// SPDX-License-Identifier: GPL-2.0-only /* * An I2C and SPI driver for the NXP PCF2127/29/31 RTC * Copyright 2013 Til-Technologies * * Author: Renaud Cerrato * * Watchdog and tamper functions * Author: Bruno Thomsen * * PCF2131 support * Author: Hugo Villeneuve * * based on the other drivers in this same directory. * * Datasheets: https://www.nxp.com/docs/en/data-sheet/PCF2127.pdf * https://www.nxp.com/docs/en/data-sheet/PCF2131DS.pdf */ #include #include #include #include #include #include #include #include #include #include #include /* Control register 1 */ #define PCF2127_REG_CTRL1 0x00 #define PCF2127_BIT_CTRL1_POR_OVRD BIT(3) #define PCF2127_BIT_CTRL1_TSF1 BIT(4) #define PCF2127_BIT_CTRL1_STOP BIT(5) /* Control register 2 */ #define PCF2127_REG_CTRL2 0x01 #define PCF2127_BIT_CTRL2_AIE BIT(1) #define PCF2127_BIT_CTRL2_TSIE BIT(2) #define PCF2127_BIT_CTRL2_AF BIT(4) #define PCF2127_BIT_CTRL2_TSF2 BIT(5) #define PCF2127_BIT_CTRL2_WDTF BIT(6) /* Control register 3 */ #define PCF2127_REG_CTRL3 0x02 #define PCF2127_BIT_CTRL3_BLIE BIT(0) #define PCF2127_BIT_CTRL3_BIE BIT(1) #define PCF2127_BIT_CTRL3_BLF BIT(2) #define PCF2127_BIT_CTRL3_BF BIT(3) #define PCF2127_BIT_CTRL3_BTSE BIT(4) /* Time and date registers */ #define PCF2127_REG_TIME_BASE 0x03 #define PCF2127_BIT_SC_OSF BIT(7) /* Alarm registers */ #define PCF2127_REG_ALARM_BASE 0x0A #define PCF2127_BIT_ALARM_AE BIT(7) /* CLKOUT control register */ #define PCF2127_REG_CLKOUT 0x0f #define PCF2127_BIT_CLKOUT_OTPR BIT(5) /* Watchdog registers */ #define PCF2127_REG_WD_CTL 0x10 #define PCF2127_BIT_WD_CTL_TF0 BIT(0) #define PCF2127_BIT_WD_CTL_TF1 BIT(1) #define PCF2127_BIT_WD_CTL_CD0 BIT(6) #define PCF2127_BIT_WD_CTL_CD1 BIT(7) #define PCF2127_REG_WD_VAL 0x11 /* Tamper timestamp1 registers */ #define PCF2127_REG_TS1_BASE 0x12 #define PCF2127_BIT_TS_CTRL_TSOFF BIT(6) #define PCF2127_BIT_TS_CTRL_TSM BIT(7) /* * RAM registers * PCF2127 has 512 bytes general-purpose static RAM (SRAM) that is * battery backed and can survive a power outage. * PCF2129/31 doesn't have this feature. */ #define PCF2127_REG_RAM_ADDR_MSB 0x1A #define PCF2127_REG_RAM_WRT_CMD 0x1C #define PCF2127_REG_RAM_RD_CMD 0x1D /* Watchdog timer value constants */ #define PCF2127_WD_VAL_STOP 0 /* PCF2127/29 watchdog timer value constants */ #define PCF2127_WD_CLOCK_HZ_X1000 1000 /* 1Hz */ #define PCF2127_WD_MIN_HW_HEARTBEAT_MS 500 /* PCF2131 watchdog timer value constants */ #define PCF2131_WD_CLOCK_HZ_X1000 250 /* 1/4Hz */ #define PCF2131_WD_MIN_HW_HEARTBEAT_MS 4000 #define PCF2127_WD_DEFAULT_TIMEOUT_S 60 /* Mask for currently enabled interrupts */ #define PCF2127_CTRL1_IRQ_MASK (PCF2127_BIT_CTRL1_TSF1) #define PCF2127_CTRL2_IRQ_MASK ( \ PCF2127_BIT_CTRL2_AF | \ PCF2127_BIT_CTRL2_WDTF | \ PCF2127_BIT_CTRL2_TSF2) #define PCF2127_MAX_TS_SUPPORTED 4 /* Control register 4 */ #define PCF2131_REG_CTRL4 0x03 #define PCF2131_BIT_CTRL4_TSF4 BIT(4) #define PCF2131_BIT_CTRL4_TSF3 BIT(5) #define PCF2131_BIT_CTRL4_TSF2 BIT(6) #define PCF2131_BIT_CTRL4_TSF1 BIT(7) /* Control register 5 */ #define PCF2131_REG_CTRL5 0x04 #define PCF2131_BIT_CTRL5_TSIE4 BIT(4) #define PCF2131_BIT_CTRL5_TSIE3 BIT(5) #define PCF2131_BIT_CTRL5_TSIE2 BIT(6) #define PCF2131_BIT_CTRL5_TSIE1 BIT(7) /* Software reset register */ #define PCF2131_REG_SR_RESET 0x05 #define PCF2131_SR_RESET_READ_PATTERN (BIT(2) | BIT(5)) #define PCF2131_SR_RESET_CPR_CMD (PCF2131_SR_RESET_READ_PATTERN | BIT(7)) /* Time and date registers */ #define PCF2131_REG_TIME_BASE 0x07 /* Alarm registers */ #define PCF2131_REG_ALARM_BASE 0x0E /* CLKOUT control register */ #define PCF2131_REG_CLKOUT 0x13 /* Watchdog registers */ #define PCF2131_REG_WD_CTL 0x35 #define PCF2131_REG_WD_VAL 0x36 /* Tamper timestamp1 registers */ #define PCF2131_REG_TS1_BASE 0x14 /* Tamper timestamp2 registers */ #define PCF2131_REG_TS2_BASE 0x1B /* Tamper timestamp3 registers */ #define PCF2131_REG_TS3_BASE 0x22 /* Tamper timestamp4 registers */ #define PCF2131_REG_TS4_BASE 0x29 /* Interrupt mask registers */ #define PCF2131_REG_INT_A_MASK1 0x31 #define PCF2131_REG_INT_A_MASK2 0x32 #define PCF2131_REG_INT_B_MASK1 0x33 #define PCF2131_REG_INT_B_MASK2 0x34 #define PCF2131_BIT_INT_BLIE BIT(0) #define PCF2131_BIT_INT_BIE BIT(1) #define PCF2131_BIT_INT_AIE BIT(2) #define PCF2131_BIT_INT_WD_CD BIT(3) #define PCF2131_BIT_INT_SI BIT(4) #define PCF2131_BIT_INT_MI BIT(5) #define PCF2131_CTRL2_IRQ_MASK ( \ PCF2127_BIT_CTRL2_AF | \ PCF2127_BIT_CTRL2_WDTF) #define PCF2131_CTRL4_IRQ_MASK ( \ PCF2131_BIT_CTRL4_TSF4 | \ PCF2131_BIT_CTRL4_TSF3 | \ PCF2131_BIT_CTRL4_TSF2 | \ PCF2131_BIT_CTRL4_TSF1) enum pcf21xx_type { PCF2127, PCF2129, PCF2131, PCF21XX_LAST_ID }; struct pcf21xx_ts_config { u8 reg_base; /* Base register to read timestamp values. */ /* * If the TS input pin is driven to GND, an interrupt can be generated * (supported by all variants). */ u8 gnd_detect_reg; /* Interrupt control register address. */ u8 gnd_detect_bit; /* Interrupt bit. */ /* * If the TS input pin is driven to an intermediate level between GND * and supply, an interrupt can be generated (optional feature depending * on variant). */ u8 inter_detect_reg; /* Interrupt control register address. */ u8 inter_detect_bit; /* Interrupt bit. */ u8 ie_reg; /* Interrupt enable control register. */ u8 ie_bit; /* Interrupt enable bit. */ }; struct pcf21xx_config { int type; /* IC variant */ int max_register; unsigned int has_nvmem:1; unsigned int has_bit_wd_ctl_cd0:1; unsigned int wd_val_reg_readable:1; /* If watchdog value register can be read. */ unsigned int has_int_a_b:1; /* PCF2131 supports two interrupt outputs. */ u8 reg_time_base; /* Time/date base register. */ u8 regs_alarm_base; /* Alarm function base registers. */ u8 reg_wd_ctl; /* Watchdog control register. */ u8 reg_wd_val; /* Watchdog value register. */ u8 reg_clkout; /* Clkout register. */ int wdd_clock_hz_x1000; /* Watchdog clock in Hz multiplicated by 1000 */ int wdd_min_hw_heartbeat_ms; unsigned int ts_count; struct pcf21xx_ts_config ts[PCF2127_MAX_TS_SUPPORTED]; struct attribute_group attribute_group; }; struct pcf2127 { struct rtc_device *rtc; struct watchdog_device wdd; struct regmap *regmap; const struct pcf21xx_config *cfg; bool irq_enabled; time64_t ts[PCF2127_MAX_TS_SUPPORTED]; /* Timestamp values. */ bool ts_valid[PCF2127_MAX_TS_SUPPORTED]; /* Timestamp valid indication. */ }; /* * In the routines that deal directly with the pcf2127 hardware, we use * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch. */ static int pcf2127_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); unsigned char buf[7]; int ret; /* * Avoid reading CTRL2 register as it causes WD_VAL register * value to reset to 0 which means watchdog is stopped. */ ret = regmap_bulk_read(pcf2127->regmap, pcf2127->cfg->reg_time_base, buf, sizeof(buf)); if (ret) { dev_err(dev, "%s: read error\n", __func__); return ret; } /* Clock integrity is not guaranteed when OSF flag is set. */ if (buf[0] & PCF2127_BIT_SC_OSF) { /* * no need clear the flag here, * it will be cleared once the new date is saved */ dev_warn(dev, "oscillator stop detected, date/time is not reliable\n"); return -EINVAL; } dev_dbg(dev, "%s: raw data is sec=%02x, min=%02x, hr=%02x, " "mday=%02x, wday=%02x, mon=%02x, year=%02x\n", __func__, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6]); tm->tm_sec = bcd2bin(buf[0] & 0x7F); tm->tm_min = bcd2bin(buf[1] & 0x7F); tm->tm_hour = bcd2bin(buf[2] & 0x3F); tm->tm_mday = bcd2bin(buf[3] & 0x3F); tm->tm_wday = buf[4] & 0x07; tm->tm_mon = bcd2bin(buf[5] & 0x1F) - 1; tm->tm_year = bcd2bin(buf[6]); tm->tm_year += 100; dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, " "mday=%d, mon=%d, year=%d, wday=%d\n", __func__, tm->tm_sec, tm->tm_min, tm->tm_hour, tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday); return 0; } static int pcf2127_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); unsigned char buf[7]; int i = 0, err; dev_dbg(dev, "%s: secs=%d, mins=%d, hours=%d, " "mday=%d, mon=%d, year=%d, wday=%d\n", __func__, tm->tm_sec, tm->tm_min, tm->tm_hour, tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday); /* hours, minutes and seconds */ buf[i++] = bin2bcd(tm->tm_sec); /* this will also clear OSF flag */ buf[i++] = bin2bcd(tm->tm_min); buf[i++] = bin2bcd(tm->tm_hour); buf[i++] = bin2bcd(tm->tm_mday); buf[i++] = tm->tm_wday & 0x07; /* month, 1 - 12 */ buf[i++] = bin2bcd(tm->tm_mon + 1); /* year */ buf[i++] = bin2bcd(tm->tm_year - 100); /* Write access to time registers: * PCF2127/29: no special action required. * PCF2131: requires setting the STOP and CPR bits. STOP bit needs to * be cleared after time registers are updated. */ if (pcf2127->cfg->type == PCF2131) { err = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL1, PCF2127_BIT_CTRL1_STOP, PCF2127_BIT_CTRL1_STOP); if (err) { dev_dbg(dev, "setting STOP bit failed\n"); return err; } err = regmap_write(pcf2127->regmap, PCF2131_REG_SR_RESET, PCF2131_SR_RESET_CPR_CMD); if (err) { dev_dbg(dev, "sending CPR cmd failed\n"); return err; } } /* write time register's data */ err = regmap_bulk_write(pcf2127->regmap, pcf2127->cfg->reg_time_base, buf, i); if (err) { dev_dbg(dev, "%s: err=%d", __func__, err); return err; } if (pcf2127->cfg->type == PCF2131) { /* Clear STOP bit (PCF2131 only) after write is completed. */ err = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL1, PCF2127_BIT_CTRL1_STOP, 0); if (err) { dev_dbg(dev, "clearing STOP bit failed\n"); return err; } } return 0; } static int pcf2127_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); int val, touser = 0; int ret; switch (cmd) { case RTC_VL_READ: ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL3, &val); if (ret) return ret; if (val & PCF2127_BIT_CTRL3_BLF) touser |= RTC_VL_BACKUP_LOW; if (val & PCF2127_BIT_CTRL3_BF) touser |= RTC_VL_BACKUP_SWITCH; return put_user(touser, (unsigned int __user *)arg); case RTC_VL_CLR: return regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL3, PCF2127_BIT_CTRL3_BF, 0); default: return -ENOIOCTLCMD; } } static int pcf2127_nvmem_read(void *priv, unsigned int offset, void *val, size_t bytes) { struct pcf2127 *pcf2127 = priv; int ret; unsigned char offsetbuf[] = { offset >> 8, offset }; ret = regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_ADDR_MSB, offsetbuf, 2); if (ret) return ret; return regmap_bulk_read(pcf2127->regmap, PCF2127_REG_RAM_RD_CMD, val, bytes); } static int pcf2127_nvmem_write(void *priv, unsigned int offset, void *val, size_t bytes) { struct pcf2127 *pcf2127 = priv; int ret; unsigned char offsetbuf[] = { offset >> 8, offset }; ret = regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_ADDR_MSB, offsetbuf, 2); if (ret) return ret; return regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_WRT_CMD, val, bytes); } /* watchdog driver */ static int pcf2127_wdt_ping(struct watchdog_device *wdd) { int wd_val; struct pcf2127 *pcf2127 = watchdog_get_drvdata(wdd); /* * Compute counter value of WATCHDG_TIM_VAL to obtain desired period * in seconds, depending on the source clock frequency. */ wd_val = ((wdd->timeout * pcf2127->cfg->wdd_clock_hz_x1000) / 1000) + 1; return regmap_write(pcf2127->regmap, pcf2127->cfg->reg_wd_val, wd_val); } /* * Restart watchdog timer if feature is active. * * Note: Reading CTRL2 register causes watchdog to stop which is unfortunate, * since register also contain control/status flags for other features. * Always call this function after reading CTRL2 register. */ static int pcf2127_wdt_active_ping(struct watchdog_device *wdd) { int ret = 0; if (watchdog_active(wdd)) { ret = pcf2127_wdt_ping(wdd); if (ret) dev_err(wdd->parent, "%s: watchdog restart failed, ret=%d\n", __func__, ret); } return ret; } static int pcf2127_wdt_start(struct watchdog_device *wdd) { return pcf2127_wdt_ping(wdd); } static int pcf2127_wdt_stop(struct watchdog_device *wdd) { struct pcf2127 *pcf2127 = watchdog_get_drvdata(wdd); return regmap_write(pcf2127->regmap, pcf2127->cfg->reg_wd_val, PCF2127_WD_VAL_STOP); } static int pcf2127_wdt_set_timeout(struct watchdog_device *wdd, unsigned int new_timeout) { dev_dbg(wdd->parent, "new watchdog timeout: %is (old: %is)\n", new_timeout, wdd->timeout); wdd->timeout = new_timeout; return pcf2127_wdt_active_ping(wdd); } static const struct watchdog_info pcf2127_wdt_info = { .identity = "NXP PCF2127/PCF2129 Watchdog", .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT, }; static const struct watchdog_ops pcf2127_watchdog_ops = { .owner = THIS_MODULE, .start = pcf2127_wdt_start, .stop = pcf2127_wdt_stop, .ping = pcf2127_wdt_ping, .set_timeout = pcf2127_wdt_set_timeout, }; /* * Compute watchdog period, t, in seconds, from the WATCHDG_TIM_VAL register * value, n, and the clock frequency, f1000, in Hz x 1000. * * The PCF2127/29 datasheet gives t as: * t = n / f * The PCF2131 datasheet gives t as: * t = (n - 1) / f * For both variants, the watchdog is triggered when the WATCHDG_TIM_VAL reaches * the value 1, and not zero. Consequently, the equation from the PCF2131 * datasheet seems to be the correct one for both variants. */ static int pcf2127_watchdog_get_period(int n, int f1000) { return (1000 * (n - 1)) / f1000; } static int pcf2127_watchdog_init(struct device *dev, struct pcf2127 *pcf2127) { int ret; if (!IS_ENABLED(CONFIG_WATCHDOG) || !device_property_read_bool(dev, "reset-source")) return 0; pcf2127->wdd.parent = dev; pcf2127->wdd.info = &pcf2127_wdt_info; pcf2127->wdd.ops = &pcf2127_watchdog_ops; pcf2127->wdd.min_timeout = pcf2127_watchdog_get_period( 2, pcf2127->cfg->wdd_clock_hz_x1000); pcf2127->wdd.max_timeout = pcf2127_watchdog_get_period( 255, pcf2127->cfg->wdd_clock_hz_x1000); pcf2127->wdd.timeout = PCF2127_WD_DEFAULT_TIMEOUT_S; dev_dbg(dev, "%s clock = %d Hz / 1000\n", __func__, pcf2127->cfg->wdd_clock_hz_x1000); pcf2127->wdd.min_hw_heartbeat_ms = pcf2127->cfg->wdd_min_hw_heartbeat_ms; pcf2127->wdd.status = WATCHDOG_NOWAYOUT_INIT_STATUS; watchdog_set_drvdata(&pcf2127->wdd, pcf2127); /* Test if watchdog timer is started by bootloader */ if (pcf2127->cfg->wd_val_reg_readable) { u32 wdd_timeout; ret = regmap_read(pcf2127->regmap, pcf2127->cfg->reg_wd_val, &wdd_timeout); if (ret) return ret; if (wdd_timeout) set_bit(WDOG_HW_RUNNING, &pcf2127->wdd.status); } return devm_watchdog_register_device(dev, &pcf2127->wdd); } /* Alarm */ static int pcf2127_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); u8 buf[5]; unsigned int ctrl2; int ret; ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL2, &ctrl2); if (ret) return ret; ret = pcf2127_wdt_active_ping(&pcf2127->wdd); if (ret) return ret; ret = regmap_bulk_read(pcf2127->regmap, pcf2127->cfg->regs_alarm_base, buf, sizeof(buf)); if (ret) return ret; alrm->enabled = ctrl2 & PCF2127_BIT_CTRL2_AIE; alrm->pending = ctrl2 & PCF2127_BIT_CTRL2_AF; alrm->time.tm_sec = bcd2bin(buf[0] & 0x7F); alrm->time.tm_min = bcd2bin(buf[1] & 0x7F); alrm->time.tm_hour = bcd2bin(buf[2] & 0x3F); alrm->time.tm_mday = bcd2bin(buf[3] & 0x3F); return 0; } static int pcf2127_rtc_alarm_irq_enable(struct device *dev, u32 enable) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); int ret; ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL2, PCF2127_BIT_CTRL2_AIE, enable ? PCF2127_BIT_CTRL2_AIE : 0); if (ret) return ret; return pcf2127_wdt_active_ping(&pcf2127->wdd); } static int pcf2127_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); uint8_t buf[5]; int ret; ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL2, PCF2127_BIT_CTRL2_AF, 0); if (ret) return ret; ret = pcf2127_wdt_active_ping(&pcf2127->wdd); if (ret) return ret; buf[0] = bin2bcd(alrm->time.tm_sec); buf[1] = bin2bcd(alrm->time.tm_min); buf[2] = bin2bcd(alrm->time.tm_hour); buf[3] = bin2bcd(alrm->time.tm_mday); buf[4] = PCF2127_BIT_ALARM_AE; /* Do not match on week day */ ret = regmap_bulk_write(pcf2127->regmap, pcf2127->cfg->regs_alarm_base, buf, sizeof(buf)); if (ret) return ret; return pcf2127_rtc_alarm_irq_enable(dev, alrm->enabled); } /* * This function reads one timestamp function data, caller is responsible for * calling pcf2127_wdt_active_ping() */ static int pcf2127_rtc_ts_read(struct device *dev, time64_t *ts, int ts_id) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); struct rtc_time tm; int ret; unsigned char data[7]; ret = regmap_bulk_read(pcf2127->regmap, pcf2127->cfg->ts[ts_id].reg_base, data, sizeof(data)); if (ret) { dev_err(dev, "%s: read error ret=%d\n", __func__, ret); return ret; } dev_dbg(dev, "%s: raw data is ts_sc=%02x, ts_mn=%02x, ts_hr=%02x, ts_dm=%02x, ts_mo=%02x, ts_yr=%02x\n", __func__, data[1], data[2], data[3], data[4], data[5], data[6]); tm.tm_sec = bcd2bin(data[1] & 0x7F); tm.tm_min = bcd2bin(data[2] & 0x7F); tm.tm_hour = bcd2bin(data[3] & 0x3F); tm.tm_mday = bcd2bin(data[4] & 0x3F); /* TS_MO register (month) value range: 1-12 */ tm.tm_mon = bcd2bin(data[5] & 0x1F) - 1; tm.tm_year = bcd2bin(data[6]); if (tm.tm_year < 70) tm.tm_year += 100; /* assume we are in 1970...2069 */ ret = rtc_valid_tm(&tm); if (ret) { dev_err(dev, "Invalid timestamp. ret=%d\n", ret); return ret; } *ts = rtc_tm_to_time64(&tm); return 0; }; static void pcf2127_rtc_ts_snapshot(struct device *dev, int ts_id) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); int ret; if (ts_id >= pcf2127->cfg->ts_count) return; /* Let userspace read the first timestamp */ if (pcf2127->ts_valid[ts_id]) return; ret = pcf2127_rtc_ts_read(dev, &pcf2127->ts[ts_id], ts_id); if (!ret) pcf2127->ts_valid[ts_id] = true; } static irqreturn_t pcf2127_rtc_irq(int irq, void *dev) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); unsigned int ctrl2; int ret = 0; ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL2, &ctrl2); if (ret) return IRQ_NONE; if (pcf2127->cfg->ts_count == 1) { /* PCF2127/29 */ unsigned int ctrl1; ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL1, &ctrl1); if (ret) return IRQ_NONE; if (!(ctrl1 & PCF2127_CTRL1_IRQ_MASK || ctrl2 & PCF2127_CTRL2_IRQ_MASK)) return IRQ_NONE; if (ctrl1 & PCF2127_BIT_CTRL1_TSF1 || ctrl2 & PCF2127_BIT_CTRL2_TSF2) pcf2127_rtc_ts_snapshot(dev, 0); if (ctrl1 & PCF2127_CTRL1_IRQ_MASK) regmap_write(pcf2127->regmap, PCF2127_REG_CTRL1, ctrl1 & ~PCF2127_CTRL1_IRQ_MASK); if (ctrl2 & PCF2127_CTRL2_IRQ_MASK) regmap_write(pcf2127->regmap, PCF2127_REG_CTRL2, ctrl2 & ~PCF2127_CTRL2_IRQ_MASK); } else { /* PCF2131. */ unsigned int ctrl4; ret = regmap_read(pcf2127->regmap, PCF2131_REG_CTRL4, &ctrl4); if (ret) return IRQ_NONE; if (!(ctrl4 & PCF2131_CTRL4_IRQ_MASK || ctrl2 & PCF2131_CTRL2_IRQ_MASK)) return IRQ_NONE; if (ctrl4 & PCF2131_CTRL4_IRQ_MASK) { int i; int tsf_bit = PCF2131_BIT_CTRL4_TSF1; /* Start at bit 7. */ for (i = 0; i < pcf2127->cfg->ts_count; i++) { if (ctrl4 & tsf_bit) pcf2127_rtc_ts_snapshot(dev, i); tsf_bit = tsf_bit >> 1; } regmap_write(pcf2127->regmap, PCF2131_REG_CTRL4, ctrl4 & ~PCF2131_CTRL4_IRQ_MASK); } if (ctrl2 & PCF2131_CTRL2_IRQ_MASK) regmap_write(pcf2127->regmap, PCF2127_REG_CTRL2, ctrl2 & ~PCF2131_CTRL2_IRQ_MASK); } if (ctrl2 & PCF2127_BIT_CTRL2_AF) rtc_update_irq(pcf2127->rtc, 1, RTC_IRQF | RTC_AF); pcf2127_wdt_active_ping(&pcf2127->wdd); return IRQ_HANDLED; } static const struct rtc_class_ops pcf2127_rtc_ops = { .ioctl = pcf2127_rtc_ioctl, .read_time = pcf2127_rtc_read_time, .set_time = pcf2127_rtc_set_time, .read_alarm = pcf2127_rtc_read_alarm, .set_alarm = pcf2127_rtc_set_alarm, .alarm_irq_enable = pcf2127_rtc_alarm_irq_enable, }; /* sysfs interface */ static ssize_t timestamp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count, int ts_id) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev->parent); int ret; if (ts_id >= pcf2127->cfg->ts_count) return 0; if (pcf2127->irq_enabled) { pcf2127->ts_valid[ts_id] = false; } else { /* Always clear GND interrupt bit. */ ret = regmap_update_bits(pcf2127->regmap, pcf2127->cfg->ts[ts_id].gnd_detect_reg, pcf2127->cfg->ts[ts_id].gnd_detect_bit, 0); if (ret) { dev_err(dev, "%s: update TS gnd detect ret=%d\n", __func__, ret); return ret; } if (pcf2127->cfg->ts[ts_id].inter_detect_bit) { /* Clear intermediate level interrupt bit if supported. */ ret = regmap_update_bits(pcf2127->regmap, pcf2127->cfg->ts[ts_id].inter_detect_reg, pcf2127->cfg->ts[ts_id].inter_detect_bit, 0); if (ret) { dev_err(dev, "%s: update TS intermediate level detect ret=%d\n", __func__, ret); return ret; } } ret = pcf2127_wdt_active_ping(&pcf2127->wdd); if (ret) return ret; } return count; } static ssize_t timestamp0_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return timestamp_store(dev, attr, buf, count, 0); }; static ssize_t timestamp1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return timestamp_store(dev, attr, buf, count, 1); }; static ssize_t timestamp2_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return timestamp_store(dev, attr, buf, count, 2); }; static ssize_t timestamp3_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return timestamp_store(dev, attr, buf, count, 3); }; static ssize_t timestamp_show(struct device *dev, struct device_attribute *attr, char *buf, int ts_id) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev->parent); int ret; time64_t ts; if (ts_id >= pcf2127->cfg->ts_count) return 0; if (pcf2127->irq_enabled) { if (!pcf2127->ts_valid[ts_id]) return 0; ts = pcf2127->ts[ts_id]; } else { u8 valid_low = 0; u8 valid_inter = 0; unsigned int ctrl; /* Check if TS input pin is driven to GND, supported by all * variants. */ ret = regmap_read(pcf2127->regmap, pcf2127->cfg->ts[ts_id].gnd_detect_reg, &ctrl); if (ret) return 0; valid_low = ctrl & pcf2127->cfg->ts[ts_id].gnd_detect_bit; if (pcf2127->cfg->ts[ts_id].inter_detect_bit) { /* Check if TS input pin is driven to intermediate level * between GND and supply, if supported by variant. */ ret = regmap_read(pcf2127->regmap, pcf2127->cfg->ts[ts_id].inter_detect_reg, &ctrl); if (ret) return 0; valid_inter = ctrl & pcf2127->cfg->ts[ts_id].inter_detect_bit; } if (!valid_low && !valid_inter) return 0; ret = pcf2127_rtc_ts_read(dev->parent, &ts, ts_id); if (ret) return 0; ret = pcf2127_wdt_active_ping(&pcf2127->wdd); if (ret) return ret; } return sprintf(buf, "%llu\n", (unsigned long long)ts); } static ssize_t timestamp0_show(struct device *dev, struct device_attribute *attr, char *buf) { return timestamp_show(dev, attr, buf, 0); }; static ssize_t timestamp1_show(struct device *dev, struct device_attribute *attr, char *buf) { return timestamp_show(dev, attr, buf, 1); }; static ssize_t timestamp2_show(struct device *dev, struct device_attribute *attr, char *buf) { return timestamp_show(dev, attr, buf, 2); }; static ssize_t timestamp3_show(struct device *dev, struct device_attribute *attr, char *buf) { return timestamp_show(dev, attr, buf, 3); }; static DEVICE_ATTR_RW(timestamp0); static DEVICE_ATTR_RW(timestamp1); static DEVICE_ATTR_RW(timestamp2); static DEVICE_ATTR_RW(timestamp3); static struct attribute *pcf2127_attrs[] = { &dev_attr_timestamp0.attr, NULL }; static struct attribute *pcf2131_attrs[] = { &dev_attr_timestamp0.attr, &dev_attr_timestamp1.attr, &dev_attr_timestamp2.attr, &dev_attr_timestamp3.attr, NULL }; static struct pcf21xx_config pcf21xx_cfg[] = { [PCF2127] = { .type = PCF2127, .max_register = 0x1d, .has_nvmem = 1, .has_bit_wd_ctl_cd0 = 1, .wd_val_reg_readable = 1, .has_int_a_b = 0, .reg_time_base = PCF2127_REG_TIME_BASE, .regs_alarm_base = PCF2127_REG_ALARM_BASE, .reg_wd_ctl = PCF2127_REG_WD_CTL, .reg_wd_val = PCF2127_REG_WD_VAL, .reg_clkout = PCF2127_REG_CLKOUT, .wdd_clock_hz_x1000 = PCF2127_WD_CLOCK_HZ_X1000, .wdd_min_hw_heartbeat_ms = PCF2127_WD_MIN_HW_HEARTBEAT_MS, .ts_count = 1, .ts[0] = { .reg_base = PCF2127_REG_TS1_BASE, .gnd_detect_reg = PCF2127_REG_CTRL1, .gnd_detect_bit = PCF2127_BIT_CTRL1_TSF1, .inter_detect_reg = PCF2127_REG_CTRL2, .inter_detect_bit = PCF2127_BIT_CTRL2_TSF2, .ie_reg = PCF2127_REG_CTRL2, .ie_bit = PCF2127_BIT_CTRL2_TSIE, }, .attribute_group = { .attrs = pcf2127_attrs, }, }, [PCF2129] = { .type = PCF2129, .max_register = 0x19, .has_nvmem = 0, .has_bit_wd_ctl_cd0 = 0, .wd_val_reg_readable = 1, .has_int_a_b = 0, .reg_time_base = PCF2127_REG_TIME_BASE, .regs_alarm_base = PCF2127_REG_ALARM_BASE, .reg_wd_ctl = PCF2127_REG_WD_CTL, .reg_wd_val = PCF2127_REG_WD_VAL, .reg_clkout = PCF2127_REG_CLKOUT, .wdd_clock_hz_x1000 = PCF2127_WD_CLOCK_HZ_X1000, .wdd_min_hw_heartbeat_ms = PCF2127_WD_MIN_HW_HEARTBEAT_MS, .ts_count = 1, .ts[0] = { .reg_base = PCF2127_REG_TS1_BASE, .gnd_detect_reg = PCF2127_REG_CTRL1, .gnd_detect_bit = PCF2127_BIT_CTRL1_TSF1, .inter_detect_reg = PCF2127_REG_CTRL2, .inter_detect_bit = PCF2127_BIT_CTRL2_TSF2, .ie_reg = PCF2127_REG_CTRL2, .ie_bit = PCF2127_BIT_CTRL2_TSIE, }, .attribute_group = { .attrs = pcf2127_attrs, }, }, [PCF2131] = { .type = PCF2131, .max_register = 0x36, .has_nvmem = 0, .has_bit_wd_ctl_cd0 = 0, .wd_val_reg_readable = 0, .has_int_a_b = 1, .reg_time_base = PCF2131_REG_TIME_BASE, .regs_alarm_base = PCF2131_REG_ALARM_BASE, .reg_wd_ctl = PCF2131_REG_WD_CTL, .reg_wd_val = PCF2131_REG_WD_VAL, .reg_clkout = PCF2131_REG_CLKOUT, .wdd_clock_hz_x1000 = PCF2131_WD_CLOCK_HZ_X1000, .wdd_min_hw_heartbeat_ms = PCF2131_WD_MIN_HW_HEARTBEAT_MS, .ts_count = 4, .ts[0] = { .reg_base = PCF2131_REG_TS1_BASE, .gnd_detect_reg = PCF2131_REG_CTRL4, .gnd_detect_bit = PCF2131_BIT_CTRL4_TSF1, .inter_detect_bit = 0, .ie_reg = PCF2131_REG_CTRL5, .ie_bit = PCF2131_BIT_CTRL5_TSIE1, }, .ts[1] = { .reg_base = PCF2131_REG_TS2_BASE, .gnd_detect_reg = PCF2131_REG_CTRL4, .gnd_detect_bit = PCF2131_BIT_CTRL4_TSF2, .inter_detect_bit = 0, .ie_reg = PCF2131_REG_CTRL5, .ie_bit = PCF2131_BIT_CTRL5_TSIE2, }, .ts[2] = { .reg_base = PCF2131_REG_TS3_BASE, .gnd_detect_reg = PCF2131_REG_CTRL4, .gnd_detect_bit = PCF2131_BIT_CTRL4_TSF3, .inter_detect_bit = 0, .ie_reg = PCF2131_REG_CTRL5, .ie_bit = PCF2131_BIT_CTRL5_TSIE3, }, .ts[3] = { .reg_base = PCF2131_REG_TS4_BASE, .gnd_detect_reg = PCF2131_REG_CTRL4, .gnd_detect_bit = PCF2131_BIT_CTRL4_TSF4, .inter_detect_bit = 0, .ie_reg = PCF2131_REG_CTRL5, .ie_bit = PCF2131_BIT_CTRL5_TSIE4, }, .attribute_group = { .attrs = pcf2131_attrs, }, }, }; /* * Enable timestamp function and corresponding interrupt(s). */ static int pcf2127_enable_ts(struct device *dev, int ts_id) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); int ret; if (ts_id >= pcf2127->cfg->ts_count) { dev_err(dev, "%s: invalid tamper detection ID (%d)\n", __func__, ts_id); return -EINVAL; } /* Enable timestamp function. */ ret = regmap_update_bits(pcf2127->regmap, pcf2127->cfg->ts[ts_id].reg_base, PCF2127_BIT_TS_CTRL_TSOFF | PCF2127_BIT_TS_CTRL_TSM, PCF2127_BIT_TS_CTRL_TSM); if (ret) { dev_err(dev, "%s: tamper detection config (ts%d_ctrl) failed\n", __func__, ts_id); return ret; } /* * Enable interrupt generation when TSF timestamp flag is set. * Interrupt signals are open-drain outputs and can be left floating if * unused. */ ret = regmap_update_bits(pcf2127->regmap, pcf2127->cfg->ts[ts_id].ie_reg, pcf2127->cfg->ts[ts_id].ie_bit, pcf2127->cfg->ts[ts_id].ie_bit); if (ret) { dev_err(dev, "%s: tamper detection TSIE%d config failed\n", __func__, ts_id); return ret; } return ret; } /* Route all interrupt sources to INT A pin. */ static int pcf2127_configure_interrupt_pins(struct device *dev) { struct pcf2127 *pcf2127 = dev_get_drvdata(dev); int ret; /* Mask bits need to be cleared to enable corresponding * interrupt source. */ ret = regmap_write(pcf2127->regmap, PCF2131_REG_INT_A_MASK1, 0); if (ret) return ret; ret = regmap_write(pcf2127->regmap, PCF2131_REG_INT_A_MASK2, 0); if (ret) return ret; return ret; } static int pcf2127_probe(struct device *dev, struct regmap *regmap, int alarm_irq, const struct pcf21xx_config *config) { struct pcf2127 *pcf2127; int ret = 0; unsigned int val; dev_dbg(dev, "%s\n", __func__); pcf2127 = devm_kzalloc(dev, sizeof(*pcf2127), GFP_KERNEL); if (!pcf2127) return -ENOMEM; pcf2127->regmap = regmap; pcf2127->cfg = config; dev_set_drvdata(dev, pcf2127); pcf2127->rtc = devm_rtc_allocate_device(dev); if (IS_ERR(pcf2127->rtc)) return PTR_ERR(pcf2127->rtc); pcf2127->rtc->ops = &pcf2127_rtc_ops; pcf2127->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; pcf2127->rtc->range_max = RTC_TIMESTAMP_END_2099; pcf2127->rtc->set_start_time = true; /* Sets actual start to 1970 */ /* * PCF2127/29 do not work correctly when setting alarms at 1s intervals. * PCF2131 is ok. */ if (pcf2127->cfg->type == PCF2127 || pcf2127->cfg->type == PCF2129) { set_bit(RTC_FEATURE_ALARM_RES_2S, pcf2127->rtc->features); clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, pcf2127->rtc->features); } clear_bit(RTC_FEATURE_ALARM, pcf2127->rtc->features); if (alarm_irq > 0) { unsigned long flags; /* * If flags = 0, devm_request_threaded_irq() will use IRQ flags * obtained from device tree. */ if (dev_fwnode(dev)) flags = 0; else flags = IRQF_TRIGGER_LOW; ret = devm_request_threaded_irq(dev, alarm_irq, NULL, pcf2127_rtc_irq, flags | IRQF_ONESHOT, dev_name(dev), dev); if (ret) { dev_err(dev, "failed to request alarm irq\n"); return ret; } pcf2127->irq_enabled = true; } if (alarm_irq > 0 || device_property_read_bool(dev, "wakeup-source")) { device_init_wakeup(dev, true); set_bit(RTC_FEATURE_ALARM, pcf2127->rtc->features); } if (pcf2127->cfg->has_int_a_b) { /* Configure int A/B pins, independently of alarm_irq. */ ret = pcf2127_configure_interrupt_pins(dev); if (ret) { dev_err(dev, "failed to configure interrupt pins\n"); return ret; } } if (pcf2127->cfg->has_nvmem) { struct nvmem_config nvmem_cfg = { .priv = pcf2127, .reg_read = pcf2127_nvmem_read, .reg_write = pcf2127_nvmem_write, .size = 512, }; ret = devm_rtc_nvmem_register(pcf2127->rtc, &nvmem_cfg); } /* * The "Power-On Reset Override" facility prevents the RTC to do a reset * after power on. For normal operation the PORO must be disabled. */ ret = regmap_clear_bits(pcf2127->regmap, PCF2127_REG_CTRL1, PCF2127_BIT_CTRL1_POR_OVRD); if (ret < 0) return ret; ret = regmap_read(pcf2127->regmap, pcf2127->cfg->reg_clkout, &val); if (ret < 0) return ret; if (!(val & PCF2127_BIT_CLKOUT_OTPR)) { ret = regmap_set_bits(pcf2127->regmap, pcf2127->cfg->reg_clkout, PCF2127_BIT_CLKOUT_OTPR); if (ret < 0) return ret; msleep(100); } /* * Watchdog timer enabled and reset pin /RST activated when timed out. * Select 1Hz clock source for watchdog timer (1/4Hz for PCF2131). * Note: Countdown timer disabled and not available. * For pca2129, pcf2129 and pcf2131, only bit[7] is for Symbol WD_CD * of register watchdg_tim_ctl. The bit[6] is labeled * as T. Bits labeled as T must always be written with * logic 0. */ ret = regmap_update_bits(pcf2127->regmap, pcf2127->cfg->reg_wd_ctl, PCF2127_BIT_WD_CTL_CD1 | PCF2127_BIT_WD_CTL_CD0 | PCF2127_BIT_WD_CTL_TF1 | PCF2127_BIT_WD_CTL_TF0, PCF2127_BIT_WD_CTL_CD1 | (pcf2127->cfg->has_bit_wd_ctl_cd0 ? PCF2127_BIT_WD_CTL_CD0 : 0) | PCF2127_BIT_WD_CTL_TF1); if (ret) { dev_err(dev, "%s: watchdog config (wd_ctl) failed\n", __func__); return ret; } pcf2127_watchdog_init(dev, pcf2127); /* * Disable battery low/switch-over timestamp and interrupts. * Clear battery interrupt flags which can block new trigger events. * Note: This is the default chip behaviour but added to ensure * correct tamper timestamp and interrupt function. */ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL3, PCF2127_BIT_CTRL3_BTSE | PCF2127_BIT_CTRL3_BIE | PCF2127_BIT_CTRL3_BLIE, 0); if (ret) { dev_err(dev, "%s: interrupt config (ctrl3) failed\n", __func__); return ret; } /* * Enable timestamp functions 1 to 4. */ for (int i = 0; i < pcf2127->cfg->ts_count; i++) { ret = pcf2127_enable_ts(dev, i); if (ret) return ret; } ret = rtc_add_group(pcf2127->rtc, &pcf2127->cfg->attribute_group); if (ret) { dev_err(dev, "%s: tamper sysfs registering failed\n", __func__); return ret; } return devm_rtc_register_device(pcf2127->rtc); } #ifdef CONFIG_OF static const struct of_device_id pcf2127_of_match[] = { { .compatible = "nxp,pcf2127", .data = &pcf21xx_cfg[PCF2127] }, { .compatible = "nxp,pcf2129", .data = &pcf21xx_cfg[PCF2129] }, { .compatible = "nxp,pca2129", .data = &pcf21xx_cfg[PCF2129] }, { .compatible = "nxp,pcf2131", .data = &pcf21xx_cfg[PCF2131] }, {} }; MODULE_DEVICE_TABLE(of, pcf2127_of_match); #endif #if IS_ENABLED(CONFIG_I2C) static int pcf2127_i2c_write(void *context, const void *data, size_t count) { struct device *dev = context; struct i2c_client *client = to_i2c_client(dev); int ret; ret = i2c_master_send(client, data, count); if (ret != count) return ret < 0 ? ret : -EIO; return 0; } static int pcf2127_i2c_gather_write(void *context, const void *reg, size_t reg_size, const void *val, size_t val_size) { struct device *dev = context; struct i2c_client *client = to_i2c_client(dev); int ret; void *buf; if (WARN_ON(reg_size != 1)) return -EINVAL; buf = kmalloc(val_size + 1, GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, reg, 1); memcpy(buf + 1, val, val_size); ret = i2c_master_send(client, buf, val_size + 1); kfree(buf); if (ret != val_size + 1) return ret < 0 ? ret : -EIO; return 0; } static int pcf2127_i2c_read(void *context, const void *reg, size_t reg_size, void *val, size_t val_size) { struct device *dev = context; struct i2c_client *client = to_i2c_client(dev); int ret; if (WARN_ON(reg_size != 1)) return -EINVAL; ret = i2c_master_send(client, reg, 1); if (ret != 1) return ret < 0 ? ret : -EIO; ret = i2c_master_recv(client, val, val_size); if (ret != val_size) return ret < 0 ? ret : -EIO; return 0; } /* * The reason we need this custom regmap_bus instead of using regmap_init_i2c() * is that the STOP condition is required between set register address and * read register data when reading from registers. */ static const struct regmap_bus pcf2127_i2c_regmap = { .write = pcf2127_i2c_write, .gather_write = pcf2127_i2c_gather_write, .read = pcf2127_i2c_read, }; static struct i2c_driver pcf2127_i2c_driver; static const struct i2c_device_id pcf2127_i2c_id[] = { { "pcf2127", PCF2127 }, { "pcf2129", PCF2129 }, { "pca2129", PCF2129 }, { "pcf2131", PCF2131 }, { } }; MODULE_DEVICE_TABLE(i2c, pcf2127_i2c_id); static int pcf2127_i2c_probe(struct i2c_client *client) { struct regmap *regmap; static struct regmap_config config = { .reg_bits = 8, .val_bits = 8, }; const struct pcf21xx_config *variant; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) return -ENODEV; if (client->dev.of_node) { variant = of_device_get_match_data(&client->dev); if (!variant) return -ENODEV; } else { enum pcf21xx_type type = i2c_match_id(pcf2127_i2c_id, client)->driver_data; if (type >= PCF21XX_LAST_ID) return -ENODEV; variant = &pcf21xx_cfg[type]; } config.max_register = variant->max_register, regmap = devm_regmap_init(&client->dev, &pcf2127_i2c_regmap, &client->dev, &config); if (IS_ERR(regmap)) { dev_err(&client->dev, "%s: regmap allocation failed: %ld\n", __func__, PTR_ERR(regmap)); return PTR_ERR(regmap); } return pcf2127_probe(&client->dev, regmap, client->irq, variant); } static struct i2c_driver pcf2127_i2c_driver = { .driver = { .name = "rtc-pcf2127-i2c", .of_match_table = of_match_ptr(pcf2127_of_match), }, .probe = pcf2127_i2c_probe, .id_table = pcf2127_i2c_id, }; static int pcf2127_i2c_register_driver(void) { return i2c_add_driver(&pcf2127_i2c_driver); } static void pcf2127_i2c_unregister_driver(void) { i2c_del_driver(&pcf2127_i2c_driver); } #else static int pcf2127_i2c_register_driver(void) { return 0; } static void pcf2127_i2c_unregister_driver(void) { } #endif #if IS_ENABLED(CONFIG_SPI_MASTER) static struct spi_driver pcf2127_spi_driver; static const struct spi_device_id pcf2127_spi_id[]; static int pcf2127_spi_probe(struct spi_device *spi) { static struct regmap_config config = { .reg_bits = 8, .val_bits = 8, .read_flag_mask = 0xa0, .write_flag_mask = 0x20, }; struct regmap *regmap; const struct pcf21xx_config *variant; if (spi->dev.of_node) { variant = of_device_get_match_data(&spi->dev); if (!variant) return -ENODEV; } else { enum pcf21xx_type type = spi_get_device_id(spi)->driver_data; if (type >= PCF21XX_LAST_ID) return -ENODEV; variant = &pcf21xx_cfg[type]; } config.max_register = variant->max_register, regmap = devm_regmap_init_spi(spi, &config); if (IS_ERR(regmap)) { dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n", __func__, PTR_ERR(regmap)); return PTR_ERR(regmap); } return pcf2127_probe(&spi->dev, regmap, spi->irq, variant); } static const struct spi_device_id pcf2127_spi_id[] = { { "pcf2127", PCF2127 }, { "pcf2129", PCF2129 }, { "pca2129", PCF2129 }, { "pcf2131", PCF2131 }, { } }; MODULE_DEVICE_TABLE(spi, pcf2127_spi_id); static struct spi_driver pcf2127_spi_driver = { .driver = { .name = "rtc-pcf2127-spi", .of_match_table = of_match_ptr(pcf2127_of_match), }, .probe = pcf2127_spi_probe, .id_table = pcf2127_spi_id, }; static int pcf2127_spi_register_driver(void) { return spi_register_driver(&pcf2127_spi_driver); } static void pcf2127_spi_unregister_driver(void) { spi_unregister_driver(&pcf2127_spi_driver); } #else static int pcf2127_spi_register_driver(void) { return 0; } static void pcf2127_spi_unregister_driver(void) { } #endif static int __init pcf2127_init(void) { int ret; ret = pcf2127_i2c_register_driver(); if (ret) { pr_err("Failed to register pcf2127 i2c driver: %d\n", ret); return ret; } ret = pcf2127_spi_register_driver(); if (ret) { pr_err("Failed to register pcf2127 spi driver: %d\n", ret); pcf2127_i2c_unregister_driver(); } return ret; } module_init(pcf2127_init) static void __exit pcf2127_exit(void) { pcf2127_spi_unregister_driver(); pcf2127_i2c_unregister_driver(); } module_exit(pcf2127_exit) MODULE_AUTHOR("Renaud Cerrato "); MODULE_DESCRIPTION("NXP PCF2127/29/31 RTC driver"); MODULE_LICENSE("GPL v2");