// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2017 Rockchip Electronics Co. Ltd. * * Author: Zheng Yang * Heiko Stuebner */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l))) /* REG: 0x00 */ #define RK3228_PRE_PLL_REFCLK_SEL_PCLK BIT(0) /* REG: 0x01 */ #define RK3228_BYPASS_RXSENSE_EN BIT(2) #define RK3228_BYPASS_PWRON_EN BIT(1) #define RK3228_BYPASS_PLLPD_EN BIT(0) /* REG: 0x02 */ #define RK3228_BYPASS_PDATA_EN BIT(4) #define RK3228_PDATAEN_DISABLE BIT(0) /* REG: 0x03 */ #define RK3228_BYPASS_AUTO_TERM_RES_CAL BIT(7) #define RK3228_AUTO_TERM_RES_CAL_SPEED_14_8(x) UPDATE(x, 6, 0) /* REG: 0x04 */ #define RK3228_AUTO_TERM_RES_CAL_SPEED_7_0(x) UPDATE(x, 7, 0) /* REG: 0xaa */ #define RK3228_POST_PLL_CTRL_MANUAL BIT(0) /* REG: 0xe0 */ #define RK3228_POST_PLL_POWER_DOWN BIT(5) #define RK3228_PRE_PLL_POWER_DOWN BIT(4) #define RK3228_RXSENSE_CLK_CH_ENABLE BIT(3) #define RK3228_RXSENSE_DATA_CH2_ENABLE BIT(2) #define RK3228_RXSENSE_DATA_CH1_ENABLE BIT(1) #define RK3228_RXSENSE_DATA_CH0_ENABLE BIT(0) /* REG: 0xe1 */ #define RK3228_BANDGAP_ENABLE BIT(4) #define RK3228_TMDS_DRIVER_ENABLE GENMASK(3, 0) /* REG: 0xe2 */ #define RK3228_PRE_PLL_FB_DIV_8_MASK BIT(7) #define RK3228_PRE_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7) #define RK3228_PCLK_VCO_DIV_5_MASK BIT(5) #define RK3228_PCLK_VCO_DIV_5(x) UPDATE(x, 5, 5) #define RK3228_PRE_PLL_PRE_DIV_MASK GENMASK(4, 0) #define RK3228_PRE_PLL_PRE_DIV(x) UPDATE(x, 4, 0) /* REG: 0xe3 */ #define RK3228_PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0) /* REG: 0xe4 */ #define RK3228_PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5) #define RK3228_PRE_PLL_PCLK_DIV_B_SHIFT 5 #define RK3228_PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5) #define RK3228_PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0) #define RK3228_PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0) /* REG: 0xe5 */ #define RK3228_PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5) #define RK3228_PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5) #define RK3228_PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0) #define RK3228_PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0) /* REG: 0xe6 */ #define RK3228_PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(5, 4) #define RK3228_PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 5, 4) #define RK3228_PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(3, 2) #define RK3228_PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 3, 2) #define RK3228_PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(1, 0) #define RK3228_PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 1, 0) /* REG: 0xe8 */ #define RK3228_PRE_PLL_LOCK_STATUS BIT(0) /* REG: 0xe9 */ #define RK3228_POST_PLL_POST_DIV_ENABLE UPDATE(3, 7, 6) #define RK3228_POST_PLL_PRE_DIV_MASK GENMASK(4, 0) #define RK3228_POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0) /* REG: 0xea */ #define RK3228_POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0) /* REG: 0xeb */ #define RK3228_POST_PLL_FB_DIV_8_MASK BIT(7) #define RK3228_POST_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7) #define RK3228_POST_PLL_POST_DIV_MASK GENMASK(5, 4) #define RK3228_POST_PLL_POST_DIV(x) UPDATE(x, 5, 4) #define RK3228_POST_PLL_LOCK_STATUS BIT(0) /* REG: 0xee */ #define RK3228_TMDS_CH_TA_ENABLE GENMASK(7, 4) /* REG: 0xef */ #define RK3228_TMDS_CLK_CH_TA(x) UPDATE(x, 7, 6) #define RK3228_TMDS_DATA_CH2_TA(x) UPDATE(x, 5, 4) #define RK3228_TMDS_DATA_CH1_TA(x) UPDATE(x, 3, 2) #define RK3228_TMDS_DATA_CH0_TA(x) UPDATE(x, 1, 0) /* REG: 0xf0 */ #define RK3228_TMDS_DATA_CH2_PRE_EMPHASIS_MASK GENMASK(5, 4) #define RK3228_TMDS_DATA_CH2_PRE_EMPHASIS(x) UPDATE(x, 5, 4) #define RK3228_TMDS_DATA_CH1_PRE_EMPHASIS_MASK GENMASK(3, 2) #define RK3228_TMDS_DATA_CH1_PRE_EMPHASIS(x) UPDATE(x, 3, 2) #define RK3228_TMDS_DATA_CH0_PRE_EMPHASIS_MASK GENMASK(1, 0) #define RK3228_TMDS_DATA_CH0_PRE_EMPHASIS(x) UPDATE(x, 1, 0) /* REG: 0xf1 */ #define RK3228_TMDS_CLK_CH_OUTPUT_SWING(x) UPDATE(x, 7, 4) #define RK3228_TMDS_DATA_CH2_OUTPUT_SWING(x) UPDATE(x, 3, 0) /* REG: 0xf2 */ #define RK3228_TMDS_DATA_CH1_OUTPUT_SWING(x) UPDATE(x, 7, 4) #define RK3228_TMDS_DATA_CH0_OUTPUT_SWING(x) UPDATE(x, 3, 0) /* REG: 0x01 */ #define RK3328_BYPASS_RXSENSE_EN BIT(2) #define RK3328_BYPASS_POWERON_EN BIT(1) #define RK3328_BYPASS_PLLPD_EN BIT(0) /* REG: 0x02 */ #define RK3328_INT_POL_HIGH BIT(7) #define RK3328_BYPASS_PDATA_EN BIT(4) #define RK3328_PDATA_EN BIT(0) /* REG:0x05 */ #define RK3328_INT_TMDS_CLK(x) UPDATE(x, 7, 4) #define RK3328_INT_TMDS_D2(x) UPDATE(x, 3, 0) /* REG:0x07 */ #define RK3328_INT_TMDS_D1(x) UPDATE(x, 7, 4) #define RK3328_INT_TMDS_D0(x) UPDATE(x, 3, 0) /* for all RK3328_INT_TMDS_*, ESD_DET as defined in 0xc8-0xcb */ #define RK3328_INT_AGND_LOW_PULSE_LOCKED BIT(3) #define RK3328_INT_RXSENSE_LOW_PULSE_LOCKED BIT(2) #define RK3328_INT_VSS_AGND_ESD_DET BIT(1) #define RK3328_INT_AGND_VSS_ESD_DET BIT(0) /* REG: 0xa0 */ #define RK3328_PCLK_VCO_DIV_5_MASK BIT(1) #define RK3328_PCLK_VCO_DIV_5(x) UPDATE(x, 1, 1) #define RK3328_PRE_PLL_POWER_DOWN BIT(0) /* REG: 0xa1 */ #define RK3328_PRE_PLL_PRE_DIV_MASK GENMASK(5, 0) #define RK3328_PRE_PLL_PRE_DIV(x) UPDATE(x, 5, 0) /* REG: 0xa2 */ /* unset means center spread */ #define RK3328_SPREAD_SPECTRUM_MOD_DOWN BIT(7) #define RK3328_SPREAD_SPECTRUM_MOD_DISABLE BIT(6) #define RK3328_PRE_PLL_FRAC_DIV_DISABLE UPDATE(3, 5, 4) #define RK3328_PRE_PLL_FB_DIV_11_8_MASK GENMASK(3, 0) #define RK3328_PRE_PLL_FB_DIV_11_8(x) UPDATE((x) >> 8, 3, 0) /* REG: 0xa3 */ #define RK3328_PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0) /* REG: 0xa4*/ #define RK3328_PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(1, 0) #define RK3328_PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 1, 0) #define RK3328_PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(3, 2) #define RK3328_PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 3, 2) #define RK3328_PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(5, 4) #define RK3328_PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 5, 4) /* REG: 0xa5 */ #define RK3328_PRE_PLL_PCLK_DIV_B_SHIFT 5 #define RK3328_PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5) #define RK3328_PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5) #define RK3328_PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0) #define RK3328_PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0) /* REG: 0xa6 */ #define RK3328_PRE_PLL_PCLK_DIV_C_SHIFT 5 #define RK3328_PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5) #define RK3328_PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5) #define RK3328_PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0) #define RK3328_PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0) /* REG: 0xa9 */ #define RK3328_PRE_PLL_LOCK_STATUS BIT(0) /* REG: 0xaa */ #define RK3328_POST_PLL_POST_DIV_ENABLE GENMASK(3, 2) #define RK3328_POST_PLL_REFCLK_SEL_TMDS BIT(1) #define RK3328_POST_PLL_POWER_DOWN BIT(0) /* REG:0xab */ #define RK3328_POST_PLL_FB_DIV_8(x) UPDATE((x) >> 8, 7, 7) #define RK3328_POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0) /* REG: 0xac */ #define RK3328_POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0) /* REG: 0xad */ #define RK3328_POST_PLL_POST_DIV_MASK GENMASK(1, 0) #define RK3328_POST_PLL_POST_DIV_2 0x0 #define RK3328_POST_PLL_POST_DIV_4 0x1 #define RK3328_POST_PLL_POST_DIV_8 0x3 /* REG: 0xaf */ #define RK3328_POST_PLL_LOCK_STATUS BIT(0) /* REG: 0xb0 */ #define RK3328_BANDGAP_ENABLE BIT(2) /* REG: 0xb2 */ #define RK3328_TMDS_CLK_DRIVER_EN BIT(3) #define RK3328_TMDS_D2_DRIVER_EN BIT(2) #define RK3328_TMDS_D1_DRIVER_EN BIT(1) #define RK3328_TMDS_D0_DRIVER_EN BIT(0) #define RK3328_TMDS_DRIVER_ENABLE (RK3328_TMDS_CLK_DRIVER_EN | \ RK3328_TMDS_D2_DRIVER_EN | \ RK3328_TMDS_D1_DRIVER_EN | \ RK3328_TMDS_D0_DRIVER_EN) /* REG:0xc5 */ #define RK3328_BYPASS_TERM_RESISTOR_CALIB BIT(7) #define RK3328_TERM_RESISTOR_CALIB_SPEED_14_8(x) UPDATE((x) >> 8, 6, 0) /* REG:0xc6 */ #define RK3328_TERM_RESISTOR_CALIB_SPEED_7_0(x) UPDATE(x, 7, 0) /* REG:0xc7 */ #define RK3328_TERM_RESISTOR_50 UPDATE(0, 2, 1) #define RK3328_TERM_RESISTOR_62_5 UPDATE(1, 2, 1) #define RK3328_TERM_RESISTOR_75 UPDATE(2, 2, 1) #define RK3328_TERM_RESISTOR_100 UPDATE(3, 2, 1) /* REG 0xc8 - 0xcb */ #define RK3328_ESD_DETECT_MASK GENMASK(7, 6) #define RK3328_ESD_DETECT_340MV (0x0 << 6) #define RK3328_ESD_DETECT_280MV (0x1 << 6) #define RK3328_ESD_DETECT_260MV (0x2 << 6) #define RK3328_ESD_DETECT_240MV (0x3 << 6) /* resistors can be used in parallel */ #define RK3328_TMDS_TERM_RESIST_MASK GENMASK(5, 0) #define RK3328_TMDS_TERM_RESIST_75 BIT(5) #define RK3328_TMDS_TERM_RESIST_150 BIT(4) #define RK3328_TMDS_TERM_RESIST_300 BIT(3) #define RK3328_TMDS_TERM_RESIST_600 BIT(2) #define RK3328_TMDS_TERM_RESIST_1000 BIT(1) #define RK3328_TMDS_TERM_RESIST_2000 BIT(0) /* REG: 0xd1 */ #define RK3328_PRE_PLL_FRAC_DIV_23_16(x) UPDATE((x) >> 16, 7, 0) /* REG: 0xd2 */ #define RK3328_PRE_PLL_FRAC_DIV_15_8(x) UPDATE((x) >> 8, 7, 0) /* REG: 0xd3 */ #define RK3328_PRE_PLL_FRAC_DIV_7_0(x) UPDATE(x, 7, 0) struct inno_hdmi_phy_drv_data; struct inno_hdmi_phy { struct device *dev; struct regmap *regmap; int irq; struct phy *phy; struct clk *sysclk; struct clk *refoclk; struct clk *refpclk; /* platform data */ const struct inno_hdmi_phy_drv_data *plat_data; int chip_version; /* clk provider */ struct clk_hw hw; struct clk *phyclk; unsigned long pixclock; }; struct pre_pll_config { unsigned long pixclock; unsigned long tmdsclock; u8 prediv; u16 fbdiv; u8 tmds_div_a; u8 tmds_div_b; u8 tmds_div_c; u8 pclk_div_a; u8 pclk_div_b; u8 pclk_div_c; u8 pclk_div_d; u8 vco_div_5_en; u32 fracdiv; }; struct post_pll_config { unsigned long tmdsclock; u8 prediv; u16 fbdiv; u8 postdiv; u8 version; }; struct phy_config { unsigned long tmdsclock; u8 regs[14]; }; struct inno_hdmi_phy_ops { int (*init)(struct inno_hdmi_phy *inno); int (*power_on)(struct inno_hdmi_phy *inno, const struct post_pll_config *cfg, const struct phy_config *phy_cfg); void (*power_off)(struct inno_hdmi_phy *inno); }; struct inno_hdmi_phy_drv_data { const struct inno_hdmi_phy_ops *ops; const struct clk_ops *clk_ops; const struct phy_config *phy_cfg_table; }; static const struct pre_pll_config pre_pll_cfg_table[] = { { 27000000, 27000000, 1, 90, 3, 2, 2, 10, 3, 3, 4, 0, 0}, { 27000000, 33750000, 1, 90, 1, 3, 3, 10, 3, 3, 4, 0, 0}, { 40000000, 40000000, 1, 80, 2, 2, 2, 12, 2, 2, 2, 0, 0}, { 59341000, 59341000, 1, 98, 3, 1, 2, 1, 3, 3, 4, 0, 0xE6AE6B}, { 59400000, 59400000, 1, 99, 3, 1, 1, 1, 3, 3, 4, 0, 0}, { 59341000, 74176250, 1, 98, 0, 3, 3, 1, 3, 3, 4, 0, 0xE6AE6B}, { 59400000, 74250000, 1, 99, 1, 2, 2, 1, 3, 3, 4, 0, 0}, { 74176000, 74176000, 1, 98, 1, 2, 2, 1, 2, 3, 4, 0, 0xE6AE6B}, { 74250000, 74250000, 1, 99, 1, 2, 2, 1, 2, 3, 4, 0, 0}, { 74176000, 92720000, 4, 494, 1, 2, 2, 1, 3, 3, 4, 0, 0x816817}, { 74250000, 92812500, 4, 495, 1, 2, 2, 1, 3, 3, 4, 0, 0}, {148352000, 148352000, 1, 98, 1, 1, 1, 1, 2, 2, 2, 0, 0xE6AE6B}, {148500000, 148500000, 1, 99, 1, 1, 1, 1, 2, 2, 2, 0, 0}, {148352000, 185440000, 4, 494, 0, 2, 2, 1, 3, 2, 2, 0, 0x816817}, {148500000, 185625000, 4, 495, 0, 2, 2, 1, 3, 2, 2, 0, 0}, {296703000, 296703000, 1, 98, 0, 1, 1, 1, 0, 2, 2, 0, 0xE6AE6B}, {297000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 2, 0, 0}, {296703000, 370878750, 4, 494, 1, 2, 0, 1, 3, 1, 1, 0, 0x816817}, {297000000, 371250000, 4, 495, 1, 2, 0, 1, 3, 1, 1, 0, 0}, {593407000, 296703500, 1, 98, 0, 1, 1, 1, 0, 2, 1, 0, 0xE6AE6B}, {594000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 1, 0, 0}, {593407000, 370879375, 4, 494, 1, 2, 0, 1, 3, 1, 1, 1, 0x816817}, {594000000, 371250000, 4, 495, 1, 2, 0, 1, 3, 1, 1, 1, 0}, {593407000, 593407000, 1, 98, 0, 2, 0, 1, 0, 1, 1, 0, 0xE6AE6B}, {594000000, 594000000, 1, 99, 0, 2, 0, 1, 0, 1, 1, 0, 0}, { /* sentinel */ } }; static const struct post_pll_config post_pll_cfg_table[] = { {33750000, 1, 40, 8, 1}, {33750000, 1, 80, 8, 2}, {74250000, 1, 40, 8, 1}, {74250000, 18, 80, 8, 2}, {148500000, 2, 40, 4, 3}, {297000000, 4, 40, 2, 3}, {594000000, 8, 40, 1, 3}, { /* sentinel */ } }; /* phy tuning values for an undocumented set of registers */ static const struct phy_config rk3228_phy_cfg[] = { { 165000000, { 0xaa, 0x00, 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, }, { 340000000, { 0xaa, 0x15, 0x6a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, }, { 594000000, { 0xaa, 0x15, 0x7a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, }, { /* sentinel */ }, }; /* phy tuning values for an undocumented set of registers */ static const struct phy_config rk3328_phy_cfg[] = { { 165000000, { 0x07, 0x0a, 0x0a, 0x0a, 0x00, 0x00, 0x08, 0x08, 0x08, 0x00, 0xac, 0xcc, 0xcc, 0xcc, }, }, { 340000000, { 0x0b, 0x0d, 0x0d, 0x0d, 0x07, 0x15, 0x08, 0x08, 0x08, 0x3f, 0xac, 0xcc, 0xcd, 0xdd, }, }, { 594000000, { 0x10, 0x1a, 0x1a, 0x1a, 0x07, 0x15, 0x08, 0x08, 0x08, 0x00, 0xac, 0xcc, 0xcc, 0xcc, }, }, { /* sentinel */ }, }; static inline struct inno_hdmi_phy *to_inno_hdmi_phy(struct clk_hw *hw) { return container_of(hw, struct inno_hdmi_phy, hw); } /* * The register description of the IP block does not use any distinct names * but instead the databook simply numbers the registers in one-increments. * As the registers are obviously 32bit sized, the inno_* functions * translate the databook register names to the actual registers addresses. */ static inline void inno_write(struct inno_hdmi_phy *inno, u32 reg, u8 val) { regmap_write(inno->regmap, reg * 4, val); } static inline u8 inno_read(struct inno_hdmi_phy *inno, u32 reg) { u32 val; regmap_read(inno->regmap, reg * 4, &val); return val; } static inline void inno_update_bits(struct inno_hdmi_phy *inno, u8 reg, u8 mask, u8 val) { regmap_update_bits(inno->regmap, reg * 4, mask, val); } #define inno_poll(inno, reg, val, cond, sleep_us, timeout_us) \ regmap_read_poll_timeout((inno)->regmap, (reg) * 4, val, cond, \ sleep_us, timeout_us) static unsigned long inno_hdmi_phy_get_tmdsclk(struct inno_hdmi_phy *inno, unsigned long rate) { int bus_width = phy_get_bus_width(inno->phy); switch (bus_width) { case 4: case 5: case 6: case 10: case 12: case 16: return (u64)rate * bus_width / 8; default: return rate; } } static irqreturn_t inno_hdmi_phy_rk3328_hardirq(int irq, void *dev_id) { struct inno_hdmi_phy *inno = dev_id; int intr_stat1, intr_stat2, intr_stat3; intr_stat1 = inno_read(inno, 0x04); intr_stat2 = inno_read(inno, 0x06); intr_stat3 = inno_read(inno, 0x08); if (intr_stat1) inno_write(inno, 0x04, intr_stat1); if (intr_stat2) inno_write(inno, 0x06, intr_stat2); if (intr_stat3) inno_write(inno, 0x08, intr_stat3); if (intr_stat1 || intr_stat2 || intr_stat3) return IRQ_WAKE_THREAD; return IRQ_HANDLED; } static irqreturn_t inno_hdmi_phy_rk3328_irq(int irq, void *dev_id) { struct inno_hdmi_phy *inno = dev_id; inno_update_bits(inno, 0x02, RK3328_PDATA_EN, 0); usleep_range(10, 20); inno_update_bits(inno, 0x02, RK3328_PDATA_EN, RK3328_PDATA_EN); return IRQ_HANDLED; } static int inno_hdmi_phy_power_on(struct phy *phy) { struct inno_hdmi_phy *inno = phy_get_drvdata(phy); const struct post_pll_config *cfg = post_pll_cfg_table; const struct phy_config *phy_cfg = inno->plat_data->phy_cfg_table; unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, inno->pixclock); int ret; if (!tmdsclock) { dev_err(inno->dev, "TMDS clock is zero!\n"); return -EINVAL; } if (!inno->plat_data->ops->power_on) return -EINVAL; for (; cfg->tmdsclock != 0; cfg++) if (tmdsclock <= cfg->tmdsclock && cfg->version & inno->chip_version) break; for (; phy_cfg->tmdsclock != 0; phy_cfg++) if (tmdsclock <= phy_cfg->tmdsclock) break; if (cfg->tmdsclock == 0 || phy_cfg->tmdsclock == 0) return -EINVAL; dev_dbg(inno->dev, "Inno HDMI PHY Power On\n"); ret = clk_prepare_enable(inno->phyclk); if (ret) return ret; ret = inno->plat_data->ops->power_on(inno, cfg, phy_cfg); if (ret) { clk_disable_unprepare(inno->phyclk); return ret; } return 0; } static int inno_hdmi_phy_power_off(struct phy *phy) { struct inno_hdmi_phy *inno = phy_get_drvdata(phy); if (!inno->plat_data->ops->power_off) return -EINVAL; inno->plat_data->ops->power_off(inno); clk_disable_unprepare(inno->phyclk); dev_dbg(inno->dev, "Inno HDMI PHY Power Off\n"); return 0; } static const struct phy_ops inno_hdmi_phy_ops = { .owner = THIS_MODULE, .power_on = inno_hdmi_phy_power_on, .power_off = inno_hdmi_phy_power_off, }; static const struct pre_pll_config *inno_hdmi_phy_get_pre_pll_cfg(struct inno_hdmi_phy *inno, unsigned long rate) { const struct pre_pll_config *cfg = pre_pll_cfg_table; unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate); for (; cfg->pixclock != 0; cfg++) if (cfg->pixclock == rate && cfg->tmdsclock == tmdsclock) break; if (cfg->pixclock == 0) return ERR_PTR(-EINVAL); return cfg; } static int inno_hdmi_phy_rk3228_clk_is_prepared(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); u8 status; status = inno_read(inno, 0xe0) & RK3228_PRE_PLL_POWER_DOWN; return status ? 0 : 1; } static int inno_hdmi_phy_rk3228_clk_prepare(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, 0); return 0; } static void inno_hdmi_phy_rk3228_clk_unprepare(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, RK3228_PRE_PLL_POWER_DOWN); } static unsigned long inno_hdmi_phy_rk3228_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); u8 nd, no_a, no_b, no_d; u64 vco; u16 nf; nd = inno_read(inno, 0xe2) & RK3228_PRE_PLL_PRE_DIV_MASK; nf = (inno_read(inno, 0xe2) & RK3228_PRE_PLL_FB_DIV_8_MASK) << 1; nf |= inno_read(inno, 0xe3); vco = parent_rate * nf; if (inno_read(inno, 0xe2) & RK3228_PCLK_VCO_DIV_5_MASK) { do_div(vco, nd * 5); } else { no_a = inno_read(inno, 0xe4) & RK3228_PRE_PLL_PCLK_DIV_A_MASK; if (!no_a) no_a = 1; no_b = inno_read(inno, 0xe4) & RK3228_PRE_PLL_PCLK_DIV_B_MASK; no_b >>= RK3228_PRE_PLL_PCLK_DIV_B_SHIFT; no_b += 2; no_d = inno_read(inno, 0xe5) & RK3228_PRE_PLL_PCLK_DIV_D_MASK; do_div(vco, (nd * (no_a == 1 ? no_b : no_a) * no_d * 2)); } inno->pixclock = vco; dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock); return vco; } static long inno_hdmi_phy_rk3228_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { const struct pre_pll_config *cfg = pre_pll_cfg_table; rate = (rate / 1000) * 1000; for (; cfg->pixclock != 0; cfg++) if (cfg->pixclock == rate && !cfg->fracdiv) break; if (cfg->pixclock == 0) return -EINVAL; return cfg->pixclock; } static int inno_hdmi_phy_rk3228_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); const struct pre_pll_config *cfg = pre_pll_cfg_table; unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate); u32 v; int ret; dev_dbg(inno->dev, "%s rate %lu tmdsclk %lu\n", __func__, rate, tmdsclock); cfg = inno_hdmi_phy_get_pre_pll_cfg(inno, rate); if (IS_ERR(cfg)) return PTR_ERR(cfg); /* Power down PRE-PLL */ inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, RK3228_PRE_PLL_POWER_DOWN); inno_update_bits(inno, 0xe2, RK3228_PRE_PLL_FB_DIV_8_MASK | RK3228_PCLK_VCO_DIV_5_MASK | RK3228_PRE_PLL_PRE_DIV_MASK, RK3228_PRE_PLL_FB_DIV_8(cfg->fbdiv) | RK3228_PCLK_VCO_DIV_5(cfg->vco_div_5_en) | RK3228_PRE_PLL_PRE_DIV(cfg->prediv)); inno_write(inno, 0xe3, RK3228_PRE_PLL_FB_DIV_7_0(cfg->fbdiv)); inno_update_bits(inno, 0xe4, RK3228_PRE_PLL_PCLK_DIV_B_MASK | RK3228_PRE_PLL_PCLK_DIV_A_MASK, RK3228_PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b) | RK3228_PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a)); inno_update_bits(inno, 0xe5, RK3228_PRE_PLL_PCLK_DIV_C_MASK | RK3228_PRE_PLL_PCLK_DIV_D_MASK, RK3228_PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) | RK3228_PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d)); inno_update_bits(inno, 0xe6, RK3228_PRE_PLL_TMDSCLK_DIV_C_MASK | RK3228_PRE_PLL_TMDSCLK_DIV_A_MASK | RK3228_PRE_PLL_TMDSCLK_DIV_B_MASK, RK3228_PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) | RK3228_PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) | RK3228_PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b)); /* Power up PRE-PLL */ inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN, 0); /* Wait for Pre-PLL lock */ ret = inno_poll(inno, 0xe8, v, v & RK3228_PRE_PLL_LOCK_STATUS, 100, 100000); if (ret) { dev_err(inno->dev, "Pre-PLL locking failed\n"); return ret; } inno->pixclock = rate; return 0; } static const struct clk_ops inno_hdmi_phy_rk3228_clk_ops = { .prepare = inno_hdmi_phy_rk3228_clk_prepare, .unprepare = inno_hdmi_phy_rk3228_clk_unprepare, .is_prepared = inno_hdmi_phy_rk3228_clk_is_prepared, .recalc_rate = inno_hdmi_phy_rk3228_clk_recalc_rate, .round_rate = inno_hdmi_phy_rk3228_clk_round_rate, .set_rate = inno_hdmi_phy_rk3228_clk_set_rate, }; static int inno_hdmi_phy_rk3328_clk_is_prepared(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); u8 status; status = inno_read(inno, 0xa0) & RK3328_PRE_PLL_POWER_DOWN; return status ? 0 : 1; } static int inno_hdmi_phy_rk3328_clk_prepare(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, 0); return 0; } static void inno_hdmi_phy_rk3328_clk_unprepare(struct clk_hw *hw) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, RK3328_PRE_PLL_POWER_DOWN); } static unsigned long inno_hdmi_phy_rk3328_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); unsigned long frac; u8 nd, no_a, no_b, no_c, no_d; u64 vco; u16 nf; nd = inno_read(inno, 0xa1) & RK3328_PRE_PLL_PRE_DIV_MASK; nf = ((inno_read(inno, 0xa2) & RK3328_PRE_PLL_FB_DIV_11_8_MASK) << 8); nf |= inno_read(inno, 0xa3); vco = parent_rate * nf; if (!(inno_read(inno, 0xa2) & RK3328_PRE_PLL_FRAC_DIV_DISABLE)) { frac = inno_read(inno, 0xd3) | (inno_read(inno, 0xd2) << 8) | (inno_read(inno, 0xd1) << 16); vco += DIV_ROUND_CLOSEST(parent_rate * frac, (1 << 24)); } if (inno_read(inno, 0xa0) & RK3328_PCLK_VCO_DIV_5_MASK) { do_div(vco, nd * 5); } else { no_a = inno_read(inno, 0xa5) & RK3328_PRE_PLL_PCLK_DIV_A_MASK; no_b = inno_read(inno, 0xa5) & RK3328_PRE_PLL_PCLK_DIV_B_MASK; no_b >>= RK3328_PRE_PLL_PCLK_DIV_B_SHIFT; no_b += 2; no_c = inno_read(inno, 0xa6) & RK3328_PRE_PLL_PCLK_DIV_C_MASK; no_c >>= RK3328_PRE_PLL_PCLK_DIV_C_SHIFT; no_c = 1 << no_c; no_d = inno_read(inno, 0xa6) & RK3328_PRE_PLL_PCLK_DIV_D_MASK; do_div(vco, (nd * (no_a == 1 ? no_b : no_a) * no_d * 2)); } inno->pixclock = vco; dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock); return vco; } static long inno_hdmi_phy_rk3328_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { const struct pre_pll_config *cfg = pre_pll_cfg_table; rate = (rate / 1000) * 1000; for (; cfg->pixclock != 0; cfg++) if (cfg->pixclock == rate) break; if (cfg->pixclock == 0) return -EINVAL; return cfg->pixclock; } static int inno_hdmi_phy_rk3328_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw); const struct pre_pll_config *cfg = pre_pll_cfg_table; unsigned long tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate); u32 val; int ret; dev_dbg(inno->dev, "%s rate %lu tmdsclk %lu\n", __func__, rate, tmdsclock); cfg = inno_hdmi_phy_get_pre_pll_cfg(inno, rate); if (IS_ERR(cfg)) return PTR_ERR(cfg); inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, RK3328_PRE_PLL_POWER_DOWN); /* Configure pre-pll */ inno_update_bits(inno, 0xa0, RK3228_PCLK_VCO_DIV_5_MASK, RK3228_PCLK_VCO_DIV_5(cfg->vco_div_5_en)); inno_write(inno, 0xa1, RK3328_PRE_PLL_PRE_DIV(cfg->prediv)); val = RK3328_SPREAD_SPECTRUM_MOD_DISABLE; if (!cfg->fracdiv) val |= RK3328_PRE_PLL_FRAC_DIV_DISABLE; inno_write(inno, 0xa2, RK3328_PRE_PLL_FB_DIV_11_8(cfg->fbdiv) | val); inno_write(inno, 0xa3, RK3328_PRE_PLL_FB_DIV_7_0(cfg->fbdiv)); inno_write(inno, 0xa5, RK3328_PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a) | RK3328_PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b)); inno_write(inno, 0xa6, RK3328_PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) | RK3328_PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d)); inno_write(inno, 0xa4, RK3328_PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) | RK3328_PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) | RK3328_PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b)); inno_write(inno, 0xd3, RK3328_PRE_PLL_FRAC_DIV_7_0(cfg->fracdiv)); inno_write(inno, 0xd2, RK3328_PRE_PLL_FRAC_DIV_15_8(cfg->fracdiv)); inno_write(inno, 0xd1, RK3328_PRE_PLL_FRAC_DIV_23_16(cfg->fracdiv)); inno_update_bits(inno, 0xa0, RK3328_PRE_PLL_POWER_DOWN, 0); /* Wait for Pre-PLL lock */ ret = inno_poll(inno, 0xa9, val, val & RK3328_PRE_PLL_LOCK_STATUS, 1000, 10000); if (ret) { dev_err(inno->dev, "Pre-PLL locking failed\n"); return ret; } inno->pixclock = rate; return 0; } static const struct clk_ops inno_hdmi_phy_rk3328_clk_ops = { .prepare = inno_hdmi_phy_rk3328_clk_prepare, .unprepare = inno_hdmi_phy_rk3328_clk_unprepare, .is_prepared = inno_hdmi_phy_rk3328_clk_is_prepared, .recalc_rate = inno_hdmi_phy_rk3328_clk_recalc_rate, .round_rate = inno_hdmi_phy_rk3328_clk_round_rate, .set_rate = inno_hdmi_phy_rk3328_clk_set_rate, }; static int inno_hdmi_phy_clk_register(struct inno_hdmi_phy *inno) { struct device *dev = inno->dev; struct device_node *np = dev->of_node; struct clk_init_data init; const char *parent_name; int ret; parent_name = __clk_get_name(inno->refoclk); init.parent_names = &parent_name; init.num_parents = 1; init.flags = 0; init.name = "pin_hd20_pclk"; init.ops = inno->plat_data->clk_ops; /* optional override of the clock name */ of_property_read_string(np, "clock-output-names", &init.name); inno->hw.init = &init; inno->phyclk = devm_clk_register(dev, &inno->hw); if (IS_ERR(inno->phyclk)) { ret = PTR_ERR(inno->phyclk); dev_err(dev, "failed to register clock: %d\n", ret); return ret; } ret = of_clk_add_provider(np, of_clk_src_simple_get, inno->phyclk); if (ret) { dev_err(dev, "failed to register clock provider: %d\n", ret); return ret; } return 0; } static int inno_hdmi_phy_rk3228_init(struct inno_hdmi_phy *inno) { /* * Use phy internal register control * rxsense/poweron/pllpd/pdataen signal. */ inno_write(inno, 0x01, RK3228_BYPASS_RXSENSE_EN | RK3228_BYPASS_PWRON_EN | RK3228_BYPASS_PLLPD_EN); inno_update_bits(inno, 0x02, RK3228_BYPASS_PDATA_EN, RK3228_BYPASS_PDATA_EN); /* manual power down post-PLL */ inno_update_bits(inno, 0xaa, RK3228_POST_PLL_CTRL_MANUAL, RK3228_POST_PLL_CTRL_MANUAL); inno->chip_version = 1; return 0; } static int inno_hdmi_phy_rk3228_power_on(struct inno_hdmi_phy *inno, const struct post_pll_config *cfg, const struct phy_config *phy_cfg) { int ret; u32 v; inno_update_bits(inno, 0x02, RK3228_PDATAEN_DISABLE, RK3228_PDATAEN_DISABLE); inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN | RK3228_POST_PLL_POWER_DOWN, RK3228_PRE_PLL_POWER_DOWN | RK3228_POST_PLL_POWER_DOWN); /* Post-PLL update */ inno_update_bits(inno, 0xe9, RK3228_POST_PLL_PRE_DIV_MASK, RK3228_POST_PLL_PRE_DIV(cfg->prediv)); inno_update_bits(inno, 0xeb, RK3228_POST_PLL_FB_DIV_8_MASK, RK3228_POST_PLL_FB_DIV_8(cfg->fbdiv)); inno_write(inno, 0xea, RK3228_POST_PLL_FB_DIV_7_0(cfg->fbdiv)); if (cfg->postdiv == 1) { inno_update_bits(inno, 0xe9, RK3228_POST_PLL_POST_DIV_ENABLE, 0); } else { int div = cfg->postdiv / 2 - 1; inno_update_bits(inno, 0xe9, RK3228_POST_PLL_POST_DIV_ENABLE, RK3228_POST_PLL_POST_DIV_ENABLE); inno_update_bits(inno, 0xeb, RK3228_POST_PLL_POST_DIV_MASK, RK3228_POST_PLL_POST_DIV(div)); } for (v = 0; v < 4; v++) inno_write(inno, 0xef + v, phy_cfg->regs[v]); inno_update_bits(inno, 0xe0, RK3228_PRE_PLL_POWER_DOWN | RK3228_POST_PLL_POWER_DOWN, 0); inno_update_bits(inno, 0xe1, RK3228_BANDGAP_ENABLE, RK3228_BANDGAP_ENABLE); inno_update_bits(inno, 0xe1, RK3228_TMDS_DRIVER_ENABLE, RK3228_TMDS_DRIVER_ENABLE); /* Wait for post PLL lock */ ret = inno_poll(inno, 0xeb, v, v & RK3228_POST_PLL_LOCK_STATUS, 100, 100000); if (ret) { dev_err(inno->dev, "Post-PLL locking failed\n"); return ret; } if (cfg->tmdsclock > 340000000) msleep(100); inno_update_bits(inno, 0x02, RK3228_PDATAEN_DISABLE, 0); return 0; } static void inno_hdmi_phy_rk3228_power_off(struct inno_hdmi_phy *inno) { inno_update_bits(inno, 0xe1, RK3228_TMDS_DRIVER_ENABLE, 0); inno_update_bits(inno, 0xe1, RK3228_BANDGAP_ENABLE, 0); inno_update_bits(inno, 0xe0, RK3228_POST_PLL_POWER_DOWN, RK3228_POST_PLL_POWER_DOWN); } static const struct inno_hdmi_phy_ops rk3228_hdmi_phy_ops = { .init = inno_hdmi_phy_rk3228_init, .power_on = inno_hdmi_phy_rk3228_power_on, .power_off = inno_hdmi_phy_rk3228_power_off, }; static int inno_hdmi_phy_rk3328_init(struct inno_hdmi_phy *inno) { struct nvmem_cell *cell; unsigned char *efuse_buf; size_t len; /* * Use phy internal register control * rxsense/poweron/pllpd/pdataen signal. */ inno_write(inno, 0x01, RK3328_BYPASS_RXSENSE_EN | RK3328_BYPASS_POWERON_EN | RK3328_BYPASS_PLLPD_EN); inno_write(inno, 0x02, RK3328_INT_POL_HIGH | RK3328_BYPASS_PDATA_EN | RK3328_PDATA_EN); /* Disable phy irq */ inno_write(inno, 0x05, 0); inno_write(inno, 0x07, 0); /* try to read the chip-version */ inno->chip_version = 1; cell = nvmem_cell_get(inno->dev, "cpu-version"); if (IS_ERR(cell)) { if (PTR_ERR(cell) == -EPROBE_DEFER) return -EPROBE_DEFER; return 0; } efuse_buf = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(efuse_buf)) return 0; if (len == 1) inno->chip_version = efuse_buf[0] + 1; kfree(efuse_buf); return 0; } static int inno_hdmi_phy_rk3328_power_on(struct inno_hdmi_phy *inno, const struct post_pll_config *cfg, const struct phy_config *phy_cfg) { int ret; u32 v; inno_update_bits(inno, 0x02, RK3328_PDATA_EN, 0); inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN, RK3328_POST_PLL_POWER_DOWN); inno_write(inno, 0xac, RK3328_POST_PLL_FB_DIV_7_0(cfg->fbdiv)); if (cfg->postdiv == 1) { inno_write(inno, 0xaa, RK3328_POST_PLL_REFCLK_SEL_TMDS); inno_write(inno, 0xab, RK3328_POST_PLL_FB_DIV_8(cfg->fbdiv) | RK3328_POST_PLL_PRE_DIV(cfg->prediv)); } else { v = (cfg->postdiv / 2) - 1; v &= RK3328_POST_PLL_POST_DIV_MASK; inno_write(inno, 0xad, v); inno_write(inno, 0xab, RK3328_POST_PLL_FB_DIV_8(cfg->fbdiv) | RK3328_POST_PLL_PRE_DIV(cfg->prediv)); inno_write(inno, 0xaa, RK3328_POST_PLL_POST_DIV_ENABLE | RK3328_POST_PLL_REFCLK_SEL_TMDS); } for (v = 0; v < 14; v++) inno_write(inno, 0xb5 + v, phy_cfg->regs[v]); /* set ESD detection threshold for TMDS CLK, D2, D1 and D0 */ for (v = 0; v < 4; v++) inno_update_bits(inno, 0xc8 + v, RK3328_ESD_DETECT_MASK, RK3328_ESD_DETECT_340MV); if (phy_cfg->tmdsclock > 340000000) { /* Set termination resistor to 100ohm */ v = clk_get_rate(inno->sysclk) / 100000; inno_write(inno, 0xc5, RK3328_TERM_RESISTOR_CALIB_SPEED_14_8(v) | RK3328_BYPASS_TERM_RESISTOR_CALIB); inno_write(inno, 0xc6, RK3328_TERM_RESISTOR_CALIB_SPEED_7_0(v)); inno_write(inno, 0xc7, RK3328_TERM_RESISTOR_100); inno_update_bits(inno, 0xc5, RK3328_BYPASS_TERM_RESISTOR_CALIB, 0); } else { inno_write(inno, 0xc5, RK3328_BYPASS_TERM_RESISTOR_CALIB); /* clk termination resistor is 50ohm (parallel resistors) */ if (phy_cfg->tmdsclock > 165000000) inno_update_bits(inno, 0xc8, RK3328_TMDS_TERM_RESIST_MASK, RK3328_TMDS_TERM_RESIST_75 | RK3328_TMDS_TERM_RESIST_150); /* data termination resistor for D2, D1 and D0 is 150ohm */ for (v = 0; v < 3; v++) inno_update_bits(inno, 0xc9 + v, RK3328_TMDS_TERM_RESIST_MASK, RK3328_TMDS_TERM_RESIST_150); } inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN, 0); inno_update_bits(inno, 0xb0, RK3328_BANDGAP_ENABLE, RK3328_BANDGAP_ENABLE); inno_update_bits(inno, 0xb2, RK3328_TMDS_DRIVER_ENABLE, RK3328_TMDS_DRIVER_ENABLE); /* Wait for post PLL lock */ ret = inno_poll(inno, 0xaf, v, v & RK3328_POST_PLL_LOCK_STATUS, 1000, 10000); if (ret) { dev_err(inno->dev, "Post-PLL locking failed\n"); return ret; } if (phy_cfg->tmdsclock > 340000000) msleep(100); inno_update_bits(inno, 0x02, RK3328_PDATA_EN, RK3328_PDATA_EN); /* Enable PHY IRQ */ inno_write(inno, 0x05, RK3328_INT_TMDS_CLK(RK3328_INT_VSS_AGND_ESD_DET) | RK3328_INT_TMDS_D2(RK3328_INT_VSS_AGND_ESD_DET)); inno_write(inno, 0x07, RK3328_INT_TMDS_D1(RK3328_INT_VSS_AGND_ESD_DET) | RK3328_INT_TMDS_D0(RK3328_INT_VSS_AGND_ESD_DET)); return 0; } static void inno_hdmi_phy_rk3328_power_off(struct inno_hdmi_phy *inno) { inno_update_bits(inno, 0xb2, RK3328_TMDS_DRIVER_ENABLE, 0); inno_update_bits(inno, 0xb0, RK3328_BANDGAP_ENABLE, 0); inno_update_bits(inno, 0xaa, RK3328_POST_PLL_POWER_DOWN, RK3328_POST_PLL_POWER_DOWN); /* Disable PHY IRQ */ inno_write(inno, 0x05, 0); inno_write(inno, 0x07, 0); } static const struct inno_hdmi_phy_ops rk3328_hdmi_phy_ops = { .init = inno_hdmi_phy_rk3328_init, .power_on = inno_hdmi_phy_rk3328_power_on, .power_off = inno_hdmi_phy_rk3328_power_off, }; static const struct inno_hdmi_phy_drv_data rk3228_hdmi_phy_drv_data = { .ops = &rk3228_hdmi_phy_ops, .clk_ops = &inno_hdmi_phy_rk3228_clk_ops, .phy_cfg_table = rk3228_phy_cfg, }; static const struct inno_hdmi_phy_drv_data rk3328_hdmi_phy_drv_data = { .ops = &rk3328_hdmi_phy_ops, .clk_ops = &inno_hdmi_phy_rk3328_clk_ops, .phy_cfg_table = rk3328_phy_cfg, }; static const struct regmap_config inno_hdmi_phy_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x400, }; static void inno_hdmi_phy_action(void *data) { struct inno_hdmi_phy *inno = data; clk_disable_unprepare(inno->refpclk); clk_disable_unprepare(inno->sysclk); } static int inno_hdmi_phy_probe(struct platform_device *pdev) { struct inno_hdmi_phy *inno; struct phy_provider *phy_provider; struct resource *res; void __iomem *regs; int ret; inno = devm_kzalloc(&pdev->dev, sizeof(*inno), GFP_KERNEL); if (!inno) return -ENOMEM; inno->dev = &pdev->dev; inno->plat_data = of_device_get_match_data(inno->dev); if (!inno->plat_data || !inno->plat_data->ops) return -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs = devm_ioremap_resource(inno->dev, res); if (IS_ERR(regs)) return PTR_ERR(regs); inno->sysclk = devm_clk_get(inno->dev, "sysclk"); if (IS_ERR(inno->sysclk)) { ret = PTR_ERR(inno->sysclk); dev_err(inno->dev, "failed to get sysclk: %d\n", ret); return ret; } inno->refpclk = devm_clk_get(inno->dev, "refpclk"); if (IS_ERR(inno->refpclk)) { ret = PTR_ERR(inno->refpclk); dev_err(inno->dev, "failed to get ref clock: %d\n", ret); return ret; } inno->refoclk = devm_clk_get(inno->dev, "refoclk"); if (IS_ERR(inno->refoclk)) { ret = PTR_ERR(inno->refoclk); dev_err(inno->dev, "failed to get oscillator-ref clock: %d\n", ret); return ret; } ret = clk_prepare_enable(inno->sysclk); if (ret) { dev_err(inno->dev, "Cannot enable inno phy sysclk: %d\n", ret); return ret; } /* * Refpclk needs to be on, on at least the rk3328 for still * unknown reasons. */ ret = clk_prepare_enable(inno->refpclk); if (ret) { dev_err(inno->dev, "failed to enable refpclk\n"); clk_disable_unprepare(inno->sysclk); return ret; } ret = devm_add_action_or_reset(inno->dev, inno_hdmi_phy_action, inno); if (ret) return ret; inno->regmap = devm_regmap_init_mmio(inno->dev, regs, &inno_hdmi_phy_regmap_config); if (IS_ERR(inno->regmap)) return PTR_ERR(inno->regmap); /* only the newer rk3328 hdmiphy has an interrupt */ inno->irq = platform_get_irq(pdev, 0); if (inno->irq > 0) { ret = devm_request_threaded_irq(inno->dev, inno->irq, inno_hdmi_phy_rk3328_hardirq, inno_hdmi_phy_rk3328_irq, IRQF_SHARED, dev_name(inno->dev), inno); if (ret) return ret; } inno->phy = devm_phy_create(inno->dev, NULL, &inno_hdmi_phy_ops); if (IS_ERR(inno->phy)) { dev_err(inno->dev, "failed to create HDMI PHY\n"); return PTR_ERR(inno->phy); } phy_set_drvdata(inno->phy, inno); phy_set_bus_width(inno->phy, 8); if (inno->plat_data->ops->init) { ret = inno->plat_data->ops->init(inno); if (ret) return ret; } ret = inno_hdmi_phy_clk_register(inno); if (ret) return ret; phy_provider = devm_of_phy_provider_register(inno->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static int inno_hdmi_phy_remove(struct platform_device *pdev) { of_clk_del_provider(pdev->dev.of_node); return 0; } static const struct of_device_id inno_hdmi_phy_of_match[] = { { .compatible = "rockchip,rk3228-hdmi-phy", .data = &rk3228_hdmi_phy_drv_data }, { .compatible = "rockchip,rk3328-hdmi-phy", .data = &rk3328_hdmi_phy_drv_data }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, inno_hdmi_phy_of_match); static struct platform_driver inno_hdmi_phy_driver = { .probe = inno_hdmi_phy_probe, .remove = inno_hdmi_phy_remove, .driver = { .name = "inno-hdmi-phy", .of_match_table = inno_hdmi_phy_of_match, }, }; module_platform_driver(inno_hdmi_phy_driver); MODULE_AUTHOR("Zheng Yang "); MODULE_DESCRIPTION("Innosilion HDMI 2.0 Transmitter PHY Driver"); MODULE_LICENSE("GPL v2");