// SPDX-License-Identifier: GPL-2.0 /** * PCI Endpoint *Controller* Address Space Management * * Copyright (C) 2017 Texas Instruments * Author: Kishon Vijay Abraham I */ #include #include #include #include /** * pci_epc_mem_get_order() - determine the allocation order of a memory size * @mem: address space of the endpoint controller * @size: the size for which to get the order * * Reimplement get_order() for mem->page_size since the generic get_order * always gets order with a constant PAGE_SIZE. */ static int pci_epc_mem_get_order(struct pci_epc_mem *mem, size_t size) { int order; unsigned int page_shift = ilog2(mem->window.page_size); size--; size >>= page_shift; #if BITS_PER_LONG == 32 order = fls(size); #else order = fls64(size); #endif return order; } /** * pci_epc_multi_mem_init() - initialize the pci_epc_mem structure * @epc: the EPC device that invoked pci_epc_mem_init * @windows: pointer to windows supported by the device * @num_windows: number of windows device supports * * Invoke to initialize the pci_epc_mem structure used by the * endpoint functions to allocate mapped PCI address. */ int pci_epc_multi_mem_init(struct pci_epc *epc, struct pci_epc_mem_window *windows, unsigned int num_windows) { struct pci_epc_mem *mem = NULL; unsigned long *bitmap = NULL; unsigned int page_shift; size_t page_size; int bitmap_size; int pages; int ret; int i; epc->num_windows = 0; if (!windows || !num_windows) return -EINVAL; epc->windows = kcalloc(num_windows, sizeof(*epc->windows), GFP_KERNEL); if (!epc->windows) return -ENOMEM; for (i = 0; i < num_windows; i++) { page_size = windows[i].page_size; if (page_size < PAGE_SIZE) page_size = PAGE_SIZE; page_shift = ilog2(page_size); pages = windows[i].size >> page_shift; bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) { ret = -ENOMEM; i--; goto err_mem; } bitmap = kzalloc(bitmap_size, GFP_KERNEL); if (!bitmap) { ret = -ENOMEM; kfree(mem); i--; goto err_mem; } mem->window.phys_base = windows[i].phys_base; mem->window.size = windows[i].size; mem->window.page_size = page_size; mem->bitmap = bitmap; mem->pages = pages; mutex_init(&mem->lock); epc->windows[i] = mem; } epc->mem = epc->windows[0]; epc->num_windows = num_windows; return 0; err_mem: for (; i >= 0; i--) { mem = epc->windows[i]; kfree(mem->bitmap); kfree(mem); } kfree(epc->windows); return ret; } EXPORT_SYMBOL_GPL(pci_epc_multi_mem_init); int pci_epc_mem_init(struct pci_epc *epc, phys_addr_t base, size_t size, size_t page_size) { struct pci_epc_mem_window mem_window; mem_window.phys_base = base; mem_window.size = size; mem_window.page_size = page_size; return pci_epc_multi_mem_init(epc, &mem_window, 1); } EXPORT_SYMBOL_GPL(pci_epc_mem_init); /** * pci_epc_mem_exit() - cleanup the pci_epc_mem structure * @epc: the EPC device that invoked pci_epc_mem_exit * * Invoke to cleanup the pci_epc_mem structure allocated in * pci_epc_mem_init(). */ void pci_epc_mem_exit(struct pci_epc *epc) { struct pci_epc_mem *mem; int i; if (!epc->num_windows) return; for (i = 0; i < epc->num_windows; i++) { mem = epc->windows[i]; kfree(mem->bitmap); kfree(mem); } kfree(epc->windows); epc->windows = NULL; epc->mem = NULL; epc->num_windows = 0; } EXPORT_SYMBOL_GPL(pci_epc_mem_exit); /** * pci_epc_mem_alloc_addr() - allocate memory address from EPC addr space * @epc: the EPC device on which memory has to be allocated * @phys_addr: populate the allocated physical address here * @size: the size of the address space that has to be allocated * * Invoke to allocate memory address from the EPC address space. This * is usually done to map the remote RC address into the local system. */ void __iomem *pci_epc_mem_alloc_addr(struct pci_epc *epc, phys_addr_t *phys_addr, size_t size) { void __iomem *virt_addr = NULL; struct pci_epc_mem *mem; unsigned int page_shift; size_t align_size; int pageno; int order; int i; for (i = 0; i < epc->num_windows; i++) { mem = epc->windows[i]; mutex_lock(&mem->lock); align_size = ALIGN(size, mem->window.page_size); order = pci_epc_mem_get_order(mem, align_size); pageno = bitmap_find_free_region(mem->bitmap, mem->pages, order); if (pageno >= 0) { page_shift = ilog2(mem->window.page_size); *phys_addr = mem->window.phys_base + ((phys_addr_t)pageno << page_shift); virt_addr = ioremap(*phys_addr, align_size); if (!virt_addr) { bitmap_release_region(mem->bitmap, pageno, order); mutex_unlock(&mem->lock); continue; } mutex_unlock(&mem->lock); return virt_addr; } mutex_unlock(&mem->lock); } return virt_addr; } EXPORT_SYMBOL_GPL(pci_epc_mem_alloc_addr); static struct pci_epc_mem *pci_epc_get_matching_window(struct pci_epc *epc, phys_addr_t phys_addr) { struct pci_epc_mem *mem; int i; for (i = 0; i < epc->num_windows; i++) { mem = epc->windows[i]; if (phys_addr >= mem->window.phys_base && phys_addr < (mem->window.phys_base + mem->window.size)) return mem; } return NULL; } /** * pci_epc_mem_free_addr() - free the allocated memory address * @epc: the EPC device on which memory was allocated * @phys_addr: the allocated physical address * @virt_addr: virtual address of the allocated mem space * @size: the size of the allocated address space * * Invoke to free the memory allocated using pci_epc_mem_alloc_addr. */ void pci_epc_mem_free_addr(struct pci_epc *epc, phys_addr_t phys_addr, void __iomem *virt_addr, size_t size) { struct pci_epc_mem *mem; unsigned int page_shift; size_t page_size; int pageno; int order; mem = pci_epc_get_matching_window(epc, phys_addr); if (!mem) { pr_err("failed to get matching window\n"); return; } page_size = mem->window.page_size; page_shift = ilog2(page_size); iounmap(virt_addr); pageno = (phys_addr - mem->window.phys_base) >> page_shift; size = ALIGN(size, page_size); order = pci_epc_mem_get_order(mem, size); mutex_lock(&mem->lock); bitmap_release_region(mem->bitmap, pageno, order); mutex_unlock(&mem->lock); } EXPORT_SYMBOL_GPL(pci_epc_mem_free_addr); MODULE_DESCRIPTION("PCI EPC Address Space Management"); MODULE_AUTHOR("Kishon Vijay Abraham I "); MODULE_LICENSE("GPL v2");