// SPDX-License-Identifier: GPL-2.0 #define pr_fmt(fmt) "OF: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include /* for bus_dma_region */ #include "of_private.h" /* Max address size we deal with */ #define OF_MAX_ADDR_CELLS 4 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS) #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0) /* Debug utility */ #ifdef DEBUG static void of_dump_addr(const char *s, const __be32 *addr, int na) { pr_debug("%s", s); while (na--) pr_cont(" %08x", be32_to_cpu(*(addr++))); pr_cont("\n"); } #else static void of_dump_addr(const char *s, const __be32 *addr, int na) { } #endif /* Callbacks for bus specific translators */ struct of_bus { const char *name; const char *addresses; int (*match)(struct device_node *parent); void (*count_cells)(struct device_node *child, int *addrc, int *sizec); u64 (*map)(__be32 *addr, const __be32 *range, int na, int ns, int pna, int fna); int (*translate)(__be32 *addr, u64 offset, int na); int flag_cells; unsigned int (*get_flags)(const __be32 *addr); }; /* * Default translator (generic bus) */ static void of_bus_default_count_cells(struct device_node *dev, int *addrc, int *sizec) { if (addrc) *addrc = of_n_addr_cells(dev); if (sizec) *sizec = of_n_size_cells(dev); } static u64 of_bus_default_map(__be32 *addr, const __be32 *range, int na, int ns, int pna, int fna) { u64 cp, s, da; cp = of_read_number(range + fna, na - fna); s = of_read_number(range + na + pna, ns); da = of_read_number(addr + fna, na - fna); pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da); if (da < cp || da >= (cp + s)) return OF_BAD_ADDR; return da - cp; } static int of_bus_default_translate(__be32 *addr, u64 offset, int na) { u64 a = of_read_number(addr, na); memset(addr, 0, na * 4); a += offset; if (na > 1) addr[na - 2] = cpu_to_be32(a >> 32); addr[na - 1] = cpu_to_be32(a & 0xffffffffu); return 0; } static unsigned int of_bus_default_flags_get_flags(const __be32 *addr) { return of_read_number(addr, 1); } static unsigned int of_bus_default_get_flags(const __be32 *addr) { return IORESOURCE_MEM; } static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na, int ns, int pna, int fna) { /* Check that flags match */ if (*addr != *range) return OF_BAD_ADDR; return of_bus_default_map(addr, range, na, ns, pna, fna); } static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na) { /* Keep "flags" part (high cell) in translated address */ return of_bus_default_translate(addr + 1, offset, na - 1); } #ifdef CONFIG_PCI static unsigned int of_bus_pci_get_flags(const __be32 *addr) { unsigned int flags = 0; u32 w = be32_to_cpup(addr); if (!IS_ENABLED(CONFIG_PCI)) return 0; switch((w >> 24) & 0x03) { case 0x01: flags |= IORESOURCE_IO; break; case 0x02: /* 32 bits */ flags |= IORESOURCE_MEM; break; case 0x03: /* 64 bits */ flags |= IORESOURCE_MEM | IORESOURCE_MEM_64; break; } if (w & 0x40000000) flags |= IORESOURCE_PREFETCH; return flags; } /* * PCI bus specific translator */ static bool of_node_is_pcie(struct device_node *np) { bool is_pcie = of_node_name_eq(np, "pcie"); if (is_pcie) pr_warn_once("%pOF: Missing device_type\n", np); return is_pcie; } static int of_bus_pci_match(struct device_node *np) { /* * "pciex" is PCI Express * "vci" is for the /chaos bridge on 1st-gen PCI powermacs * "ht" is hypertransport * * If none of the device_type match, and that the node name is * "pcie", accept the device as PCI (with a warning). */ return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") || of_node_is_type(np, "vci") || of_node_is_type(np, "ht") || of_node_is_pcie(np); } static void of_bus_pci_count_cells(struct device_node *np, int *addrc, int *sizec) { if (addrc) *addrc = 3; if (sizec) *sizec = 2; } static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns, int pna, int fna) { unsigned int af, rf; af = of_bus_pci_get_flags(addr); rf = of_bus_pci_get_flags(range); /* Check address type match */ if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO)) return OF_BAD_ADDR; return of_bus_default_map(addr, range, na, ns, pna, fna); } #endif /* CONFIG_PCI */ /* * of_pci_range_to_resource - Create a resource from an of_pci_range * @range: the PCI range that describes the resource * @np: device node where the range belongs to * @res: pointer to a valid resource that will be updated to * reflect the values contained in the range. * * Returns -EINVAL if the range cannot be converted to resource. * * Note that if the range is an IO range, the resource will be converted * using pci_address_to_pio() which can fail if it is called too early or * if the range cannot be matched to any host bridge IO space (our case here). * To guard against that we try to register the IO range first. * If that fails we know that pci_address_to_pio() will do too. */ int of_pci_range_to_resource(struct of_pci_range *range, struct device_node *np, struct resource *res) { int err; res->flags = range->flags; res->parent = res->child = res->sibling = NULL; res->name = np->full_name; if (res->flags & IORESOURCE_IO) { unsigned long port; err = pci_register_io_range(&np->fwnode, range->cpu_addr, range->size); if (err) goto invalid_range; port = pci_address_to_pio(range->cpu_addr); if (port == (unsigned long)-1) { err = -EINVAL; goto invalid_range; } res->start = port; } else { if ((sizeof(resource_size_t) < 8) && upper_32_bits(range->cpu_addr)) { err = -EINVAL; goto invalid_range; } res->start = range->cpu_addr; } res->end = res->start + range->size - 1; return 0; invalid_range: res->start = (resource_size_t)OF_BAD_ADDR; res->end = (resource_size_t)OF_BAD_ADDR; return err; } EXPORT_SYMBOL(of_pci_range_to_resource); /* * of_range_to_resource - Create a resource from a ranges entry * @np: device node where the range belongs to * @index: the 'ranges' index to convert to a resource * @res: pointer to a valid resource that will be updated to * reflect the values contained in the range. * * Returns ENOENT if the entry is not found or EINVAL if the range cannot be * converted to resource. */ int of_range_to_resource(struct device_node *np, int index, struct resource *res) { int ret, i = 0; struct of_range_parser parser; struct of_range range; ret = of_range_parser_init(&parser, np); if (ret) return ret; for_each_of_range(&parser, &range) if (i++ == index) return of_pci_range_to_resource(&range, np, res); return -ENOENT; } EXPORT_SYMBOL(of_range_to_resource); /* * ISA bus specific translator */ static int of_bus_isa_match(struct device_node *np) { return of_node_name_eq(np, "isa"); } static void of_bus_isa_count_cells(struct device_node *child, int *addrc, int *sizec) { if (addrc) *addrc = 2; if (sizec) *sizec = 1; } static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns, int pna, int fna) { /* Check address type match */ if ((addr[0] ^ range[0]) & cpu_to_be32(1)) return OF_BAD_ADDR; return of_bus_default_map(addr, range, na, ns, pna, fna); } static unsigned int of_bus_isa_get_flags(const __be32 *addr) { unsigned int flags = 0; u32 w = be32_to_cpup(addr); if (w & 1) flags |= IORESOURCE_IO; else flags |= IORESOURCE_MEM; return flags; } static int of_bus_default_flags_match(struct device_node *np) { return of_bus_n_addr_cells(np) == 3; } /* * Array of bus specific translators */ static struct of_bus of_busses[] = { #ifdef CONFIG_PCI /* PCI */ { .name = "pci", .addresses = "assigned-addresses", .match = of_bus_pci_match, .count_cells = of_bus_pci_count_cells, .map = of_bus_pci_map, .translate = of_bus_default_flags_translate, .flag_cells = 1, .get_flags = of_bus_pci_get_flags, }, #endif /* CONFIG_PCI */ /* ISA */ { .name = "isa", .addresses = "reg", .match = of_bus_isa_match, .count_cells = of_bus_isa_count_cells, .map = of_bus_isa_map, .translate = of_bus_default_flags_translate, .flag_cells = 1, .get_flags = of_bus_isa_get_flags, }, /* Default with flags cell */ { .name = "default-flags", .addresses = "reg", .match = of_bus_default_flags_match, .count_cells = of_bus_default_count_cells, .map = of_bus_default_flags_map, .translate = of_bus_default_flags_translate, .flag_cells = 1, .get_flags = of_bus_default_flags_get_flags, }, /* Default */ { .name = "default", .addresses = "reg", .match = NULL, .count_cells = of_bus_default_count_cells, .map = of_bus_default_map, .translate = of_bus_default_translate, .get_flags = of_bus_default_get_flags, }, }; static struct of_bus *of_match_bus(struct device_node *np) { int i; for (i = 0; i < ARRAY_SIZE(of_busses); i++) if (!of_busses[i].match || of_busses[i].match(np)) return &of_busses[i]; BUG(); return NULL; } static int of_empty_ranges_quirk(struct device_node *np) { if (IS_ENABLED(CONFIG_PPC)) { /* To save cycles, we cache the result for global "Mac" setting */ static int quirk_state = -1; /* PA-SEMI sdc DT bug */ if (of_device_is_compatible(np, "1682m-sdc")) return true; /* Make quirk cached */ if (quirk_state < 0) quirk_state = of_machine_is_compatible("Power Macintosh") || of_machine_is_compatible("MacRISC"); return quirk_state; } return false; } static int of_translate_one(struct device_node *parent, struct of_bus *bus, struct of_bus *pbus, __be32 *addr, int na, int ns, int pna, const char *rprop) { const __be32 *ranges; unsigned int rlen; int rone; u64 offset = OF_BAD_ADDR; /* * Normally, an absence of a "ranges" property means we are * crossing a non-translatable boundary, and thus the addresses * below the current cannot be converted to CPU physical ones. * Unfortunately, while this is very clear in the spec, it's not * what Apple understood, and they do have things like /uni-n or * /ht nodes with no "ranges" property and a lot of perfectly * useable mapped devices below them. Thus we treat the absence of * "ranges" as equivalent to an empty "ranges" property which means * a 1:1 translation at that level. It's up to the caller not to try * to translate addresses that aren't supposed to be translated in * the first place. --BenH. * * As far as we know, this damage only exists on Apple machines, so * This code is only enabled on powerpc. --gcl * * This quirk also applies for 'dma-ranges' which frequently exist in * child nodes without 'dma-ranges' in the parent nodes. --RobH */ ranges = of_get_property(parent, rprop, &rlen); if (ranges == NULL && !of_empty_ranges_quirk(parent) && strcmp(rprop, "dma-ranges")) { pr_debug("no ranges; cannot translate\n"); return 1; } if (ranges == NULL || rlen == 0) { offset = of_read_number(addr, na); memset(addr, 0, pna * 4); pr_debug("empty ranges; 1:1 translation\n"); goto finish; } pr_debug("walking ranges...\n"); /* Now walk through the ranges */ rlen /= 4; rone = na + pna + ns; for (; rlen >= rone; rlen -= rone, ranges += rone) { offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells); if (offset != OF_BAD_ADDR) break; } if (offset == OF_BAD_ADDR) { pr_debug("not found !\n"); return 1; } memcpy(addr, ranges + na, 4 * pna); finish: of_dump_addr("parent translation for:", addr, pna); pr_debug("with offset: %llx\n", offset); /* Translate it into parent bus space */ return pbus->translate(addr, offset, pna); } /* * Translate an address from the device-tree into a CPU physical address, * this walks up the tree and applies the various bus mappings on the * way. * * Note: We consider that crossing any level with #size-cells == 0 to mean * that translation is impossible (that is we are not dealing with a value * that can be mapped to a cpu physical address). This is not really specified * that way, but this is traditionally the way IBM at least do things * * Whenever the translation fails, the *host pointer will be set to the * device that had registered logical PIO mapping, and the return code is * relative to that node. */ static u64 __of_translate_address(struct device_node *dev, struct device_node *(*get_parent)(const struct device_node *), const __be32 *in_addr, const char *rprop, struct device_node **host) { struct device_node *parent = NULL; struct of_bus *bus, *pbus; __be32 addr[OF_MAX_ADDR_CELLS]; int na, ns, pna, pns; u64 result = OF_BAD_ADDR; pr_debug("** translation for device %pOF **\n", dev); /* Increase refcount at current level */ of_node_get(dev); *host = NULL; /* Get parent & match bus type */ parent = get_parent(dev); if (parent == NULL) goto bail; bus = of_match_bus(parent); /* Count address cells & copy address locally */ bus->count_cells(dev, &na, &ns); if (!OF_CHECK_COUNTS(na, ns)) { pr_debug("Bad cell count for %pOF\n", dev); goto bail; } memcpy(addr, in_addr, na * 4); pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n", bus->name, na, ns, parent); of_dump_addr("translating address:", addr, na); /* Translate */ for (;;) { struct logic_pio_hwaddr *iorange; /* Switch to parent bus */ of_node_put(dev); dev = parent; parent = get_parent(dev); /* If root, we have finished */ if (parent == NULL) { pr_debug("reached root node\n"); result = of_read_number(addr, na); break; } /* * For indirectIO device which has no ranges property, get * the address from reg directly. */ iorange = find_io_range_by_fwnode(&dev->fwnode); if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) { result = of_read_number(addr + 1, na - 1); pr_debug("indirectIO matched(%pOF) 0x%llx\n", dev, result); *host = of_node_get(dev); break; } /* Get new parent bus and counts */ pbus = of_match_bus(parent); pbus->count_cells(dev, &pna, &pns); if (!OF_CHECK_COUNTS(pna, pns)) { pr_err("Bad cell count for %pOF\n", dev); break; } pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n", pbus->name, pna, pns, parent); /* Apply bus translation */ if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop)) break; /* Complete the move up one level */ na = pna; ns = pns; bus = pbus; of_dump_addr("one level translation:", addr, na); } bail: of_node_put(parent); of_node_put(dev); return result; } u64 of_translate_address(struct device_node *dev, const __be32 *in_addr) { struct device_node *host; u64 ret; ret = __of_translate_address(dev, of_get_parent, in_addr, "ranges", &host); if (host) { of_node_put(host); return OF_BAD_ADDR; } return ret; } EXPORT_SYMBOL(of_translate_address); #ifdef CONFIG_HAS_DMA struct device_node *__of_get_dma_parent(const struct device_node *np) { struct of_phandle_args args; int ret, index; index = of_property_match_string(np, "interconnect-names", "dma-mem"); if (index < 0) return of_get_parent(np); ret = of_parse_phandle_with_args(np, "interconnects", "#interconnect-cells", index, &args); if (ret < 0) return of_get_parent(np); return of_node_get(args.np); } #endif static struct device_node *of_get_next_dma_parent(struct device_node *np) { struct device_node *parent; parent = __of_get_dma_parent(np); of_node_put(np); return parent; } u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr) { struct device_node *host; u64 ret; ret = __of_translate_address(dev, __of_get_dma_parent, in_addr, "dma-ranges", &host); if (host) { of_node_put(host); return OF_BAD_ADDR; } return ret; } EXPORT_SYMBOL(of_translate_dma_address); /** * of_translate_dma_region - Translate device tree address and size tuple * @dev: device tree node for which to translate * @prop: pointer into array of cells * @start: return value for the start of the DMA range * @length: return value for the length of the DMA range * * Returns a pointer to the cell immediately following the translated DMA region. */ const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop, phys_addr_t *start, size_t *length) { struct device_node *parent; u64 address, size; int na, ns; parent = __of_get_dma_parent(dev); if (!parent) return NULL; na = of_bus_n_addr_cells(parent); ns = of_bus_n_size_cells(parent); of_node_put(parent); address = of_translate_dma_address(dev, prop); if (address == OF_BAD_ADDR) return NULL; size = of_read_number(prop + na, ns); if (start) *start = address; if (length) *length = size; return prop + na + ns; } EXPORT_SYMBOL(of_translate_dma_region); const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no, u64 *size, unsigned int *flags) { const __be32 *prop; unsigned int psize; struct device_node *parent; struct of_bus *bus; int onesize, i, na, ns; /* Get parent & match bus type */ parent = of_get_parent(dev); if (parent == NULL) return NULL; bus = of_match_bus(parent); if (strcmp(bus->name, "pci") && (bar_no >= 0)) { of_node_put(parent); return NULL; } bus->count_cells(dev, &na, &ns); of_node_put(parent); if (!OF_CHECK_ADDR_COUNT(na)) return NULL; /* Get "reg" or "assigned-addresses" property */ prop = of_get_property(dev, bus->addresses, &psize); if (prop == NULL) return NULL; psize /= 4; onesize = na + ns; for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) { u32 val = be32_to_cpu(prop[0]); /* PCI bus matches on BAR number instead of index */ if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) || ((index >= 0) && (i == index))) { if (size) *size = of_read_number(prop + na, ns); if (flags) *flags = bus->get_flags(prop); return prop; } } return NULL; } EXPORT_SYMBOL(__of_get_address); /** * of_property_read_reg - Retrieve the specified "reg" entry index without translating * @np: device tree node for which to retrieve "reg" from * @idx: "reg" entry index to read * @addr: return value for the untranslated address * @size: return value for the entry size * * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and * size values filled in. */ int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size) { const __be32 *prop = of_get_address(np, idx, size, NULL); if (!prop) return -EINVAL; *addr = of_read_number(prop, of_n_addr_cells(np)); return 0; } EXPORT_SYMBOL(of_property_read_reg); static int parser_init(struct of_pci_range_parser *parser, struct device_node *node, const char *name) { int rlen; parser->node = node; parser->pna = of_n_addr_cells(node); parser->na = of_bus_n_addr_cells(node); parser->ns = of_bus_n_size_cells(node); parser->dma = !strcmp(name, "dma-ranges"); parser->bus = of_match_bus(node); parser->range = of_get_property(node, name, &rlen); if (parser->range == NULL) return -ENOENT; parser->end = parser->range + rlen / sizeof(__be32); return 0; } int of_pci_range_parser_init(struct of_pci_range_parser *parser, struct device_node *node) { return parser_init(parser, node, "ranges"); } EXPORT_SYMBOL_GPL(of_pci_range_parser_init); int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser, struct device_node *node) { return parser_init(parser, node, "dma-ranges"); } EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init); #define of_dma_range_parser_init of_pci_dma_range_parser_init struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser, struct of_pci_range *range) { int na = parser->na; int ns = parser->ns; int np = parser->pna + na + ns; int busflag_na = parser->bus->flag_cells; if (!range) return NULL; if (!parser->range || parser->range + np > parser->end) return NULL; range->flags = parser->bus->get_flags(parser->range); range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); if (parser->dma) range->cpu_addr = of_translate_dma_address(parser->node, parser->range + na); else range->cpu_addr = of_translate_address(parser->node, parser->range + na); range->size = of_read_number(parser->range + parser->pna + na, ns); parser->range += np; /* Now consume following elements while they are contiguous */ while (parser->range + np <= parser->end) { u32 flags = 0; u64 bus_addr, cpu_addr, size; flags = parser->bus->get_flags(parser->range); bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na); if (parser->dma) cpu_addr = of_translate_dma_address(parser->node, parser->range + na); else cpu_addr = of_translate_address(parser->node, parser->range + na); size = of_read_number(parser->range + parser->pna + na, ns); if (flags != range->flags) break; if (bus_addr != range->bus_addr + range->size || cpu_addr != range->cpu_addr + range->size) break; range->size += size; parser->range += np; } return range; } EXPORT_SYMBOL_GPL(of_pci_range_parser_one); static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr, u64 size) { u64 taddr; unsigned long port; struct device_node *host; taddr = __of_translate_address(dev, of_get_parent, in_addr, "ranges", &host); if (host) { /* host-specific port access */ port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size); of_node_put(host); } else { /* memory-mapped I/O range */ port = pci_address_to_pio(taddr); } if (port == (unsigned long)-1) return OF_BAD_ADDR; return port; } #ifdef CONFIG_HAS_DMA /** * of_dma_get_range - Get DMA range info and put it into a map array * @np: device node to get DMA range info * @map: dma range structure to return * * Look in bottom up direction for the first "dma-ranges" property * and parse it. Put the information into a DMA offset map array. * * dma-ranges format: * DMA addr (dma_addr) : naddr cells * CPU addr (phys_addr_t) : pna cells * size : nsize cells * * It returns -ENODEV if "dma-ranges" property was not found for this * device in the DT. */ int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map) { struct device_node *node = of_node_get(np); const __be32 *ranges = NULL; bool found_dma_ranges = false; struct of_range_parser parser; struct of_range range; struct bus_dma_region *r; int len, num_ranges = 0; int ret = 0; while (node) { ranges = of_get_property(node, "dma-ranges", &len); /* Ignore empty ranges, they imply no translation required */ if (ranges && len > 0) break; /* Once we find 'dma-ranges', then a missing one is an error */ if (found_dma_ranges && !ranges) { ret = -ENODEV; goto out; } found_dma_ranges = true; node = of_get_next_dma_parent(node); } if (!node || !ranges) { pr_debug("no dma-ranges found for node(%pOF)\n", np); ret = -ENODEV; goto out; } of_dma_range_parser_init(&parser, node); for_each_of_range(&parser, &range) { if (range.cpu_addr == OF_BAD_ADDR) { pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n", range.bus_addr, node); continue; } num_ranges++; } if (!num_ranges) { ret = -EINVAL; goto out; } r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL); if (!r) { ret = -ENOMEM; goto out; } /* * Record all info in the generic DMA ranges array for struct device, * returning an error if we don't find any parsable ranges. */ *map = r; of_dma_range_parser_init(&parser, node); for_each_of_range(&parser, &range) { pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n", range.bus_addr, range.cpu_addr, range.size); if (range.cpu_addr == OF_BAD_ADDR) continue; r->cpu_start = range.cpu_addr; r->dma_start = range.bus_addr; r->size = range.size; r++; } out: of_node_put(node); return ret; } #endif /* CONFIG_HAS_DMA */ /** * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA * @np: The node to start searching from or NULL to start from the root * * Gets the highest CPU physical address that is addressable by all DMA masters * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no * DMA constrained device is found, it returns PHYS_ADDR_MAX. */ phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np) { phys_addr_t max_cpu_addr = PHYS_ADDR_MAX; struct of_range_parser parser; phys_addr_t subtree_max_addr; struct device_node *child; struct of_range range; const __be32 *ranges; u64 cpu_end = 0; int len; if (!np) np = of_root; ranges = of_get_property(np, "dma-ranges", &len); if (ranges && len) { of_dma_range_parser_init(&parser, np); for_each_of_range(&parser, &range) if (range.cpu_addr + range.size > cpu_end) cpu_end = range.cpu_addr + range.size - 1; if (max_cpu_addr > cpu_end) max_cpu_addr = cpu_end; } for_each_available_child_of_node(np, child) { subtree_max_addr = of_dma_get_max_cpu_address(child); if (max_cpu_addr > subtree_max_addr) max_cpu_addr = subtree_max_addr; } return max_cpu_addr; } /** * of_dma_is_coherent - Check if device is coherent * @np: device node * * It returns true if "dma-coherent" property was found * for this device in the DT, or if DMA is coherent by * default for OF devices on the current platform and no * "dma-noncoherent" property was found for this device. */ bool of_dma_is_coherent(struct device_node *np) { struct device_node *node; bool is_coherent = dma_default_coherent; node = of_node_get(np); while (node) { if (of_property_read_bool(node, "dma-coherent")) { is_coherent = true; break; } if (of_property_read_bool(node, "dma-noncoherent")) { is_coherent = false; break; } node = of_get_next_dma_parent(node); } of_node_put(node); return is_coherent; } EXPORT_SYMBOL_GPL(of_dma_is_coherent); /** * of_mmio_is_nonposted - Check if device uses non-posted MMIO * @np: device node * * Returns true if the "nonposted-mmio" property was found for * the device's bus. * * This is currently only enabled on builds that support Apple ARM devices, as * an optimization. */ static bool of_mmio_is_nonposted(struct device_node *np) { struct device_node *parent; bool nonposted; if (!IS_ENABLED(CONFIG_ARCH_APPLE)) return false; parent = of_get_parent(np); if (!parent) return false; nonposted = of_property_read_bool(parent, "nonposted-mmio"); of_node_put(parent); return nonposted; } static int __of_address_to_resource(struct device_node *dev, int index, int bar_no, struct resource *r) { u64 taddr; const __be32 *addrp; u64 size; unsigned int flags; const char *name = NULL; addrp = __of_get_address(dev, index, bar_no, &size, &flags); if (addrp == NULL) return -EINVAL; /* Get optional "reg-names" property to add a name to a resource */ if (index >= 0) of_property_read_string_index(dev, "reg-names", index, &name); if (flags & IORESOURCE_MEM) taddr = of_translate_address(dev, addrp); else if (flags & IORESOURCE_IO) taddr = of_translate_ioport(dev, addrp, size); else return -EINVAL; if (taddr == OF_BAD_ADDR) return -EINVAL; memset(r, 0, sizeof(struct resource)); if (of_mmio_is_nonposted(dev)) flags |= IORESOURCE_MEM_NONPOSTED; r->start = taddr; r->end = taddr + size - 1; r->flags = flags; r->name = name ? name : dev->full_name; return 0; } /** * of_address_to_resource - Translate device tree address and return as resource * @dev: Caller's Device Node * @index: Index into the array * @r: Pointer to resource array * * Returns -EINVAL if the range cannot be converted to resource. * * Note that if your address is a PIO address, the conversion will fail if * the physical address can't be internally converted to an IO token with * pci_address_to_pio(), that is because it's either called too early or it * can't be matched to any host bridge IO space */ int of_address_to_resource(struct device_node *dev, int index, struct resource *r) { return __of_address_to_resource(dev, index, -1, r); } EXPORT_SYMBOL_GPL(of_address_to_resource); int of_pci_address_to_resource(struct device_node *dev, int bar, struct resource *r) { if (!IS_ENABLED(CONFIG_PCI)) return -ENOSYS; return __of_address_to_resource(dev, -1, bar, r); } EXPORT_SYMBOL_GPL(of_pci_address_to_resource); /** * of_iomap - Maps the memory mapped IO for a given device_node * @np: the device whose io range will be mapped * @index: index of the io range * * Returns a pointer to the mapped memory */ void __iomem *of_iomap(struct device_node *np, int index) { struct resource res; if (of_address_to_resource(np, index, &res)) return NULL; if (res.flags & IORESOURCE_MEM_NONPOSTED) return ioremap_np(res.start, resource_size(&res)); else return ioremap(res.start, resource_size(&res)); } EXPORT_SYMBOL(of_iomap); /* * of_io_request_and_map - Requests a resource and maps the memory mapped IO * for a given device_node * @device: the device whose io range will be mapped * @index: index of the io range * @name: name "override" for the memory region request or NULL * * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded * error code on failure. Usage example: * * base = of_io_request_and_map(node, 0, "foo"); * if (IS_ERR(base)) * return PTR_ERR(base); */ void __iomem *of_io_request_and_map(struct device_node *np, int index, const char *name) { struct resource res; void __iomem *mem; if (of_address_to_resource(np, index, &res)) return IOMEM_ERR_PTR(-EINVAL); if (!name) name = res.name; if (!request_mem_region(res.start, resource_size(&res), name)) return IOMEM_ERR_PTR(-EBUSY); if (res.flags & IORESOURCE_MEM_NONPOSTED) mem = ioremap_np(res.start, resource_size(&res)); else mem = ioremap(res.start, resource_size(&res)); if (!mem) { release_mem_region(res.start, resource_size(&res)); return IOMEM_ERR_PTR(-ENOMEM); } return mem; } EXPORT_SYMBOL(of_io_request_and_map);