static const struct of_device_id gpmc_dt_ids[]; static int gpmc_probe_dt(struct platform_device *pdev) { int ret; const struct of_device_id *of_id = of_match_device(gpmc_dt_ids, &pdev->dev); if (!of_id) return 0; ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs", &gpmc_cs_num); if (ret < 0) { pr_err("%s: number of chip-selects not defined\n", __func__); return ret; } else if (gpmc_cs_num < 1) { pr_err("%s: all chip-selects are disabled\n", __func__); return -EINVAL; } else if (gpmc_cs_num > GPMC_CS_NUM) { pr_err("%s: number of supported chip-selects cannot be > %d\n", __func__, GPMC_CS_NUM); return -EINVAL; } ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins", &gpmc_nr_waitpins); if (ret < 0) { pr_err("%s: number of wait pins not found!\n", __func__); return ret; } return 0; } static void gpmc_probe_dt_children(struct platform_device *pdev) { int ret; struct device_node *child; for_each_available_child_of_node(pdev->dev.of_node, child) { ret = gpmc_probe_generic_child(pdev, child); if (ret) { dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n", child, ret); } } } #else void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p) { memset(p, 0, sizeof(*p)); } static int gpmc_probe_dt(struct platform_device *pdev) { return 0; } static void gpmc_probe_dt_children(struct platform_device *pdev) { } #endif /* CONFIG_OF */ static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) { return 1; /* we're input only */ } static int gpmc_gpio_direction_input(struct gpio_chip *chip, unsigned int offset) { return 0; /* we're input only */ } static int gpmc_gpio_direction_output(struct gpio_chip *chip, unsigned int offset, int value) { return -EINVAL; /* we're input only */ } static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset, int value) { } static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset) { u32 reg; offset += 8; reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset); return !!reg; } static int gpmc_gpio_init(struct gpmc_device *gpmc) { int ret; gpmc->gpio_chip.parent = gpmc->dev; gpmc->gpio_chip.owner = THIS_MODULE; gpmc->gpio_chip.label = DEVICE_NAME; gpmc->gpio_chip.ngpio = gpmc_nr_waitpins; gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction; gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input; gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output; gpmc->gpio_chip.set = gpmc_gpio_set; gpmc->gpio_chip.get = gpmc_gpio_get; gpmc->gpio_chip.base = -1; ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL); if (ret < 0) { dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret); return ret; } return 0; } static void omap3_gpmc_save_context(struct gpmc_device *gpmc) { struct omap3_gpmc_regs *gpmc_context; int i; if (!gpmc || !gpmc_base) return; gpmc_context = &gpmc->context; gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG); gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE); gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL); gpmc_context->config = gpmc_read_reg(GPMC_CONFIG); gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1); gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2); gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL); for (i = 0; i < gpmc_cs_num; i++) { gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i); if (gpmc_context->cs_context[i].is_valid) { gpmc_context->cs_context[i].config1 = gpmc_cs_read_reg(i, GPMC_CS_CONFIG1); gpmc_context->cs_context[i].config2 = gpmc_cs_read_reg(i, GPMC_CS_CONFIG2); gpmc_context->cs_context[i].config3 = gpmc_cs_read_reg(i, GPMC_CS_CONFIG3); gpmc_context->cs_context[i].config4 = gpmc_cs_read_reg(i, GPMC_CS_CONFIG4); gpmc_context->cs_context[i].config5 = gpmc_cs_read_reg(i, GPMC_CS_CONFIG5); gpmc_context->cs_context[i].config6 = gpmc_cs_read_reg(i, GPMC_CS_CONFIG6); gpmc_context->cs_context[i].config7 = gpmc_cs_read_reg(i, GPMC_CS_CONFIG7); } } } static void omap3_gpmc_restore_context(struct gpmc_device *gpmc) { struct omap3_gpmc_regs *gpmc_context; int i; if (!gpmc || !gpmc_base) return; gpmc_context = &gpmc->context; gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig); gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable); gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl); gpmc_write_reg(GPMC_CONFIG, gpmc_context->config); gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1); gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2); gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control); for (i = 0; i < gpmc_cs_num; i++) { if (gpmc_context->cs_context[i].is_valid) { gpmc_cs_write_reg(i, GPMC_CS_CONFIG1, gpmc_context->cs_context[i].config1); gpmc_cs_write_reg(i, GPMC_CS_CONFIG2, gpmc_context->cs_context[i].config2); gpmc_cs_write_reg(i, GPMC_CS_CONFIG3, gpmc_context->cs_context[i].config3); gpmc_cs_write_reg(i, GPMC_CS_CONFIG4, gpmc_context->cs_context[i].config4); gpmc_cs_write_reg(i, GPMC_CS_CONFIG5, gpmc_context->cs_context[i].config5); gpmc_cs_write_reg(i, GPMC_CS_CONFIG6, gpmc_context->cs_context[i].config6); gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, gpmc_context->cs_context[i].config7); } else { gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0); } } } static int omap_gpmc_context_notifier(struct notifier_block *nb, unsigned long cmd, void *v) { struct gpmc_device *gpmc; gpmc = container_of(nb, struct gpmc_device, nb); if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev)) return NOTIFY_OK; switch (cmd) { case CPU_CLUSTER_PM_ENTER: omap3_gpmc_save_context(gpmc); break; case CPU_CLUSTER_PM_ENTER_FAILED: /* No need to restore context */ break; case CPU_CLUSTER_PM_EXIT: omap3_gpmc_restore_context(gpmc); break; } return NOTIFY_OK; } static int gpmc_probe(struct platform_device *pdev) { int rc, i; u32 l; struct resource *res; struct gpmc_device *gpmc; gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL); if (!gpmc) return -ENOMEM; gpmc->dev = &pdev->dev; platform_set_drvdata(pdev, gpmc); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg"); if (!res) { /* legacy DT */ gpmc_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(gpmc_base)) return PTR_ERR(gpmc_base); } else { gpmc_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(gpmc_base)) return PTR_ERR(gpmc_base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "data"); if (!res) { dev_err(&pdev->dev, "couldn't get data reg resource\n"); return -ENOENT; } gpmc->data = res; } gpmc->irq = platform_get_irq(pdev, 0); if (gpmc->irq < 0) return gpmc->irq; gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck"); if (IS_ERR(gpmc_l3_clk)) { dev_err(&pdev->dev, "Failed to get GPMC fck\n"); return PTR_ERR(gpmc_l3_clk); } if (!clk_get_rate(gpmc_l3_clk)) { dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n"); return -EINVAL; } if (pdev->dev.of_node) { rc = gpmc_probe_dt(pdev); if (rc) return rc; } else { gpmc_cs_num = GPMC_CS_NUM; gpmc_nr_waitpins = GPMC_NR_WAITPINS; } gpmc->waitpins = devm_kzalloc(&pdev->dev, gpmc_nr_waitpins * sizeof(struct gpmc_waitpin), GFP_KERNEL); if (!gpmc->waitpins) return -ENOMEM; for (i = 0; i < gpmc_nr_waitpins; i++) gpmc->waitpins[i].pin = GPMC_WAITPIN_INVALID; pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); l = gpmc_read_reg(GPMC_REVISION); /* * FIXME: Once device-tree migration is complete the below flags * should be populated based upon the device-tree compatible * string. For now just use the IP revision. OMAP3+ devices have * the wr_access and wr_data_mux_bus register fields. OMAP4+ * devices support the addr-addr-data multiplex protocol. * * GPMC IP revisions: * - OMAP24xx = 2.0 * - OMAP3xxx = 5.0 * - OMAP44xx/54xx/AM335x = 6.0 */ if (GPMC_REVISION_MAJOR(l) > 0x4) gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS; if (GPMC_REVISION_MAJOR(l) > 0x5) gpmc_capability |= GPMC_HAS_MUX_AAD; dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l), GPMC_REVISION_MINOR(l)); gpmc_mem_init(gpmc); rc = gpmc_gpio_init(gpmc); if (rc) goto gpio_init_failed; gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins; rc = gpmc_setup_irq(gpmc); if (rc) { dev_err(gpmc->dev, "gpmc_setup_irq failed\n"); goto gpio_init_failed; } gpmc_probe_dt_children(pdev); gpmc->nb.notifier_call = omap_gpmc_context_notifier; cpu_pm_register_notifier(&gpmc->nb); return 0; gpio_init_failed: gpmc_mem_exit(); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); return rc; } static void gpmc_remove(struct platform_device *pdev) { int i; struct gpmc_device *gpmc = platform_get_drvdata(pdev); cpu_pm_unregister_notifier(&gpmc->nb); for (i = 0; i < gpmc_nr_waitpins; i++) gpmc_free_waitpin(gpmc, i); gpmc_free_irq(gpmc); gpmc_mem_exit(); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_PM_SLEEP static int gpmc_suspend(struct device *dev) { struct gpmc_device *gpmc = dev_get_drvdata(dev); omap3_gpmc_save_context(gpmc); pm_runtime_put_sync(dev); gpmc->is_suspended = 1; return 0; } static int gpmc_resume(struct device *dev) { struct gpmc_device *gpmc = dev_get_drvdata(dev); pm_runtime_get_sync(dev); omap3_gpmc_restore_context(gpmc); gpmc->is_suspended = 0; return 0; } #endif static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume); #ifdef CONFIG_OF static const struct of_device_id gpmc_dt_ids[] = { { .compatible = "ti,omap2420-gpmc" }, { .compatible = "ti,omap2430-gpmc" }, { .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */ { .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */ { .compatible = "ti,am3352-gpmc" }, /* am335x devices */ { .compatible = "ti,am64-gpmc" }, { } }; MODULE_DEVICE_TABLE(of, gpmc_dt_ids); #endif static struct platform_driver gpmc_driver = { .probe = gpmc_probe, .remove_new = gpmc_remove, .driver = { .name = DEVICE_NAME, .of_match_table = of_match_ptr(gpmc_dt_ids), .pm = &gpmc_pm_ops, }, }; module_platform_driver(gpmc_driver); MODULE_DESCRIPTION("Texas Instruments GPMC driver"); MODULE_LICENSE("GPL");