// SPDX-License-Identifier: GPL-2.0 /* * SPI bus driver for the Ingenic SoCs * Copyright (c) 2017-2021 Artur Rojek * Copyright (c) 2017-2021 Paul Cercueil * Copyright (c) 2022 周琰杰 (Zhou Yanjie) */ #include #include #include #include #include #include #include #include #include #include #define REG_SSIDR 0x0 #define REG_SSICR0 0x4 #define REG_SSICR1 0x8 #define REG_SSISR 0xc #define REG_SSIGR 0x18 #define REG_SSICR0_TENDIAN_LSB BIT(19) #define REG_SSICR0_RENDIAN_LSB BIT(17) #define REG_SSICR0_SSIE BIT(15) #define REG_SSICR0_LOOP BIT(10) #define REG_SSICR0_EACLRUN BIT(7) #define REG_SSICR0_FSEL BIT(6) #define REG_SSICR0_TFLUSH BIT(2) #define REG_SSICR0_RFLUSH BIT(1) #define REG_SSICR1_FRMHL_MASK (BIT(31) | BIT(30)) #define REG_SSICR1_FRMHL BIT(30) #define REG_SSICR1_LFST BIT(25) #define REG_SSICR1_UNFIN BIT(23) #define REG_SSICR1_PHA BIT(1) #define REG_SSICR1_POL BIT(0) #define REG_SSISR_END BIT(7) #define REG_SSISR_BUSY BIT(6) #define REG_SSISR_TFF BIT(5) #define REG_SSISR_RFE BIT(4) #define REG_SSISR_RFHF BIT(2) #define REG_SSISR_UNDR BIT(1) #define REG_SSISR_OVER BIT(0) #define SPI_INGENIC_FIFO_SIZE 128u struct jz_soc_info { u32 bits_per_word_mask; struct reg_field flen_field; bool has_trendian; unsigned int max_speed_hz; unsigned int max_native_cs; }; struct ingenic_spi { const struct jz_soc_info *soc_info; struct clk *clk; struct resource *mem_res; struct regmap *map; struct regmap_field *flen_field; }; static int spi_ingenic_wait(struct ingenic_spi *priv, unsigned long mask, bool condition) { unsigned int val; return regmap_read_poll_timeout(priv->map, REG_SSISR, val, !!(val & mask) == condition, 100, 10000); } static void spi_ingenic_set_cs(struct spi_device *spi, bool disable) { struct ingenic_spi *priv = spi_controller_get_devdata(spi->controller); if (disable) { regmap_clear_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN); regmap_clear_bits(priv->map, REG_SSISR, REG_SSISR_UNDR | REG_SSISR_OVER); spi_ingenic_wait(priv, REG_SSISR_END, true); } else { regmap_set_bits(priv->map, REG_SSICR1, REG_SSICR1_UNFIN); } regmap_set_bits(priv->map, REG_SSICR0, REG_SSICR0_RFLUSH | REG_SSICR0_TFLUSH); } static void spi_ingenic_prepare_transfer(struct ingenic_spi *priv, struct spi_device *spi, struct spi_transfer *xfer) { unsigned long clk_hz = clk_get_rate(priv->clk); u32 cdiv, speed_hz = xfer->speed_hz ?: spi->max_speed_hz, bits_per_word = xfer->bits_per_word ?: spi->bits_per_word; cdiv = clk_hz / (speed_hz * 2); cdiv = clamp(cdiv, 1u, 0x100u) - 1; regmap_write(priv->map, REG_SSIGR, cdiv); regmap_field_write(priv->flen_field, bits_per_word - 2); } static void spi_ingenic_finalize_transfer(void *controller) { spi_finalize_current_transfer(controller); } static struct dma_async_tx_descriptor * spi_ingenic_prepare_dma(struct spi_controller *ctlr, struct dma_chan *chan, struct sg_table *sg, enum dma_transfer_direction dir, unsigned int bits) { struct ingenic_spi *priv = spi_controller_get_devdata(ctlr); struct dma_slave_config cfg = { .direction = dir, .src_addr = priv->mem_res->start + REG_SSIDR, .dst_addr = priv->mem_res->start + REG_SSIDR, }; struct dma_async_tx_descriptor *desc; dma_cookie_t cookie; int ret; if (bits > 16) { cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.src_maxburst = cfg.dst_maxburst = 4; } else if (bits > 8) { cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; cfg.src_maxburst = cfg.dst_maxburst = 2; } else { cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; cfg.src_maxburst = cfg.dst_maxburst = 1; } ret = dmaengine_slave_config(chan, &cfg); if (ret) return ERR_PTR(ret); desc = dmaengine_prep_slave_sg(chan, sg->sgl, sg->nents, dir, DMA_PREP_INTERRUPT); if (!desc) return ERR_PTR(-ENOMEM); if (dir == DMA_DEV_TO_MEM) { desc->callback = spi_ingenic_finalize_transfer; desc->callback_param = ctlr; } cookie = dmaengine_submit(desc); ret = dma_submit_error(cookie); if (ret) { dmaengine_desc_free(desc); return ERR_PTR(ret); } return desc; } static int spi_ingenic_dma_tx(struct spi_controller *ctlr, struct spi_transfer *xfer, unsigned int bits) { struct dma_async_tx_descriptor *rx_desc, *tx_desc; rx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_rx, &xfer->rx_sg, DMA_DEV_TO_MEM, bits); if (IS_ERR(rx_desc)) return PTR_ERR(rx_desc); tx_desc = spi_ingenic_prepare_dma(ctlr, ctlr->dma_tx, &xfer->tx_sg, DMA_MEM_TO_DEV, bits); if (IS_ERR(tx_desc)) { dmaengine_terminate_async(ctlr->dma_rx); dmaengine_desc_free(rx_desc); return PTR_ERR(tx_desc); } dma_async_issue_pending(ctlr->dma_rx); dma_async_issue_pending(ctlr->dma_tx); return 1; } #define SPI_INGENIC_TX(x) \ static int spi_ingenic_tx##x(struct ingenic_spi *priv, \ struct spi_transfer *xfer) \ { \ unsigned int count = xfer->len / (x / 8); \ unsigned int prefill = min(count, SPI_INGENIC_FIFO_SIZE); \ const u##x *tx_buf = xfer->tx_buf; \ u##x *rx_buf = xfer->rx_buf; \ unsigned int i, val; \ int err; \ \ /* Fill up the TX fifo */ \ for (i = 0; i < prefill; i++) { \ val = tx_buf ? tx_buf[i] : 0; \ \ regmap_write(priv->map, REG_SSIDR, val); \ } \ \ for (i = 0; i < count; i++) { \ err = spi_ingenic_wait(priv, REG_SSISR_RFE, false); \ if (err) \ return err; \ \ regmap_read(priv->map, REG_SSIDR, &val); \ if (rx_buf) \ rx_buf[i] = val; \ \ if (i < count - prefill) { \ val = tx_buf ? tx_buf[i + prefill] : 0; \ \ regmap_write(priv->map, REG_SSIDR, val); \ } \ } \ \ return 0; \ } SPI_INGENIC_TX(8) SPI_INGENIC_TX(16) SPI_INGENIC_TX(32) #undef SPI_INGENIC_TX static int spi_ingenic_transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct ingenic_spi *priv = spi_controller_get_devdata(ctlr); unsigned int bits = xfer->bits_per_word ?: spi->bits_per_word; bool can_dma = ctlr->can_dma && ctlr->can_dma(ctlr, spi, xfer); spi_ingenic_prepare_transfer(priv, spi, xfer); if (ctlr->cur_msg_mapped && can_dma) return spi_ingenic_dma_tx(ctlr, xfer, bits); if (bits > 16) return spi_ingenic_tx32(priv, xfer); if (bits > 8) return spi_ingenic_tx16(priv, xfer); return spi_ingenic_tx8(priv, xfer); } static int spi_ingenic_prepare_message(struct spi_controller *ctlr, struct spi_message *message) { struct ingenic_spi *priv = spi_controller_get_devdata(ctlr); struct spi_device *spi = message->spi; unsigned int cs = REG_SSICR1_FRMHL << spi_get_chipselect(spi, 0); unsigned int ssicr0_mask = REG_SSICR0_LOOP | REG_SSICR0_FSEL; unsigned int ssicr1_mask = REG_SSICR1_PHA | REG_SSICR1_POL | cs; unsigned int ssicr0 = 0, ssicr1 = 0; if (priv->soc_info->has_trendian) { ssicr0_mask |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB; if (spi->mode & SPI_LSB_FIRST) ssicr0 |= REG_SSICR0_RENDIAN_LSB | REG_SSICR0_TENDIAN_LSB; } else { ssicr1_mask |= REG_SSICR1_LFST; if (spi->mode & SPI_LSB_FIRST) ssicr1 |= REG_SSICR1_LFST; } if (spi->mode & SPI_LOOP) ssicr0 |= REG_SSICR0_LOOP; if (spi_get_chipselect(spi, 0)) ssicr0 |= REG_SSICR0_FSEL; if (spi->mode & SPI_CPHA) ssicr1 |= REG_SSICR1_PHA; if (spi->mode & SPI_CPOL) ssicr1 |= REG_SSICR1_POL; if (spi->mode & SPI_CS_HIGH) ssicr1 |= cs; regmap_update_bits(priv->map, REG_SSICR0, ssicr0_mask, ssicr0); regmap_update_bits(priv->map, REG_SSICR1, ssicr1_mask, ssicr1); return 0; } static int spi_ingenic_prepare_hardware(struct spi_controller *ctlr) { struct ingenic_spi *priv = spi_controller_get_devdata(ctlr); int ret; ret = clk_prepare_enable(priv->clk); if (ret) return ret; regmap_write(priv->map, REG_SSICR0, REG_SSICR0_EACLRUN); regmap_write(priv->map, REG_SSICR1, 0); regmap_write(priv->map, REG_SSISR, 0); regmap_set_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE); return 0; } static int spi_ingenic_unprepare_hardware(struct spi_controller *ctlr) { struct ingenic_spi *priv = spi_controller_get_devdata(ctlr); regmap_clear_bits(priv->map, REG_SSICR0, REG_SSICR0_SSIE); clk_disable_unprepare(priv->clk); return 0; } static bool spi_ingenic_can_dma(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct dma_slave_caps caps; int ret; ret = dma_get_slave_caps(ctlr->dma_tx, &caps); if (ret) { dev_err(&spi->dev, "Unable to get slave caps: %d\n", ret); return false; } return !caps.max_sg_burst || xfer->len <= caps.max_sg_burst * SPI_INGENIC_FIFO_SIZE; } static int spi_ingenic_request_dma(struct spi_controller *ctlr, struct device *dev) { struct dma_chan *chan; chan = dma_request_chan(dev, "tx"); if (IS_ERR(chan)) return PTR_ERR(chan); ctlr->dma_tx = chan; chan = dma_request_chan(dev, "rx"); if (IS_ERR(chan)) return PTR_ERR(chan); ctlr->dma_rx = chan; ctlr->can_dma = spi_ingenic_can_dma; return 0; } static void spi_ingenic_release_dma(void *data) { struct spi_controller *ctlr = data; if (ctlr->dma_tx) dma_release_channel(ctlr->dma_tx); if (ctlr->dma_rx) dma_release_channel(ctlr->dma_rx); } static const struct regmap_config spi_ingenic_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = REG_SSIGR, }; static int spi_ingenic_probe(struct platform_device *pdev) { const struct jz_soc_info *pdata; struct device *dev = &pdev->dev; struct spi_controller *ctlr; struct ingenic_spi *priv; void __iomem *base; int num_cs, ret; pdata = of_device_get_match_data(dev); if (!pdata) { dev_err(dev, "Missing platform data.\n"); return -EINVAL; } ctlr = devm_spi_alloc_host(dev, sizeof(*priv)); if (!ctlr) { dev_err(dev, "Unable to allocate SPI controller.\n"); return -ENOMEM; } priv = spi_controller_get_devdata(ctlr); priv->soc_info = pdata; priv->clk = devm_clk_get(dev, NULL); if (IS_ERR(priv->clk)) { return dev_err_probe(dev, PTR_ERR(priv->clk), "Unable to get clock.\n"); } base = devm_platform_get_and_ioremap_resource(pdev, 0, &priv->mem_res); if (IS_ERR(base)) return PTR_ERR(base); priv->map = devm_regmap_init_mmio(dev, base, &spi_ingenic_regmap_config); if (IS_ERR(priv->map)) return PTR_ERR(priv->map); priv->flen_field = devm_regmap_field_alloc(dev, priv->map, pdata->flen_field); if (IS_ERR(priv->flen_field)) return PTR_ERR(priv->flen_field); if (device_property_read_u32(dev, "num-cs", &num_cs)) num_cs = pdata->max_native_cs; platform_set_drvdata(pdev, ctlr); ctlr->prepare_transfer_hardware = spi_ingenic_prepare_hardware; ctlr->unprepare_transfer_hardware = spi_ingenic_unprepare_hardware; ctlr->prepare_message = spi_ingenic_prepare_message; ctlr->set_cs = spi_ingenic_set_cs; ctlr->transfer_one = spi_ingenic_transfer_one; ctlr->mode_bits = SPI_MODE_3 | SPI_LSB_FIRST | SPI_LOOP | SPI_CS_HIGH; ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; ctlr->max_dma_len = SPI_INGENIC_FIFO_SIZE; ctlr->bits_per_word_mask = pdata->bits_per_word_mask; ctlr->min_speed_hz = 7200; ctlr->max_speed_hz = pdata->max_speed_hz; ctlr->use_gpio_descriptors = true; ctlr->max_native_cs = pdata->max_native_cs; ctlr->num_chipselect = num_cs; ctlr->dev.of_node = pdev->dev.of_node; if (spi_ingenic_request_dma(ctlr, dev)) dev_warn(dev, "DMA not available.\n"); ret = devm_add_action_or_reset(dev, spi_ingenic_release_dma, ctlr); if (ret) { dev_err(dev, "Unable to add action.\n"); return ret; } ret = devm_spi_register_controller(dev, ctlr); if (ret) dev_err(dev, "Unable to register SPI controller.\n"); return ret; } static const struct jz_soc_info jz4750_soc_info = { .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 17), .flen_field = REG_FIELD(REG_SSICR1, 4, 7), .has_trendian = false, .max_speed_hz = 54000000, .max_native_cs = 2, }; static const struct jz_soc_info jz4780_soc_info = { .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32), .flen_field = REG_FIELD(REG_SSICR1, 3, 7), .has_trendian = true, .max_speed_hz = 54000000, .max_native_cs = 2, }; static const struct jz_soc_info x1000_soc_info = { .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32), .flen_field = REG_FIELD(REG_SSICR1, 3, 7), .has_trendian = true, .max_speed_hz = 50000000, .max_native_cs = 2, }; static const struct jz_soc_info x2000_soc_info = { .bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 32), .flen_field = REG_FIELD(REG_SSICR1, 3, 7), .has_trendian = true, .max_speed_hz = 50000000, .max_native_cs = 1, }; static const struct of_device_id spi_ingenic_of_match[] = { { .compatible = "ingenic,jz4750-spi", .data = &jz4750_soc_info }, { .compatible = "ingenic,jz4775-spi", .data = &jz4780_soc_info }, { .compatible = "ingenic,jz4780-spi", .data = &jz4780_soc_info }, { .compatible = "ingenic,x1000-spi", .data = &x1000_soc_info }, { .compatible = "ingenic,x2000-spi", .data = &x2000_soc_info }, {} }; MODULE_DEVICE_TABLE(of, spi_ingenic_of_match); static struct platform_driver spi_ingenic_driver = { .driver = { .name = "spi-ingenic", .of_match_table = spi_ingenic_of_match, }, .probe = spi_ingenic_probe, }; module_platform_driver(spi_ingenic_driver); MODULE_DESCRIPTION("SPI bus driver for the Ingenic SoCs"); MODULE_AUTHOR("Artur Rojek "); MODULE_AUTHOR("Paul Cercueil "); MODULE_AUTHOR("周琰杰 (Zhou Yanjie) "); MODULE_LICENSE("GPL");