/* * Copyright 2014 IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include "cxl.h" #include "trace.h" static int afu_control(struct cxl_afu *afu, u64 command, u64 result, u64 mask, bool enabled) { u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); int rc = 0; spin_lock(&afu->afu_cntl_lock); pr_devel("AFU command starting: %llx\n", command); trace_cxl_afu_ctrl(afu, command); cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl | command); AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); while ((AFU_Cntl & mask) != result) { if (time_after_eq(jiffies, timeout)) { dev_warn(&afu->dev, "WARNING: AFU control timed out!\n"); rc = -EBUSY; goto out; } pr_devel_ratelimited("AFU control... (0x%.16llx)\n", AFU_Cntl | command); cpu_relax(); AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); }; pr_devel("AFU command complete: %llx\n", command); afu->enabled = enabled; out: trace_cxl_afu_ctrl_done(afu, command, rc); spin_unlock(&afu->afu_cntl_lock); return rc; } static int afu_enable(struct cxl_afu *afu) { pr_devel("AFU enable request\n"); return afu_control(afu, CXL_AFU_Cntl_An_E, CXL_AFU_Cntl_An_ES_Enabled, CXL_AFU_Cntl_An_ES_MASK, true); } int cxl_afu_disable(struct cxl_afu *afu) { pr_devel("AFU disable request\n"); return afu_control(afu, 0, CXL_AFU_Cntl_An_ES_Disabled, CXL_AFU_Cntl_An_ES_MASK, false); } /* This will disable as well as reset */ int __cxl_afu_reset(struct cxl_afu *afu) { pr_devel("AFU reset request\n"); return afu_control(afu, CXL_AFU_Cntl_An_RA, CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled, CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK, false); } int cxl_afu_check_and_enable(struct cxl_afu *afu) { if (afu->enabled) return 0; return afu_enable(afu); } int cxl_psl_purge(struct cxl_afu *afu) { u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An); u64 dsisr, dar; u64 start, end; unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); int rc = 0; trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc); pr_devel("PSL purge request\n"); if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) { WARN(1, "psl_purge request while AFU not disabled!\n"); cxl_afu_disable(afu); } cxl_p1n_write(afu, CXL_PSL_SCNTL_An, PSL_CNTL | CXL_PSL_SCNTL_An_Pc); start = local_clock(); PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); while ((PSL_CNTL & CXL_PSL_SCNTL_An_Ps_MASK) == CXL_PSL_SCNTL_An_Ps_Pending) { if (time_after_eq(jiffies, timeout)) { dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n"); rc = -EBUSY; goto out; } dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%.16llx PSL_DSISR: 0x%.16llx\n", PSL_CNTL, dsisr); if (dsisr & CXL_PSL_DSISR_TRANS) { dar = cxl_p2n_read(afu, CXL_PSL_DAR_An); dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%.16llx, DAR: 0x%.16llx\n", dsisr, dar); cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); } else if (dsisr) { dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%.16llx\n", dsisr); cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); } else { cpu_relax(); } PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An); }; end = local_clock(); pr_devel("PSL purged in %lld ns\n", end - start); cxl_p1n_write(afu, CXL_PSL_SCNTL_An, PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc); out: trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc); return rc; } static int spa_max_procs(int spa_size) { /* * From the CAIA: * end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255 * Most of that junk is really just an overly-complicated way of saying * the last 256 bytes are __aligned(128), so it's really: * end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255 * and * end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1 * so * sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256 * Ignore the alignment (which is safe in this case as long as we are * careful with our rounding) and solve for n: */ return ((spa_size / 8) - 96) / 17; } static int alloc_spa(struct cxl_afu *afu) { u64 spap; /* Work out how many pages to allocate */ afu->spa_order = 0; do { afu->spa_order++; afu->spa_size = (1 << afu->spa_order) * PAGE_SIZE; afu->spa_max_procs = spa_max_procs(afu->spa_size); } while (afu->spa_max_procs < afu->num_procs); WARN_ON(afu->spa_size > 0x100000); /* Max size supported by the hardware */ if (!(afu->spa = (struct cxl_process_element *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->spa_order))) { pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n"); return -ENOMEM; } pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n", 1<spa_order, afu->spa_max_procs, afu->num_procs); afu->sw_command_status = (__be64 *)((char *)afu->spa + ((afu->spa_max_procs + 3) * 128)); spap = virt_to_phys(afu->spa) & CXL_PSL_SPAP_Addr; spap |= ((afu->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size; spap |= CXL_PSL_SPAP_V; pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n", afu->spa, afu->spa_max_procs, afu->sw_command_status, spap); cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap); return 0; } static void release_spa(struct cxl_afu *afu) { cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); free_pages((unsigned long) afu->spa, afu->spa_order); } int cxl_tlb_slb_invalidate(struct cxl *adapter) { unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); pr_devel("CXL adapter wide TLBIA & SLBIA\n"); cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A); cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL); while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) { if (time_after_eq(jiffies, timeout)) { dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n"); return -EBUSY; } cpu_relax(); } cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL); while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) { if (time_after_eq(jiffies, timeout)) { dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n"); return -EBUSY; } cpu_relax(); } return 0; } int cxl_afu_slbia(struct cxl_afu *afu) { unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); pr_devel("cxl_afu_slbia issuing SLBIA command\n"); cxl_p2n_write(afu, CXL_SLBIA_An, CXL_TLB_SLB_IQ_ALL); while (cxl_p2n_read(afu, CXL_SLBIA_An) & CXL_TLB_SLB_P) { if (time_after_eq(jiffies, timeout)) { dev_warn(&afu->dev, "WARNING: CXL AFU SLBIA timed out!\n"); return -EBUSY; } cpu_relax(); } return 0; } static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1) { int rc; /* 1. Disable SSTP by writing 0 to SSTP1[V] */ cxl_p2n_write(afu, CXL_SSTP1_An, 0); /* 2. Invalidate all SLB entries */ if ((rc = cxl_afu_slbia(afu))) return rc; /* 3. Set SSTP0_An */ cxl_p2n_write(afu, CXL_SSTP0_An, sstp0); /* 4. Set SSTP1_An */ cxl_p2n_write(afu, CXL_SSTP1_An, sstp1); return 0; } /* Using per slice version may improve performance here. (ie. SLBIA_An) */ static void slb_invalid(struct cxl_context *ctx) { struct cxl *adapter = ctx->afu->adapter; u64 slbia; WARN_ON(!mutex_is_locked(&ctx->afu->spa_mutex)); cxl_p1_write(adapter, CXL_PSL_LBISEL, ((u64)be32_to_cpu(ctx->elem->common.pid) << 32) | be32_to_cpu(ctx->elem->lpid)); cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID); while (1) { slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA); if (!(slbia & CXL_TLB_SLB_P)) break; cpu_relax(); } } static int do_process_element_cmd(struct cxl_context *ctx, u64 cmd, u64 pe_state) { u64 state; unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT); int rc = 0; trace_cxl_llcmd(ctx, cmd); WARN_ON(!ctx->afu->enabled); ctx->elem->software_state = cpu_to_be32(pe_state); smp_wmb(); *(ctx->afu->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe); smp_mb(); cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe); while (1) { if (time_after_eq(jiffies, timeout)) { dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n"); rc = -EBUSY; goto out; } state = be64_to_cpup(ctx->afu->sw_command_status); if (state == ~0ULL) { pr_err("cxl: Error adding process element to AFU\n"); rc = -1; goto out; } if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK | CXL_SPA_SW_LINK_MASK)) == (cmd | (cmd >> 16) | ctx->pe)) break; /* * The command won't finish in the PSL if there are * outstanding DSIs. Hence we need to yield here in * case there are outstanding DSIs that we need to * service. Tuning possiblity: we could wait for a * while before sched */ schedule(); } out: trace_cxl_llcmd_done(ctx, cmd, rc); return rc; } static int add_process_element(struct cxl_context *ctx) { int rc = 0; mutex_lock(&ctx->afu->spa_mutex); pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe); if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V))) ctx->pe_inserted = true; pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe); mutex_unlock(&ctx->afu->spa_mutex); return rc; } static int terminate_process_element(struct cxl_context *ctx) { int rc = 0; /* fast path terminate if it's already invalid */ if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V))) return rc; mutex_lock(&ctx->afu->spa_mutex); pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe); rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE, CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T); ctx->elem->software_state = 0; /* Remove Valid bit */ pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe); mutex_unlock(&ctx->afu->spa_mutex); return rc; } static int remove_process_element(struct cxl_context *ctx) { int rc = 0; mutex_lock(&ctx->afu->spa_mutex); pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe); if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0))) ctx->pe_inserted = false; slb_invalid(ctx); pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe); mutex_unlock(&ctx->afu->spa_mutex); return rc; } void cxl_assign_psn_space(struct cxl_context *ctx) { if (!ctx->afu->pp_size || ctx->master) { ctx->psn_phys = ctx->afu->psn_phys; ctx->psn_size = ctx->afu->adapter->ps_size; } else { ctx->psn_phys = ctx->afu->psn_phys + (ctx->afu->pp_offset + ctx->afu->pp_size * ctx->pe); ctx->psn_size = ctx->afu->pp_size; } } static int activate_afu_directed(struct cxl_afu *afu) { int rc; dev_info(&afu->dev, "Activating AFU directed mode\n"); if (alloc_spa(afu)) return -ENOMEM; cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU); cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL); cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L); afu->current_mode = CXL_MODE_DIRECTED; afu->num_procs = afu->max_procs_virtualised; if ((rc = cxl_chardev_m_afu_add(afu))) return rc; if ((rc = cxl_sysfs_afu_m_add(afu))) goto err; if ((rc = cxl_chardev_s_afu_add(afu))) goto err1; return 0; err1: cxl_sysfs_afu_m_remove(afu); err: cxl_chardev_afu_remove(afu); return rc; } #ifdef CONFIG_CPU_LITTLE_ENDIAN #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE) #else #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE)) #endif static u64 calculate_sr(struct cxl_context *ctx) { u64 sr = 0; if (ctx->master) sr |= CXL_PSL_SR_An_MP; if (mfspr(SPRN_LPCR) & LPCR_TC) sr |= CXL_PSL_SR_An_TC; if (ctx->kernel) { sr |= CXL_PSL_SR_An_R | (mfmsr() & MSR_SF); sr |= CXL_PSL_SR_An_HV; } else { sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R; set_endian(sr); sr &= ~(CXL_PSL_SR_An_HV); if (!test_tsk_thread_flag(current, TIF_32BIT)) sr |= CXL_PSL_SR_An_SF; } return sr; } static int attach_afu_directed(struct cxl_context *ctx, u64 wed, u64 amr) { u32 pid; int r, result; cxl_assign_psn_space(ctx); ctx->elem->ctxtime = 0; /* disable */ ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID)); ctx->elem->haurp = 0; /* disable */ ctx->elem->sdr = cpu_to_be64(mfspr(SPRN_SDR1)); pid = current->pid; if (ctx->kernel) pid = 0; ctx->elem->common.tid = 0; ctx->elem->common.pid = cpu_to_be32(pid); ctx->elem->sr = cpu_to_be64(calculate_sr(ctx)); ctx->elem->common.csrp = 0; /* disable */ ctx->elem->common.aurp0 = 0; /* disable */ ctx->elem->common.aurp1 = 0; /* disable */ cxl_prefault(ctx, wed); ctx->elem->common.sstp0 = cpu_to_be64(ctx->sstp0); ctx->elem->common.sstp1 = cpu_to_be64(ctx->sstp1); for (r = 0; r < CXL_IRQ_RANGES; r++) { ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]); ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]); } ctx->elem->common.amr = cpu_to_be64(amr); ctx->elem->common.wed = cpu_to_be64(wed); /* first guy needs to enable */ if ((result = cxl_afu_check_and_enable(ctx->afu))) return result; add_process_element(ctx); return 0; } static int deactivate_afu_directed(struct cxl_afu *afu) { dev_info(&afu->dev, "Deactivating AFU directed mode\n"); afu->current_mode = 0; afu->num_procs = 0; cxl_sysfs_afu_m_remove(afu); cxl_chardev_afu_remove(afu); __cxl_afu_reset(afu); cxl_afu_disable(afu); cxl_psl_purge(afu); release_spa(afu); return 0; } static int activate_dedicated_process(struct cxl_afu *afu) { dev_info(&afu->dev, "Activating dedicated process mode\n"); cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process); cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */ cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0); /* disable */ cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL); cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID)); cxl_p1n_write(afu, CXL_HAURP_An, 0); /* disable */ cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1)); cxl_p2n_write(afu, CXL_CSRP_An, 0); /* disable */ cxl_p2n_write(afu, CXL_AURP0_An, 0); /* disable */ cxl_p2n_write(afu, CXL_AURP1_An, 0); /* disable */ afu->current_mode = CXL_MODE_DEDICATED; afu->num_procs = 1; return cxl_chardev_d_afu_add(afu); } static int attach_dedicated(struct cxl_context *ctx, u64 wed, u64 amr) { struct cxl_afu *afu = ctx->afu; u64 pid; int rc; pid = (u64)current->pid << 32; if (ctx->kernel) pid = 0; cxl_p2n_write(afu, CXL_PSL_PID_TID_An, pid); cxl_p1n_write(afu, CXL_PSL_SR_An, calculate_sr(ctx)); if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1))) return rc; cxl_prefault(ctx, wed); cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An, (((u64)ctx->irqs.offset[0] & 0xffff) << 48) | (((u64)ctx->irqs.offset[1] & 0xffff) << 32) | (((u64)ctx->irqs.offset[2] & 0xffff) << 16) | ((u64)ctx->irqs.offset[3] & 0xffff)); cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64) (((u64)ctx->irqs.range[0] & 0xffff) << 48) | (((u64)ctx->irqs.range[1] & 0xffff) << 32) | (((u64)ctx->irqs.range[2] & 0xffff) << 16) | ((u64)ctx->irqs.range[3] & 0xffff)); cxl_p2n_write(afu, CXL_PSL_AMR_An, amr); /* master only context for dedicated */ cxl_assign_psn_space(ctx); if ((rc = __cxl_afu_reset(afu))) return rc; cxl_p2n_write(afu, CXL_PSL_WED_An, wed); return afu_enable(afu); } static int deactivate_dedicated_process(struct cxl_afu *afu) { dev_info(&afu->dev, "Deactivating dedicated process mode\n"); afu->current_mode = 0; afu->num_procs = 0; cxl_chardev_afu_remove(afu); return 0; } int _cxl_afu_deactivate_mode(struct cxl_afu *afu, int mode) { if (mode == CXL_MODE_DIRECTED) return deactivate_afu_directed(afu); if (mode == CXL_MODE_DEDICATED) return deactivate_dedicated_process(afu); return 0; } int cxl_afu_deactivate_mode(struct cxl_afu *afu) { return _cxl_afu_deactivate_mode(afu, afu->current_mode); } int cxl_afu_activate_mode(struct cxl_afu *afu, int mode) { if (!mode) return 0; if (!(mode & afu->modes_supported)) return -EINVAL; if (mode == CXL_MODE_DIRECTED) return activate_afu_directed(afu); if (mode == CXL_MODE_DEDICATED) return activate_dedicated_process(afu); return -EINVAL; } int cxl_attach_process(struct cxl_context *ctx, bool kernel, u64 wed, u64 amr) { ctx->kernel = kernel; if (ctx->afu->current_mode == CXL_MODE_DIRECTED) return attach_afu_directed(ctx, wed, amr); if (ctx->afu->current_mode == CXL_MODE_DEDICATED) return attach_dedicated(ctx, wed, amr); return -EINVAL; } static inline int detach_process_native_dedicated(struct cxl_context *ctx) { __cxl_afu_reset(ctx->afu); cxl_afu_disable(ctx->afu); cxl_psl_purge(ctx->afu); return 0; } static inline int detach_process_native_afu_directed(struct cxl_context *ctx) { if (!ctx->pe_inserted) return 0; if (terminate_process_element(ctx)) return -1; if (remove_process_element(ctx)) return -1; return 0; } int cxl_detach_process(struct cxl_context *ctx) { trace_cxl_detach(ctx); if (ctx->afu->current_mode == CXL_MODE_DEDICATED) return detach_process_native_dedicated(ctx); return detach_process_native_afu_directed(ctx); } int cxl_get_irq(struct cxl_afu *afu, struct cxl_irq_info *info) { u64 pidtid; info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An); info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An); pidtid = cxl_p2n_read(afu, CXL_PSL_PID_TID_An); info->pid = pidtid >> 32; info->tid = pidtid & 0xffffffff; info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An); info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); return 0; } static void recover_psl_err(struct cxl_afu *afu, u64 errstat) { u64 dsisr; pr_devel("RECOVERING FROM PSL ERROR... (0x%.16llx)\n", errstat); /* Clear PSL_DSISR[PE] */ dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An); cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE); /* Write 1s to clear error status bits */ cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat); } int cxl_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask) { trace_cxl_psl_irq_ack(ctx, tfc); if (tfc) cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc); if (psl_reset_mask) recover_psl_err(ctx->afu, psl_reset_mask); return 0; } int cxl_check_error(struct cxl_afu *afu) { return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL); }