// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2004 Texas Instruments, Inc. * * Some parts based tps65010.c: * Copyright (C) 2004 Texas Instruments and * Copyright (C) 2004-2005 David Brownell * * Some parts based on tlv320aic24.c: * Copyright (C) by Kai Svahn * * Changes for interrupt handling and clean-up by * Tony Lindgren and Imre Deak * Cleanup and generalized support for voltage setting by * Juha Yrjola * Added support for controlling VCORE and regulator sleep states, * Amit Kucheria * Copyright (C) 2005, 2006 Nokia Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "menelaus" #define MENELAUS_I2C_ADDRESS 0x72 #define MENELAUS_REV 0x01 #define MENELAUS_VCORE_CTRL1 0x02 #define MENELAUS_VCORE_CTRL2 0x03 #define MENELAUS_VCORE_CTRL3 0x04 #define MENELAUS_VCORE_CTRL4 0x05 #define MENELAUS_VCORE_CTRL5 0x06 #define MENELAUS_DCDC_CTRL1 0x07 #define MENELAUS_DCDC_CTRL2 0x08 #define MENELAUS_DCDC_CTRL3 0x09 #define MENELAUS_LDO_CTRL1 0x0A #define MENELAUS_LDO_CTRL2 0x0B #define MENELAUS_LDO_CTRL3 0x0C #define MENELAUS_LDO_CTRL4 0x0D #define MENELAUS_LDO_CTRL5 0x0E #define MENELAUS_LDO_CTRL6 0x0F #define MENELAUS_LDO_CTRL7 0x10 #define MENELAUS_LDO_CTRL8 0x11 #define MENELAUS_SLEEP_CTRL1 0x12 #define MENELAUS_SLEEP_CTRL2 0x13 #define MENELAUS_DEVICE_OFF 0x14 #define MENELAUS_OSC_CTRL 0x15 #define MENELAUS_DETECT_CTRL 0x16 #define MENELAUS_INT_MASK1 0x17 #define MENELAUS_INT_MASK2 0x18 #define MENELAUS_INT_STATUS1 0x19 #define MENELAUS_INT_STATUS2 0x1A #define MENELAUS_INT_ACK1 0x1B #define MENELAUS_INT_ACK2 0x1C #define MENELAUS_GPIO_CTRL 0x1D #define MENELAUS_GPIO_IN 0x1E #define MENELAUS_GPIO_OUT 0x1F #define MENELAUS_BBSMS 0x20 #define MENELAUS_RTC_CTRL 0x21 #define MENELAUS_RTC_UPDATE 0x22 #define MENELAUS_RTC_SEC 0x23 #define MENELAUS_RTC_MIN 0x24 #define MENELAUS_RTC_HR 0x25 #define MENELAUS_RTC_DAY 0x26 #define MENELAUS_RTC_MON 0x27 #define MENELAUS_RTC_YR 0x28 #define MENELAUS_RTC_WKDAY 0x29 #define MENELAUS_RTC_AL_SEC 0x2A #define MENELAUS_RTC_AL_MIN 0x2B #define MENELAUS_RTC_AL_HR 0x2C #define MENELAUS_RTC_AL_DAY 0x2D #define MENELAUS_RTC_AL_MON 0x2E #define MENELAUS_RTC_AL_YR 0x2F #define MENELAUS_RTC_COMP_MSB 0x30 #define MENELAUS_RTC_COMP_LSB 0x31 #define MENELAUS_S1_PULL_EN 0x32 #define MENELAUS_S1_PULL_DIR 0x33 #define MENELAUS_S2_PULL_EN 0x34 #define MENELAUS_S2_PULL_DIR 0x35 #define MENELAUS_MCT_CTRL1 0x36 #define MENELAUS_MCT_CTRL2 0x37 #define MENELAUS_MCT_CTRL3 0x38 #define MENELAUS_MCT_PIN_ST 0x39 #define MENELAUS_DEBOUNCE1 0x3A #define IH_MENELAUS_IRQS 12 #define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */ #define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */ #define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */ #define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */ #define MENELAUS_LOWBAT_IRQ 4 /* Low battery */ #define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */ #define MENELAUS_UVLO_IRQ 6 /* UVLO detect */ #define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */ #define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */ #define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */ #define MENELAUS_RTCERR_IRQ 10 /* RTC error */ #define MENELAUS_PSHBTN_IRQ 11 /* Push button */ #define MENELAUS_RESERVED12_IRQ 12 /* Reserved */ #define MENELAUS_RESERVED13_IRQ 13 /* Reserved */ #define MENELAUS_RESERVED14_IRQ 14 /* Reserved */ #define MENELAUS_RESERVED15_IRQ 15 /* Reserved */ /* VCORE_CTRL1 register */ #define VCORE_CTRL1_BYP_COMP (1 << 5) #define VCORE_CTRL1_HW_NSW (1 << 7) /* GPIO_CTRL register */ #define GPIO_CTRL_SLOTSELEN (1 << 5) #define GPIO_CTRL_SLPCTLEN (1 << 6) #define GPIO1_DIR_INPUT (1 << 0) #define GPIO2_DIR_INPUT (1 << 1) #define GPIO3_DIR_INPUT (1 << 2) /* MCT_CTRL1 register */ #define MCT_CTRL1_S1_CMD_OD (1 << 2) #define MCT_CTRL1_S2_CMD_OD (1 << 3) /* MCT_CTRL2 register */ #define MCT_CTRL2_VS2_SEL_D0 (1 << 0) #define MCT_CTRL2_VS2_SEL_D1 (1 << 1) #define MCT_CTRL2_S1CD_BUFEN (1 << 4) #define MCT_CTRL2_S2CD_BUFEN (1 << 5) #define MCT_CTRL2_S1CD_DBEN (1 << 6) #define MCT_CTRL2_S2CD_BEN (1 << 7) /* MCT_CTRL3 register */ #define MCT_CTRL3_SLOT1_EN (1 << 0) #define MCT_CTRL3_SLOT2_EN (1 << 1) #define MCT_CTRL3_S1_AUTO_EN (1 << 2) #define MCT_CTRL3_S2_AUTO_EN (1 << 3) /* MCT_PIN_ST register */ #define MCT_PIN_ST_S1_CD_ST (1 << 0) #define MCT_PIN_ST_S2_CD_ST (1 << 1) static void menelaus_work(struct work_struct *_menelaus); struct menelaus_chip { struct mutex lock; struct i2c_client *client; struct work_struct work; #ifdef CONFIG_RTC_DRV_TWL92330 struct rtc_device *rtc; u8 rtc_control; unsigned uie:1; #endif unsigned vcore_hw_mode:1; u8 mask1, mask2; void (*handlers[16])(struct menelaus_chip *); void (*mmc_callback)(void *data, u8 mask); void *mmc_callback_data; }; static struct menelaus_chip *the_menelaus; static int menelaus_write_reg(int reg, u8 value) { int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value); if (val < 0) { pr_err(DRIVER_NAME ": write error"); return val; } return 0; } static int menelaus_read_reg(int reg) { int val = i2c_smbus_read_byte_data(the_menelaus->client, reg); if (val < 0) pr_err(DRIVER_NAME ": read error"); return val; } static int menelaus_enable_irq(int irq) { if (irq > 7) { irq -= 8; the_menelaus->mask2 &= ~(1 << irq); return menelaus_write_reg(MENELAUS_INT_MASK2, the_menelaus->mask2); } else { the_menelaus->mask1 &= ~(1 << irq); return menelaus_write_reg(MENELAUS_INT_MASK1, the_menelaus->mask1); } } static int menelaus_disable_irq(int irq) { if (irq > 7) { irq -= 8; the_menelaus->mask2 |= (1 << irq); return menelaus_write_reg(MENELAUS_INT_MASK2, the_menelaus->mask2); } else { the_menelaus->mask1 |= (1 << irq); return menelaus_write_reg(MENELAUS_INT_MASK1, the_menelaus->mask1); } } static int menelaus_ack_irq(int irq) { if (irq > 7) return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8)); else return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq); } /* Adds a handler for an interrupt. Does not run in interrupt context */ static int menelaus_add_irq_work(int irq, void (*handler)(struct menelaus_chip *)) { int ret = 0; mutex_lock(&the_menelaus->lock); the_menelaus->handlers[irq] = handler; ret = menelaus_enable_irq(irq); mutex_unlock(&the_menelaus->lock); return ret; } /* Removes handler for an interrupt */ static int menelaus_remove_irq_work(int irq) { int ret = 0; mutex_lock(&the_menelaus->lock); ret = menelaus_disable_irq(irq); the_menelaus->handlers[irq] = NULL; mutex_unlock(&the_menelaus->lock); return ret; } /* * Gets scheduled when a card detect interrupt happens. Note that in some cases * this line is wired to card cover switch rather than the card detect switch * in each slot. In this case the cards are not seen by menelaus. * FIXME: Add handling for D1 too */ static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw) { int reg; unsigned char card_mask = 0; reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST); if (reg < 0) return; if (!(reg & 0x1)) card_mask |= MCT_PIN_ST_S1_CD_ST; if (!(reg & 0x2)) card_mask |= MCT_PIN_ST_S2_CD_ST; if (menelaus_hw->mmc_callback) menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data, card_mask); } /* * Toggles the MMC slots between open-drain and push-pull mode. */ int menelaus_set_mmc_opendrain(int slot, int enable) { int ret, val; if (slot != 1 && slot != 2) return -EINVAL; mutex_lock(&the_menelaus->lock); ret = menelaus_read_reg(MENELAUS_MCT_CTRL1); if (ret < 0) { mutex_unlock(&the_menelaus->lock); return ret; } val = ret; if (slot == 1) { if (enable) val |= MCT_CTRL1_S1_CMD_OD; else val &= ~MCT_CTRL1_S1_CMD_OD; } else { if (enable) val |= MCT_CTRL1_S2_CMD_OD; else val &= ~MCT_CTRL1_S2_CMD_OD; } ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val); mutex_unlock(&the_menelaus->lock); return ret; } EXPORT_SYMBOL(menelaus_set_mmc_opendrain); int menelaus_set_slot_sel(int enable) { int ret; mutex_lock(&the_menelaus->lock); ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); if (ret < 0) goto out; ret |= GPIO2_DIR_INPUT; if (enable) ret |= GPIO_CTRL_SLOTSELEN; else ret &= ~GPIO_CTRL_SLOTSELEN; ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); out: mutex_unlock(&the_menelaus->lock); return ret; } EXPORT_SYMBOL(menelaus_set_slot_sel); int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en) { int ret, val; if (slot != 1 && slot != 2) return -EINVAL; if (power >= 3) return -EINVAL; mutex_lock(&the_menelaus->lock); ret = menelaus_read_reg(MENELAUS_MCT_CTRL2); if (ret < 0) goto out; val = ret; if (slot == 1) { if (cd_en) val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN; else val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN); } else { if (cd_en) val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN; else val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN); } ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val); if (ret < 0) goto out; ret = menelaus_read_reg(MENELAUS_MCT_CTRL3); if (ret < 0) goto out; val = ret; if (slot == 1) { if (enable) val |= MCT_CTRL3_SLOT1_EN; else val &= ~MCT_CTRL3_SLOT1_EN; } else { int b; if (enable) val |= MCT_CTRL3_SLOT2_EN; else val &= ~MCT_CTRL3_SLOT2_EN; b = menelaus_read_reg(MENELAUS_MCT_CTRL2); b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1); b |= power; ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b); if (ret < 0) goto out; } /* Disable autonomous shutdown */ val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN); ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val); out: mutex_unlock(&the_menelaus->lock); return ret; } EXPORT_SYMBOL(menelaus_set_mmc_slot); int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask), void *data) { int ret = 0; the_menelaus->mmc_callback_data = data; the_menelaus->mmc_callback = callback; ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ, menelaus_mmc_cd_work); if (ret < 0) return ret; ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ, menelaus_mmc_cd_work); if (ret < 0) return ret; ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ, menelaus_mmc_cd_work); if (ret < 0) return ret; ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ, menelaus_mmc_cd_work); return ret; } EXPORT_SYMBOL(menelaus_register_mmc_callback); void menelaus_unregister_mmc_callback(void) { menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ); menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ); menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ); menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ); the_menelaus->mmc_callback = NULL; the_menelaus->mmc_callback_data = NULL; } EXPORT_SYMBOL(menelaus_unregister_mmc_callback); struct menelaus_vtg { const char *name; u8 vtg_reg; u8 vtg_shift; u8 vtg_bits; u8 mode_reg; }; struct menelaus_vtg_value { u16 vtg; u16 val; }; static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV, int vtg_val, int mode) { int val, ret; struct i2c_client *c = the_menelaus->client; mutex_lock(&the_menelaus->lock); ret = menelaus_read_reg(vtg->vtg_reg); if (ret < 0) goto out; val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift); val |= vtg_val << vtg->vtg_shift; dev_dbg(&c->dev, "Setting voltage '%s'" "to %d mV (reg 0x%02x, val 0x%02x)\n", vtg->name, mV, vtg->vtg_reg, val); ret = menelaus_write_reg(vtg->vtg_reg, val); if (ret < 0) goto out; ret = menelaus_write_reg(vtg->mode_reg, mode); out: mutex_unlock(&the_menelaus->lock); if (ret == 0) { /* Wait for voltage to stabilize */ msleep(1); } return ret; } static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl, int n) { int i; for (i = 0; i < n; i++, tbl++) if (tbl->vtg == vtg) return tbl->val; return -EINVAL; } /* * Vcore can be programmed in two ways: * SW-controlled: Required voltage is programmed into VCORE_CTRL1 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3 * and VCORE_CTRL4 * * Call correct 'set' function accordingly */ static const struct menelaus_vtg_value vcore_values[] = { { 1000, 0 }, { 1025, 1 }, { 1050, 2 }, { 1075, 3 }, { 1100, 4 }, { 1125, 5 }, { 1150, 6 }, { 1175, 7 }, { 1200, 8 }, { 1225, 9 }, { 1250, 10 }, { 1275, 11 }, { 1300, 12 }, { 1325, 13 }, { 1350, 14 }, { 1375, 15 }, { 1400, 16 }, { 1425, 17 }, { 1450, 18 }, }; int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV) { int fval, rval, val, ret; struct i2c_client *c = the_menelaus->client; rval = menelaus_get_vtg_value(roof_mV, vcore_values, ARRAY_SIZE(vcore_values)); if (rval < 0) return -EINVAL; fval = menelaus_get_vtg_value(floor_mV, vcore_values, ARRAY_SIZE(vcore_values)); if (fval < 0) return -EINVAL; dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n", floor_mV, roof_mV); mutex_lock(&the_menelaus->lock); ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval); if (ret < 0) goto out; ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval); if (ret < 0) goto out; if (!the_menelaus->vcore_hw_mode) { val = menelaus_read_reg(MENELAUS_VCORE_CTRL1); /* HW mode, turn OFF byte comparator */ val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP); ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val); the_menelaus->vcore_hw_mode = 1; } msleep(1); out: mutex_unlock(&the_menelaus->lock); return ret; } static const struct menelaus_vtg vmem_vtg = { .name = "VMEM", .vtg_reg = MENELAUS_LDO_CTRL1, .vtg_shift = 0, .vtg_bits = 2, .mode_reg = MENELAUS_LDO_CTRL3, }; static const struct menelaus_vtg_value vmem_values[] = { { 1500, 0 }, { 1800, 1 }, { 1900, 2 }, { 2500, 3 }, }; int menelaus_set_vmem(unsigned int mV) { int val; if (mV == 0) return menelaus_set_voltage(&vmem_vtg, 0, 0, 0); val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values)); if (val < 0) return -EINVAL; return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02); } EXPORT_SYMBOL(menelaus_set_vmem); static const struct menelaus_vtg vio_vtg = { .name = "VIO", .vtg_reg = MENELAUS_LDO_CTRL1, .vtg_shift = 2, .vtg_bits = 2, .mode_reg = MENELAUS_LDO_CTRL4, }; static const struct menelaus_vtg_value vio_values[] = { { 1500, 0 }, { 1800, 1 }, { 2500, 2 }, { 2800, 3 }, }; int menelaus_set_vio(unsigned int mV) { int val; if (mV == 0) return menelaus_set_voltage(&vio_vtg, 0, 0, 0); val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values)); if (val < 0) return -EINVAL; return menelaus_set_voltage(&vio_vtg, mV, val, 0x02); } EXPORT_SYMBOL(menelaus_set_vio); static const struct menelaus_vtg_value vdcdc_values[] = { { 1500, 0 }, { 1800, 1 }, { 2000, 2 }, { 2200, 3 }, { 2400, 4 }, { 2800, 5 }, { 3000, 6 }, { 3300, 7 }, }; static const struct menelaus_vtg vdcdc2_vtg = { .name = "VDCDC2", .vtg_reg = MENELAUS_DCDC_CTRL1, .vtg_shift = 0, .vtg_bits = 3, .mode_reg = MENELAUS_DCDC_CTRL2, }; static const struct menelaus_vtg vdcdc3_vtg = { .name = "VDCDC3", .vtg_reg = MENELAUS_DCDC_CTRL1, .vtg_shift = 3, .vtg_bits = 3, .mode_reg = MENELAUS_DCDC_CTRL3, }; int menelaus_set_vdcdc(int dcdc, unsigned int mV) { const struct menelaus_vtg *vtg; int val; if (dcdc != 2 && dcdc != 3) return -EINVAL; if (dcdc == 2) vtg = &vdcdc2_vtg; else vtg = &vdcdc3_vtg; if (mV == 0) return menelaus_set_voltage(vtg, 0, 0, 0); val = menelaus_get_vtg_value(mV, vdcdc_values, ARRAY_SIZE(vdcdc_values)); if (val < 0) return -EINVAL; return menelaus_set_voltage(vtg, mV, val, 0x03); } static const struct menelaus_vtg_value vmmc_values[] = { { 1850, 0 }, { 2800, 1 }, { 3000, 2 }, { 3100, 3 }, }; static const struct menelaus_vtg vmmc_vtg = { .name = "VMMC", .vtg_reg = MENELAUS_LDO_CTRL1, .vtg_shift = 6, .vtg_bits = 2, .mode_reg = MENELAUS_LDO_CTRL7, }; int menelaus_set_vmmc(unsigned int mV) { int val; if (mV == 0) return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0); val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values)); if (val < 0) return -EINVAL; return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02); } EXPORT_SYMBOL(menelaus_set_vmmc); static const struct menelaus_vtg_value vaux_values[] = { { 1500, 0 }, { 1800, 1 }, { 2500, 2 }, { 2800, 3 }, }; static const struct menelaus_vtg vaux_vtg = { .name = "VAUX", .vtg_reg = MENELAUS_LDO_CTRL1, .vtg_shift = 4, .vtg_bits = 2, .mode_reg = MENELAUS_LDO_CTRL6, }; int menelaus_set_vaux(unsigned int mV) { int val; if (mV == 0) return menelaus_set_voltage(&vaux_vtg, 0, 0, 0); val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values)); if (val < 0) return -EINVAL; return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02); } EXPORT_SYMBOL(menelaus_set_vaux); int menelaus_get_slot_pin_states(void) { return menelaus_read_reg(MENELAUS_MCT_PIN_ST); } EXPORT_SYMBOL(menelaus_get_slot_pin_states); int menelaus_set_regulator_sleep(int enable, u32 val) { int t, ret; struct i2c_client *c = the_menelaus->client; mutex_lock(&the_menelaus->lock); ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val); if (ret < 0) goto out; dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val); ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); if (ret < 0) goto out; t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT); if (enable) ret |= t; else ret &= ~t; ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); out: mutex_unlock(&the_menelaus->lock); return ret; } /*-----------------------------------------------------------------------*/ /* Handles Menelaus interrupts. Does not run in interrupt context */ static void menelaus_work(struct work_struct *_menelaus) { struct menelaus_chip *menelaus = container_of(_menelaus, struct menelaus_chip, work); void (*handler)(struct menelaus_chip *menelaus); while (1) { unsigned isr; isr = (menelaus_read_reg(MENELAUS_INT_STATUS2) & ~menelaus->mask2) << 8; isr |= menelaus_read_reg(MENELAUS_INT_STATUS1) & ~menelaus->mask1; if (!isr) break; while (isr) { int irq = fls(isr) - 1; isr &= ~(1 << irq); mutex_lock(&menelaus->lock); menelaus_disable_irq(irq); menelaus_ack_irq(irq); handler = menelaus->handlers[irq]; if (handler) handler(menelaus); menelaus_enable_irq(irq); mutex_unlock(&menelaus->lock); } } enable_irq(menelaus->client->irq); } /* * We cannot use I2C in interrupt context, so we just schedule work. */ static irqreturn_t menelaus_irq(int irq, void *_menelaus) { struct menelaus_chip *menelaus = _menelaus; disable_irq_nosync(irq); (void)schedule_work(&menelaus->work); return IRQ_HANDLED; } /*-----------------------------------------------------------------------*/ /* * The RTC needs to be set once, then it runs on backup battery power. * It supports alarms, including system wake alarms (from some modes); * and 1/second IRQs if requested. */ #ifdef CONFIG_RTC_DRV_TWL92330 #define RTC_CTRL_RTC_EN (1 << 0) #define RTC_CTRL_AL_EN (1 << 1) #define RTC_CTRL_MODE12 (1 << 2) #define RTC_CTRL_EVERY_MASK (3 << 3) #define RTC_CTRL_EVERY_SEC (0 << 3) #define RTC_CTRL_EVERY_MIN (1 << 3) #define RTC_CTRL_EVERY_HR (2 << 3) #define RTC_CTRL_EVERY_DAY (3 << 3) #define RTC_UPDATE_EVERY 0x08 #define RTC_HR_PM (1 << 7) static void menelaus_to_time(char *regs, struct rtc_time *t) { t->tm_sec = bcd2bin(regs[0]); t->tm_min = bcd2bin(regs[1]); if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1; if (regs[2] & RTC_HR_PM) t->tm_hour += 12; } else t->tm_hour = bcd2bin(regs[2] & 0x3f); t->tm_mday = bcd2bin(regs[3]); t->tm_mon = bcd2bin(regs[4]) - 1; t->tm_year = bcd2bin(regs[5]) + 100; } static int time_to_menelaus(struct rtc_time *t, int regnum) { int hour, status; status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec)); if (status < 0) goto fail; status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min)); if (status < 0) goto fail; if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { hour = t->tm_hour + 1; if (hour > 12) hour = RTC_HR_PM | bin2bcd(hour - 12); else hour = bin2bcd(hour); } else hour = bin2bcd(t->tm_hour); status = menelaus_write_reg(regnum++, hour); if (status < 0) goto fail; status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday)); if (status < 0) goto fail; status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1)); if (status < 0) goto fail; status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100)); if (status < 0) goto fail; return 0; fail: dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n", --regnum, status); return status; } static int menelaus_read_time(struct device *dev, struct rtc_time *t) { struct i2c_msg msg[2]; char regs[7]; int status; /* block read date and time registers */ regs[0] = MENELAUS_RTC_SEC; msg[0].addr = MENELAUS_I2C_ADDRESS; msg[0].flags = 0; msg[0].len = 1; msg[0].buf = regs; msg[1].addr = MENELAUS_I2C_ADDRESS; msg[1].flags = I2C_M_RD; msg[1].len = sizeof(regs); msg[1].buf = regs; status = i2c_transfer(the_menelaus->client->adapter, msg, 2); if (status != 2) { dev_err(dev, "%s error %d\n", "read", status); return -EIO; } menelaus_to_time(regs, t); t->tm_wday = bcd2bin(regs[6]); return 0; } static int menelaus_set_time(struct device *dev, struct rtc_time *t) { int status; /* write date and time registers */ status = time_to_menelaus(t, MENELAUS_RTC_SEC); if (status < 0) return status; status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday)); if (status < 0) { dev_err(&the_menelaus->client->dev, "rtc write reg %02x " "err %d\n", MENELAUS_RTC_WKDAY, status); return status; } /* now commit the write */ status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY); if (status < 0) dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n", status); return 0; } static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w) { struct i2c_msg msg[2]; char regs[6]; int status; /* block read alarm registers */ regs[0] = MENELAUS_RTC_AL_SEC; msg[0].addr = MENELAUS_I2C_ADDRESS; msg[0].flags = 0; msg[0].len = 1; msg[0].buf = regs; msg[1].addr = MENELAUS_I2C_ADDRESS; msg[1].flags = I2C_M_RD; msg[1].len = sizeof(regs); msg[1].buf = regs; status = i2c_transfer(the_menelaus->client->adapter, msg, 2); if (status != 2) { dev_err(dev, "%s error %d\n", "alarm read", status); return -EIO; } menelaus_to_time(regs, &w->time); w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN); /* NOTE we *could* check if actually pending... */ w->pending = 0; return 0; } static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w) { int status; if (the_menelaus->client->irq <= 0 && w->enabled) return -ENODEV; /* clear previous alarm enable */ if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) { the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; status = menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); if (status < 0) return status; } /* write alarm registers */ status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC); if (status < 0) return status; /* enable alarm if requested */ if (w->enabled) { the_menelaus->rtc_control |= RTC_CTRL_AL_EN; status = menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); } return status; } #ifdef CONFIG_RTC_INTF_DEV static void menelaus_rtc_update_work(struct menelaus_chip *m) { /* report 1/sec update */ rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF); } static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg) { int status; if (the_menelaus->client->irq <= 0) return -ENOIOCTLCMD; switch (cmd) { /* alarm IRQ */ case RTC_AIE_ON: if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) return 0; the_menelaus->rtc_control |= RTC_CTRL_AL_EN; break; case RTC_AIE_OFF: if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN)) return 0; the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; break; /* 1/second "update" IRQ */ case RTC_UIE_ON: if (the_menelaus->uie) return 0; status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ, menelaus_rtc_update_work); if (status == 0) the_menelaus->uie = 1; return status; case RTC_UIE_OFF: if (!the_menelaus->uie) return 0; status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); if (status == 0) the_menelaus->uie = 0; return status; default: return -ENOIOCTLCMD; } return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); } #else #define menelaus_ioctl NULL #endif /* REVISIT no compensation register support ... */ static const struct rtc_class_ops menelaus_rtc_ops = { .ioctl = menelaus_ioctl, .read_time = menelaus_read_time, .set_time = menelaus_set_time, .read_alarm = menelaus_read_alarm, .set_alarm = menelaus_set_alarm, }; static void menelaus_rtc_alarm_work(struct menelaus_chip *m) { /* report alarm */ rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF); /* then disable it; alarms are oneshot */ the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); } static inline void menelaus_rtc_init(struct menelaus_chip *m) { int alarm = (m->client->irq > 0); int err; /* assume 32KDETEN pin is pulled high */ if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) { dev_dbg(&m->client->dev, "no 32k oscillator\n"); return; } m->rtc = devm_rtc_allocate_device(&m->client->dev); if (IS_ERR(m->rtc)) return; m->rtc->ops = &menelaus_rtc_ops; /* support RTC alarm; it can issue wakeups */ if (alarm) { if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ, menelaus_rtc_alarm_work) < 0) { dev_err(&m->client->dev, "can't handle RTC alarm\n"); return; } device_init_wakeup(&m->client->dev, 1); } /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */ m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL); if (!(m->rtc_control & RTC_CTRL_RTC_EN) || (m->rtc_control & RTC_CTRL_AL_EN) || (m->rtc_control & RTC_CTRL_EVERY_MASK)) { if (!(m->rtc_control & RTC_CTRL_RTC_EN)) { dev_warn(&m->client->dev, "rtc clock needs setting\n"); m->rtc_control |= RTC_CTRL_RTC_EN; } m->rtc_control &= ~RTC_CTRL_EVERY_MASK; m->rtc_control &= ~RTC_CTRL_AL_EN; menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control); } err = devm_rtc_register_device(m->rtc); if (err) { if (alarm) { menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ); device_init_wakeup(&m->client->dev, 0); } the_menelaus->rtc = NULL; } } #else static inline void menelaus_rtc_init(struct menelaus_chip *m) { /* nothing */ } #endif /*-----------------------------------------------------------------------*/ static struct i2c_driver menelaus_i2c_driver; static int menelaus_probe(struct i2c_client *client) { struct menelaus_chip *menelaus; int rev = 0; int err = 0; struct menelaus_platform_data *menelaus_pdata = dev_get_platdata(&client->dev); if (the_menelaus) { dev_dbg(&client->dev, "only one %s for now\n", DRIVER_NAME); return -ENODEV; } menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL); if (!menelaus) return -ENOMEM; i2c_set_clientdata(client, menelaus); the_menelaus = menelaus; menelaus->client = client; /* If a true probe check the device */ rev = menelaus_read_reg(MENELAUS_REV); if (rev < 0) { pr_err(DRIVER_NAME ": device not found"); return -ENODEV; } /* Ack and disable all Menelaus interrupts */ menelaus_write_reg(MENELAUS_INT_ACK1, 0xff); menelaus_write_reg(MENELAUS_INT_ACK2, 0xff); menelaus_write_reg(MENELAUS_INT_MASK1, 0xff); menelaus_write_reg(MENELAUS_INT_MASK2, 0xff); menelaus->mask1 = 0xff; menelaus->mask2 = 0xff; /* Set output buffer strengths */ menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73); if (client->irq > 0) { err = request_irq(client->irq, menelaus_irq, 0, DRIVER_NAME, menelaus); if (err) { dev_dbg(&client->dev, "can't get IRQ %d, err %d\n", client->irq, err); return err; } } mutex_init(&menelaus->lock); INIT_WORK(&menelaus->work, menelaus_work); pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f); err = menelaus_read_reg(MENELAUS_VCORE_CTRL1); if (err < 0) goto fail; if (err & VCORE_CTRL1_HW_NSW) menelaus->vcore_hw_mode = 1; else menelaus->vcore_hw_mode = 0; if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) { err = menelaus_pdata->late_init(&client->dev); if (err < 0) goto fail; } menelaus_rtc_init(menelaus); return 0; fail: free_irq(client->irq, menelaus); flush_work(&menelaus->work); return err; } static void menelaus_remove(struct i2c_client *client) { struct menelaus_chip *menelaus = i2c_get_clientdata(client); free_irq(client->irq, menelaus); flush_work(&menelaus->work); the_menelaus = NULL; } static const struct i2c_device_id menelaus_id[] = { { "menelaus", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, menelaus_id); static struct i2c_driver menelaus_i2c_driver = { .driver = { .name = DRIVER_NAME, }, .probe = menelaus_probe, .remove = menelaus_remove, .id_table = menelaus_id, }; module_i2c_driver(menelaus_i2c_driver); MODULE_AUTHOR("Texas Instruments, Inc. (and others)"); MODULE_DESCRIPTION("I2C interface for Menelaus."); MODULE_LICENSE("GPL");