// SPDX-License-Identifier: GPL-2.0 // PCI1xxxx SPI driver // Copyright (C) 2022 Microchip Technology Inc. // Authors: Tharun Kumar P // Kumaravel Thiagarajan #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "spi-pci1xxxx" #define SYS_FREQ_DEFAULT (62500000) #define PCI1XXXX_SPI_MAX_CLOCK_HZ (30000000) #define PCI1XXXX_SPI_CLK_20MHZ (20000000) #define PCI1XXXX_SPI_CLK_15MHZ (15000000) #define PCI1XXXX_SPI_CLK_12MHZ (12000000) #define PCI1XXXX_SPI_CLK_10MHZ (10000000) #define PCI1XXXX_SPI_MIN_CLOCK_HZ (2000000) #define PCI1XXXX_SPI_BUFFER_SIZE (320) #define SPI_MST_CTL_DEVSEL_MASK (GENMASK(27, 25)) #define SPI_MST_CTL_CMD_LEN_MASK (GENMASK(16, 8)) #define SPI_MST_CTL_SPEED_MASK (GENMASK(7, 5)) #define SPI_MSI_VECTOR_SEL_MASK (GENMASK(4, 4)) #define SPI_MST_CTL_FORCE_CE (BIT(4)) #define SPI_MST_CTL_MODE_SEL (BIT(2)) #define SPI_MST_CTL_GO (BIT(0)) #define SPI_PERI_ADDR_BASE (0x160000) #define SPI_SYSTEM_ADDR_BASE (0x2000) #define SPI_MST1_ADDR_BASE (0x800) #define DEV_REV_REG (SPI_SYSTEM_ADDR_BASE + 0x00) #define SPI_SYSLOCK_REG (SPI_SYSTEM_ADDR_BASE + 0xA0) #define SPI_CONFIG_PERI_ENABLE_REG (SPI_SYSTEM_ADDR_BASE + 0x108) #define SPI_PERI_ENBLE_PF_MASK (GENMASK(17, 16)) #define DEV_REV_MASK (GENMASK(7, 0)) #define SPI_SYSLOCK BIT(4) #define SPI0 (0) #define SPI1 (1) /* DMA Related Registers */ #define SPI_DMA_ADDR_BASE (0x1000) #define SPI_DMA_GLOBAL_WR_ENGINE_EN (SPI_DMA_ADDR_BASE + 0x0C) #define SPI_DMA_WR_DOORBELL_REG (SPI_DMA_ADDR_BASE + 0x10) #define SPI_DMA_GLOBAL_RD_ENGINE_EN (SPI_DMA_ADDR_BASE + 0x2C) #define SPI_DMA_RD_DOORBELL_REG (SPI_DMA_ADDR_BASE + 0x30) #define SPI_DMA_INTR_WR_STS (SPI_DMA_ADDR_BASE + 0x4C) #define SPI_DMA_WR_INT_MASK (SPI_DMA_ADDR_BASE + 0x54) #define SPI_DMA_INTR_WR_CLR (SPI_DMA_ADDR_BASE + 0x58) #define SPI_DMA_ERR_WR_STS (SPI_DMA_ADDR_BASE + 0x5C) #define SPI_DMA_INTR_IMWR_WDONE_LOW (SPI_DMA_ADDR_BASE + 0x60) #define SPI_DMA_INTR_IMWR_WDONE_HIGH (SPI_DMA_ADDR_BASE + 0x64) #define SPI_DMA_INTR_IMWR_WABORT_LOW (SPI_DMA_ADDR_BASE + 0x68) #define SPI_DMA_INTR_IMWR_WABORT_HIGH (SPI_DMA_ADDR_BASE + 0x6C) #define SPI_DMA_INTR_WR_IMWR_DATA (SPI_DMA_ADDR_BASE + 0x70) #define SPI_DMA_INTR_RD_STS (SPI_DMA_ADDR_BASE + 0xA0) #define SPI_DMA_RD_INT_MASK (SPI_DMA_ADDR_BASE + 0xA8) #define SPI_DMA_INTR_RD_CLR (SPI_DMA_ADDR_BASE + 0xAC) #define SPI_DMA_ERR_RD_STS (SPI_DMA_ADDR_BASE + 0xB8) #define SPI_DMA_INTR_IMWR_RDONE_LOW (SPI_DMA_ADDR_BASE + 0xCC) #define SPI_DMA_INTR_IMWR_RDONE_HIGH (SPI_DMA_ADDR_BASE + 0xD0) #define SPI_DMA_INTR_IMWR_RABORT_LOW (SPI_DMA_ADDR_BASE + 0xD4) #define SPI_DMA_INTR_IMWR_RABORT_HIGH (SPI_DMA_ADDR_BASE + 0xD8) #define SPI_DMA_INTR_RD_IMWR_DATA (SPI_DMA_ADDR_BASE + 0xDC) #define SPI_DMA_CH0_WR_BASE (SPI_DMA_ADDR_BASE + 0x200) #define SPI_DMA_CH0_RD_BASE (SPI_DMA_ADDR_BASE + 0x300) #define SPI_DMA_CH1_WR_BASE (SPI_DMA_ADDR_BASE + 0x400) #define SPI_DMA_CH1_RD_BASE (SPI_DMA_ADDR_BASE + 0x500) #define SPI_DMA_CH_CTL1_OFFSET (0x00) #define SPI_DMA_CH_XFER_LEN_OFFSET (0x08) #define SPI_DMA_CH_SAR_LO_OFFSET (0x0C) #define SPI_DMA_CH_SAR_HI_OFFSET (0x10) #define SPI_DMA_CH_DAR_LO_OFFSET (0x14) #define SPI_DMA_CH_DAR_HI_OFFSET (0x18) #define SPI_DMA_CH0_DONE_INT BIT(0) #define SPI_DMA_CH1_DONE_INT BIT(1) #define SPI_DMA_CH0_ABORT_INT BIT(16) #define SPI_DMA_CH1_ABORT_INT BIT(17) #define SPI_DMA_DONE_INT_MASK (SPI_DMA_CH0_DONE_INT | SPI_DMA_CH1_DONE_INT) #define SPI_DMA_ABORT_INT_MASK (SPI_DMA_CH0_ABORT_INT | SPI_DMA_CH1_ABORT_INT) #define DMA_CH_CONTROL_LIE BIT(3) #define DMA_CH_CONTROL_RIE BIT(4) #define DMA_INTR_EN (DMA_CH_CONTROL_RIE | DMA_CH_CONTROL_LIE) /* x refers to SPI Host Controller HW instance id in the below macros - 0 or 1 */ #define SPI_MST_CMD_BUF_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x00) #define SPI_MST_RSP_BUF_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x200) #define SPI_MST_CTL_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x400) #define SPI_MST_EVENT_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x420) #define SPI_MST_EVENT_MASK_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x424) #define SPI_MST_PAD_CTL_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x460) #define SPIALERT_MST_DB_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x464) #define SPIALERT_MST_VAL_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x468) #define SPI_PCI_CTRL_REG_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x480) #define PCI1XXXX_IRQ_FLAGS (IRQF_NO_SUSPEND | IRQF_TRIGGER_NONE) #define SPI_MAX_DATA_LEN 320 #define PCI1XXXX_SPI_TIMEOUT (msecs_to_jiffies(100)) #define SYSLOCK_RETRY_CNT (1000) #define SPI_DMA_ENGINE_EN (0x1) #define SPI_DMA_ENGINE_DIS (0x0) #define SPI_INTR BIT(8) #define SPI_FORCE_CE BIT(4) #define SPI_CHIP_SEL_COUNT 7 #define VENDOR_ID_MCHP 0x1055 #define SPI_SUSPEND_CONFIG 0x101 #define SPI_RESUME_CONFIG 0x203 struct pci1xxxx_spi_internal { u8 hw_inst; u8 clkdiv; int irq; int mode; bool spi_xfer_in_progress; void *rx_buf; bool dma_aborted_rd; u32 bytes_recvd; u32 tx_sgl_len; u32 rx_sgl_len; struct scatterlist *tx_sgl, *rx_sgl; bool dma_aborted_wr; struct completion spi_xfer_done; struct spi_controller *spi_host; struct pci1xxxx_spi *parent; struct spi_transfer *xfer; struct { unsigned int dev_sel : 3; unsigned int msi_vector_sel : 1; } prev_val; }; struct pci1xxxx_spi { struct pci_dev *dev; u8 total_hw_instances; u8 dev_rev; void __iomem *reg_base; void __iomem *dma_offset_bar; /* lock to safely access the DMA registers in isr */ spinlock_t dma_reg_lock; bool can_dma; struct pci1xxxx_spi_internal *spi_int[] __counted_by(total_hw_instances); }; static const struct pci_device_id pci1xxxx_spi_pci_id_table[] = { { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa004, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa004, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa004, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa004, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa014, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa014, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa014, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa014, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa024, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa024, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa024, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa024, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa034, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa034, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa034, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa034, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa044, PCI_ANY_ID, 0x0001), 0, 0, 0x02}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa044, PCI_ANY_ID, 0x0002), 0, 0, 0x01}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa044, PCI_ANY_ID, 0x0003), 0, 0, 0x11}, { PCI_DEVICE_SUB(VENDOR_ID_MCHP, 0xa044, PCI_ANY_ID, PCI_ANY_ID), 0, 0, 0x01}, { 0, } }; MODULE_DEVICE_TABLE(pci, pci1xxxx_spi_pci_id_table); static int pci1xxxx_set_sys_lock(struct pci1xxxx_spi *par) { writel(SPI_SYSLOCK, par->reg_base + SPI_SYSLOCK_REG); return readl(par->reg_base + SPI_SYSLOCK_REG); } static int pci1xxxx_acquire_sys_lock(struct pci1xxxx_spi *par) { u32 regval; return readx_poll_timeout(pci1xxxx_set_sys_lock, par, regval, (regval & SPI_SYSLOCK), 100, SYSLOCK_RETRY_CNT * 100); } static void pci1xxxx_release_sys_lock(struct pci1xxxx_spi *par) { writel(0x0, par->reg_base + SPI_SYSLOCK_REG); } static int pci1xxxx_check_spi_can_dma(struct pci1xxxx_spi *spi_bus, int irq) { struct pci_dev *pdev = spi_bus->dev; u32 pf_num; u32 regval; int ret; /* * DEV REV Registers is a system register, HW Syslock bit * should be acquired before accessing the register */ ret = pci1xxxx_acquire_sys_lock(spi_bus); if (ret) { dev_err(&pdev->dev, "Error failed to acquire syslock\n"); return ret; } regval = readl(spi_bus->reg_base + DEV_REV_REG); spi_bus->dev_rev = regval & DEV_REV_MASK; if (spi_bus->dev_rev >= 0xC0) { regval = readl(spi_bus->reg_base + SPI_CONFIG_PERI_ENABLE_REG); pf_num = regval & SPI_PERI_ENBLE_PF_MASK; } pci1xxxx_release_sys_lock(spi_bus); /* * DMA is supported only from C0 and SPI can use DMA only if * it is mapped to PF0 */ if (spi_bus->dev_rev < 0xC0 || pf_num) return -EOPNOTSUPP; /* * DMA Supported only with MSI Interrupts * One of the SPI instance's MSI vector address and data * is used for DMA Interrupt */ if (!irq_get_msi_desc(irq)) { dev_warn(&pdev->dev, "Error MSI Interrupt not supported, will operate in PIO mode\n"); return -EOPNOTSUPP; } spi_bus->dma_offset_bar = pcim_iomap(pdev, 2, pci_resource_len(pdev, 2)); if (!spi_bus->dma_offset_bar) { dev_warn(&pdev->dev, "Error failed to map dma bar, will operate in PIO mode\n"); return -EOPNOTSUPP; } if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { dev_warn(&pdev->dev, "Error failed to set DMA mask, will operate in PIO mode\n"); pcim_iounmap(pdev, spi_bus->dma_offset_bar); spi_bus->dma_offset_bar = NULL; return -EOPNOTSUPP; } return 0; } static int pci1xxxx_spi_dma_init(struct pci1xxxx_spi *spi_bus, int irq) { struct msi_msg msi; int ret; ret = pci1xxxx_check_spi_can_dma(spi_bus, irq); if (ret) return ret; spin_lock_init(&spi_bus->dma_reg_lock); get_cached_msi_msg(irq, &msi); writel(SPI_DMA_ENGINE_EN, spi_bus->dma_offset_bar + SPI_DMA_GLOBAL_WR_ENGINE_EN); writel(SPI_DMA_ENGINE_EN, spi_bus->dma_offset_bar + SPI_DMA_GLOBAL_RD_ENGINE_EN); writel(msi.address_hi, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_WDONE_HIGH); writel(msi.address_hi, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_WABORT_HIGH); writel(msi.address_hi, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_RDONE_HIGH); writel(msi.address_hi, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_RABORT_HIGH); writel(msi.address_lo, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_WDONE_LOW); writel(msi.address_lo, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_WABORT_LOW); writel(msi.address_lo, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_RDONE_LOW); writel(msi.address_lo, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_RABORT_LOW); writel(msi.data, spi_bus->dma_offset_bar + SPI_DMA_INTR_WR_IMWR_DATA); writel(msi.data, spi_bus->dma_offset_bar + SPI_DMA_INTR_RD_IMWR_DATA); dma_set_max_seg_size(&spi_bus->dev->dev, PCI1XXXX_SPI_BUFFER_SIZE); spi_bus->can_dma = true; return 0; } static void pci1xxxx_spi_set_cs(struct spi_device *spi, bool enable) { struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(spi->controller); struct pci1xxxx_spi *par = p->parent; u32 regval; /* Set the DEV_SEL bits of the SPI_MST_CTL_REG */ regval = readl(par->reg_base + SPI_MST_CTL_REG_OFFSET(p->hw_inst)); if (!enable) { regval |= SPI_FORCE_CE; regval &= ~SPI_MST_CTL_DEVSEL_MASK; regval |= (spi_get_chipselect(spi, 0) << 25); } else { regval &= ~SPI_FORCE_CE; } writel(regval, par->reg_base + SPI_MST_CTL_REG_OFFSET(p->hw_inst)); } static u8 pci1xxxx_get_clock_div(u32 hz) { u8 val = 0; if (hz >= PCI1XXXX_SPI_MAX_CLOCK_HZ) val = 2; else if ((hz < PCI1XXXX_SPI_MAX_CLOCK_HZ) && (hz >= PCI1XXXX_SPI_CLK_20MHZ)) val = 3; else if ((hz < PCI1XXXX_SPI_CLK_20MHZ) && (hz >= PCI1XXXX_SPI_CLK_15MHZ)) val = 4; else if ((hz < PCI1XXXX_SPI_CLK_15MHZ) && (hz >= PCI1XXXX_SPI_CLK_12MHZ)) val = 5; else if ((hz < PCI1XXXX_SPI_CLK_12MHZ) && (hz >= PCI1XXXX_SPI_CLK_10MHZ)) val = 6; else if ((hz < PCI1XXXX_SPI_CLK_10MHZ) && (hz >= PCI1XXXX_SPI_MIN_CLOCK_HZ)) val = 7; else val = 2; return val; } static void pci1xxxx_spi_setup_dma_to_io(struct pci1xxxx_spi_internal *p, dma_addr_t dma_addr, u32 len) { void __iomem *base; if (!p->hw_inst) base = p->parent->dma_offset_bar + SPI_DMA_CH0_RD_BASE; else base = p->parent->dma_offset_bar + SPI_DMA_CH1_RD_BASE; writel(DMA_INTR_EN, base + SPI_DMA_CH_CTL1_OFFSET); writel(len, base + SPI_DMA_CH_XFER_LEN_OFFSET); writel(lower_32_bits(dma_addr), base + SPI_DMA_CH_SAR_LO_OFFSET); writel(upper_32_bits(dma_addr), base + SPI_DMA_CH_SAR_HI_OFFSET); /* Updated SPI Command Registers */ writel(lower_32_bits(SPI_PERI_ADDR_BASE + SPI_MST_CMD_BUF_OFFSET(p->hw_inst)), base + SPI_DMA_CH_DAR_LO_OFFSET); writel(upper_32_bits(SPI_PERI_ADDR_BASE + SPI_MST_CMD_BUF_OFFSET(p->hw_inst)), base + SPI_DMA_CH_DAR_HI_OFFSET); } static void pci1xxxx_spi_setup_dma_from_io(struct pci1xxxx_spi_internal *p, dma_addr_t dma_addr, u32 len) { void *base; if (!p->hw_inst) base = p->parent->dma_offset_bar + SPI_DMA_CH0_WR_BASE; else base = p->parent->dma_offset_bar + SPI_DMA_CH1_WR_BASE; writel(DMA_INTR_EN, base + SPI_DMA_CH_CTL1_OFFSET); writel(len, base + SPI_DMA_CH_XFER_LEN_OFFSET); writel(lower_32_bits(dma_addr), base + SPI_DMA_CH_DAR_LO_OFFSET); writel(upper_32_bits(dma_addr), base + SPI_DMA_CH_DAR_HI_OFFSET); writel(lower_32_bits(SPI_PERI_ADDR_BASE + SPI_MST_RSP_BUF_OFFSET(p->hw_inst)), base + SPI_DMA_CH_SAR_LO_OFFSET); writel(upper_32_bits(SPI_PERI_ADDR_BASE + SPI_MST_RSP_BUF_OFFSET(p->hw_inst)), base + SPI_DMA_CH_SAR_HI_OFFSET); } static void pci1xxxx_spi_setup(struct pci1xxxx_spi *par, u8 hw_inst, u32 mode, u8 clkdiv, u32 len) { u32 regval; regval = readl(par->reg_base + SPI_MST_CTL_REG_OFFSET(hw_inst)); regval &= ~(SPI_MST_CTL_MODE_SEL | SPI_MST_CTL_CMD_LEN_MASK | SPI_MST_CTL_SPEED_MASK); if (mode == SPI_MODE_3) regval |= SPI_MST_CTL_MODE_SEL; regval |= FIELD_PREP(SPI_MST_CTL_CMD_LEN_MASK, len); regval |= FIELD_PREP(SPI_MST_CTL_SPEED_MASK, clkdiv); writel(regval, par->reg_base + SPI_MST_CTL_REG_OFFSET(hw_inst)); } static void pci1xxxx_start_spi_xfer(struct pci1xxxx_spi_internal *p, u8 hw_inst) { u32 regval; regval = readl(p->parent->reg_base + SPI_MST_CTL_REG_OFFSET(hw_inst)); regval |= SPI_MST_CTL_GO; writel(regval, p->parent->reg_base + SPI_MST_CTL_REG_OFFSET(hw_inst)); } static int pci1xxxx_spi_transfer_with_io(struct spi_controller *spi_ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(spi_ctlr); struct pci1xxxx_spi *par = p->parent; int len, loop_iter, transfer_len; unsigned long bytes_transfered; unsigned long bytes_recvd; unsigned long loop_count; u8 *rx_buf, result; const u8 *tx_buf; u32 regval; u8 clkdiv; p->spi_xfer_in_progress = true; p->bytes_recvd = 0; clkdiv = pci1xxxx_get_clock_div(xfer->speed_hz); tx_buf = xfer->tx_buf; rx_buf = xfer->rx_buf; transfer_len = xfer->len; regval = readl(par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); writel(regval, par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); if (tx_buf) { bytes_transfered = 0; bytes_recvd = 0; loop_count = transfer_len / SPI_MAX_DATA_LEN; if (transfer_len % SPI_MAX_DATA_LEN != 0) loop_count += 1; for (loop_iter = 0; loop_iter < loop_count; loop_iter++) { len = SPI_MAX_DATA_LEN; if ((transfer_len % SPI_MAX_DATA_LEN != 0) && (loop_iter == loop_count - 1)) len = transfer_len % SPI_MAX_DATA_LEN; reinit_completion(&p->spi_xfer_done); memcpy_toio(par->reg_base + SPI_MST_CMD_BUF_OFFSET(p->hw_inst), &tx_buf[bytes_transfered], len); bytes_transfered += len; pci1xxxx_spi_setup(par, p->hw_inst, spi->mode, clkdiv, len); pci1xxxx_start_spi_xfer(p, p->hw_inst); /* Wait for DMA_TERM interrupt */ result = wait_for_completion_timeout(&p->spi_xfer_done, PCI1XXXX_SPI_TIMEOUT); if (!result) return -ETIMEDOUT; if (rx_buf) { memcpy_fromio(&rx_buf[bytes_recvd], par->reg_base + SPI_MST_RSP_BUF_OFFSET(p->hw_inst), len); bytes_recvd += len; } } } p->spi_xfer_in_progress = false; return 0; } static int pci1xxxx_spi_transfer_with_dma(struct spi_controller *spi_ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(spi_ctlr); struct pci1xxxx_spi *par = p->parent; dma_addr_t rx_dma_addr = 0; dma_addr_t tx_dma_addr = 0; int ret = 0; u32 regval; p->spi_xfer_in_progress = true; p->tx_sgl = xfer->tx_sg.sgl; p->rx_sgl = xfer->rx_sg.sgl; p->rx_buf = xfer->rx_buf; regval = readl(par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); writel(regval, par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); if (!xfer->tx_buf || !p->tx_sgl) { ret = -EINVAL; goto error; } p->xfer = xfer; p->mode = spi->mode; p->clkdiv = pci1xxxx_get_clock_div(xfer->speed_hz); p->bytes_recvd = 0; p->rx_buf = xfer->rx_buf; regval = readl(par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); writel(regval, par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); tx_dma_addr = sg_dma_address(p->tx_sgl); rx_dma_addr = sg_dma_address(p->rx_sgl); p->tx_sgl_len = sg_dma_len(p->tx_sgl); p->rx_sgl_len = sg_dma_len(p->rx_sgl); pci1xxxx_spi_setup(par, p->hw_inst, p->mode, p->clkdiv, p->tx_sgl_len); pci1xxxx_spi_setup_dma_to_io(p, (tx_dma_addr), p->tx_sgl_len); if (rx_dma_addr) pci1xxxx_spi_setup_dma_from_io(p, rx_dma_addr, p->rx_sgl_len); writel(p->hw_inst, par->dma_offset_bar + SPI_DMA_RD_DOORBELL_REG); reinit_completion(&p->spi_xfer_done); /* Wait for DMA_TERM interrupt */ ret = wait_for_completion_timeout(&p->spi_xfer_done, PCI1XXXX_SPI_TIMEOUT); if (!ret) { ret = -ETIMEDOUT; if (p->dma_aborted_rd) { writel(SPI_DMA_ENGINE_DIS, par->dma_offset_bar + SPI_DMA_GLOBAL_RD_ENGINE_EN); /* * DMA ENGINE reset takes time if any TLP * completeion in progress, should wait * till DMA Engine reset is completed. */ ret = readl_poll_timeout(par->dma_offset_bar + SPI_DMA_GLOBAL_RD_ENGINE_EN, regval, (regval == 0x0), 0, USEC_PER_MSEC); if (ret) { ret = -ECANCELED; goto error; } writel(SPI_DMA_ENGINE_EN, par->dma_offset_bar + SPI_DMA_GLOBAL_RD_ENGINE_EN); p->dma_aborted_rd = false; ret = -ECANCELED; } if (p->dma_aborted_wr) { writel(SPI_DMA_ENGINE_DIS, par->dma_offset_bar + SPI_DMA_GLOBAL_WR_ENGINE_EN); /* * DMA ENGINE reset takes time if any TLP * completeion in progress, should wait * till DMA Engine reset is completed. */ ret = readl_poll_timeout(par->dma_offset_bar + SPI_DMA_GLOBAL_WR_ENGINE_EN, regval, (regval == 0x0), 0, USEC_PER_MSEC); if (ret) { ret = -ECANCELED; goto error; } writel(SPI_DMA_ENGINE_EN, par->dma_offset_bar + SPI_DMA_GLOBAL_WR_ENGINE_EN); p->dma_aborted_wr = false; ret = -ECANCELED; } goto error; } ret = 0; error: p->spi_xfer_in_progress = false; return ret; } static int pci1xxxx_spi_transfer_one(struct spi_controller *spi_ctlr, struct spi_device *spi, struct spi_transfer *xfer) { if (spi_ctlr->can_dma(spi_ctlr, spi, xfer) && spi_ctlr->cur_msg_mapped) return pci1xxxx_spi_transfer_with_dma(spi_ctlr, spi, xfer); else return pci1xxxx_spi_transfer_with_io(spi_ctlr, spi, xfer); } static irqreturn_t pci1xxxx_spi_isr_io(int irq, void *dev) { struct pci1xxxx_spi_internal *p = dev; irqreturn_t spi_int_fired = IRQ_NONE; u32 regval; /* Clear the SPI GO_BIT Interrupt */ regval = readl(p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); if (regval & SPI_INTR) { /* Clear xfer_done */ if (p->parent->can_dma && p->rx_buf) writel(p->hw_inst, p->parent->dma_offset_bar + SPI_DMA_WR_DOORBELL_REG); else complete(&p->parent->spi_int[p->hw_inst]->spi_xfer_done); spi_int_fired = IRQ_HANDLED; } writel(regval, p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); return spi_int_fired; } static void pci1xxxx_spi_setup_next_dma_transfer(struct pci1xxxx_spi_internal *p) { dma_addr_t tx_dma_addr = 0; dma_addr_t rx_dma_addr = 0; u32 prev_len; p->tx_sgl = sg_next(p->tx_sgl); if (p->rx_sgl) p->rx_sgl = sg_next(p->rx_sgl); if (!p->tx_sgl) { /* Clear xfer_done */ complete(&p->spi_xfer_done); } else { tx_dma_addr = sg_dma_address(p->tx_sgl); prev_len = p->tx_sgl_len; p->tx_sgl_len = sg_dma_len(p->tx_sgl); if (prev_len != p->tx_sgl_len) pci1xxxx_spi_setup(p->parent, p->hw_inst, p->mode, p->clkdiv, p->tx_sgl_len); pci1xxxx_spi_setup_dma_to_io(p, tx_dma_addr, p->tx_sgl_len); if (p->rx_sgl) { rx_dma_addr = sg_dma_address(p->rx_sgl); p->rx_sgl_len = sg_dma_len(p->rx_sgl); pci1xxxx_spi_setup_dma_from_io(p, rx_dma_addr, p->rx_sgl_len); } writel(p->hw_inst, p->parent->dma_offset_bar + SPI_DMA_RD_DOORBELL_REG); } } static irqreturn_t pci1xxxx_spi_isr_dma(int irq, void *dev) { struct pci1xxxx_spi_internal *p = dev; irqreturn_t spi_int_fired = IRQ_NONE; unsigned long flags; u32 regval; spin_lock_irqsave(&p->parent->dma_reg_lock, flags); /* Clear the DMA RD INT and start spi xfer*/ regval = readl(p->parent->dma_offset_bar + SPI_DMA_INTR_RD_STS); if (regval & SPI_DMA_DONE_INT_MASK) { if (regval & SPI_DMA_CH0_DONE_INT) pci1xxxx_start_spi_xfer(p, SPI0); if (regval & SPI_DMA_CH1_DONE_INT) pci1xxxx_start_spi_xfer(p, SPI1); spi_int_fired = IRQ_HANDLED; } if (regval & SPI_DMA_ABORT_INT_MASK) { p->dma_aborted_rd = true; spi_int_fired = IRQ_HANDLED; } writel(regval, p->parent->dma_offset_bar + SPI_DMA_INTR_RD_CLR); /* Clear the DMA WR INT */ regval = readl(p->parent->dma_offset_bar + SPI_DMA_INTR_WR_STS); if (regval & SPI_DMA_DONE_INT_MASK) { if (regval & SPI_DMA_CH0_DONE_INT) pci1xxxx_spi_setup_next_dma_transfer(p->parent->spi_int[SPI0]); if (regval & SPI_DMA_CH1_DONE_INT) pci1xxxx_spi_setup_next_dma_transfer(p->parent->spi_int[SPI1]); spi_int_fired = IRQ_HANDLED; } if (regval & SPI_DMA_ABORT_INT_MASK) { p->dma_aborted_wr = true; spi_int_fired = IRQ_HANDLED; } writel(regval, p->parent->dma_offset_bar + SPI_DMA_INTR_WR_CLR); spin_unlock_irqrestore(&p->parent->dma_reg_lock, flags); /* Clear the SPI GO_BIT Interrupt */ regval = readl(p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); if (regval & SPI_INTR) { writel(p->hw_inst, p->parent->dma_offset_bar + SPI_DMA_WR_DOORBELL_REG); spi_int_fired = IRQ_HANDLED; } writel(regval, p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst)); return spi_int_fired; } static irqreturn_t pci1xxxx_spi_isr(int irq, void *dev) { struct pci1xxxx_spi_internal *p = dev; if (p->spi_host->can_dma(p->spi_host, NULL, p->xfer)) return pci1xxxx_spi_isr_dma(irq, dev); else return pci1xxxx_spi_isr_io(irq, dev); } static bool pci1xxxx_spi_can_dma(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *xfer) { struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(host); struct pci1xxxx_spi *par = p->parent; return par->can_dma; } static int pci1xxxx_spi_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { u8 hw_inst_cnt, iter, start, only_sec_inst; struct pci1xxxx_spi_internal *spi_sub_ptr; struct device *dev = &pdev->dev; struct pci1xxxx_spi *spi_bus; struct spi_controller *spi_host; u32 regval; int ret; hw_inst_cnt = ent->driver_data & 0x0f; start = (ent->driver_data & 0xf0) >> 4; if (start == 1) only_sec_inst = 1; else only_sec_inst = 0; spi_bus = devm_kzalloc(&pdev->dev, struct_size(spi_bus, spi_int, hw_inst_cnt), GFP_KERNEL); if (!spi_bus) return -ENOMEM; spi_bus->dev = pdev; spi_bus->total_hw_instances = hw_inst_cnt; pci_set_master(pdev); for (iter = 0; iter < hw_inst_cnt; iter++) { spi_bus->spi_int[iter] = devm_kzalloc(&pdev->dev, sizeof(struct pci1xxxx_spi_internal), GFP_KERNEL); spi_sub_ptr = spi_bus->spi_int[iter]; spi_sub_ptr->spi_host = devm_spi_alloc_host(dev, sizeof(struct spi_controller)); if (!spi_sub_ptr->spi_host) return -ENOMEM; spi_sub_ptr->parent = spi_bus; spi_sub_ptr->spi_xfer_in_progress = false; if (!iter) { ret = pcim_enable_device(pdev); if (ret) return -ENOMEM; ret = pci_request_regions(pdev, DRV_NAME); if (ret) return -ENOMEM; spi_bus->reg_base = pcim_iomap(pdev, 0, pci_resource_len(pdev, 0)); if (!spi_bus->reg_base) { ret = -EINVAL; goto error; } ret = pci_alloc_irq_vectors(pdev, hw_inst_cnt, hw_inst_cnt, PCI_IRQ_ALL_TYPES); if (ret < 0) { dev_err(&pdev->dev, "Error allocating MSI vectors\n"); goto error; } init_completion(&spi_sub_ptr->spi_xfer_done); /* Initialize Interrupts - SPI_INT */ regval = readl(spi_bus->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(spi_sub_ptr->hw_inst)); regval &= ~SPI_INTR; writel(regval, spi_bus->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(spi_sub_ptr->hw_inst)); spi_sub_ptr->irq = pci_irq_vector(pdev, 0); ret = devm_request_irq(&pdev->dev, spi_sub_ptr->irq, pci1xxxx_spi_isr, PCI1XXXX_IRQ_FLAGS, pci_name(pdev), spi_sub_ptr); if (ret < 0) { dev_err(&pdev->dev, "Unable to request irq : %d", spi_sub_ptr->irq); ret = -ENODEV; goto error; } ret = pci1xxxx_spi_dma_init(spi_bus, spi_sub_ptr->irq); if (ret && ret != -EOPNOTSUPP) goto error; /* This register is only applicable for 1st instance */ regval = readl(spi_bus->reg_base + SPI_PCI_CTRL_REG_OFFSET(0)); if (!only_sec_inst) regval |= (BIT(4)); else regval &= ~(BIT(4)); writel(regval, spi_bus->reg_base + SPI_PCI_CTRL_REG_OFFSET(0)); } spi_sub_ptr->hw_inst = start++; if (iter == 1) { init_completion(&spi_sub_ptr->spi_xfer_done); /* Initialize Interrupts - SPI_INT */ regval = readl(spi_bus->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(spi_sub_ptr->hw_inst)); regval &= ~SPI_INTR; writel(regval, spi_bus->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(spi_sub_ptr->hw_inst)); spi_sub_ptr->irq = pci_irq_vector(pdev, iter); ret = devm_request_irq(&pdev->dev, spi_sub_ptr->irq, pci1xxxx_spi_isr, PCI1XXXX_IRQ_FLAGS, pci_name(pdev), spi_sub_ptr); if (ret < 0) { dev_err(&pdev->dev, "Unable to request irq : %d", spi_sub_ptr->irq); ret = -ENODEV; goto error; } } spi_host = spi_sub_ptr->spi_host; spi_host->num_chipselect = SPI_CHIP_SEL_COUNT; spi_host->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_RX_DUAL | SPI_TX_DUAL | SPI_LOOP; spi_host->can_dma = pci1xxxx_spi_can_dma; spi_host->transfer_one = pci1xxxx_spi_transfer_one; spi_host->set_cs = pci1xxxx_spi_set_cs; spi_host->bits_per_word_mask = SPI_BPW_MASK(8); spi_host->max_speed_hz = PCI1XXXX_SPI_MAX_CLOCK_HZ; spi_host->min_speed_hz = PCI1XXXX_SPI_MIN_CLOCK_HZ; spi_host->flags = SPI_CONTROLLER_MUST_TX; spi_controller_set_devdata(spi_host, spi_sub_ptr); ret = devm_spi_register_controller(dev, spi_host); if (ret) goto error; } pci_set_drvdata(pdev, spi_bus); return 0; error: pci_release_regions(pdev); return ret; } static void store_restore_config(struct pci1xxxx_spi *spi_ptr, struct pci1xxxx_spi_internal *spi_sub_ptr, u8 inst, bool store) { u32 regval; if (store) { regval = readl(spi_ptr->reg_base + SPI_MST_CTL_REG_OFFSET(spi_sub_ptr->hw_inst)); regval &= SPI_MST_CTL_DEVSEL_MASK; spi_sub_ptr->prev_val.dev_sel = (regval >> 25) & 7; regval = readl(spi_ptr->reg_base + SPI_PCI_CTRL_REG_OFFSET(spi_sub_ptr->hw_inst)); regval &= SPI_MSI_VECTOR_SEL_MASK; spi_sub_ptr->prev_val.msi_vector_sel = (regval >> 4) & 1; } else { regval = readl(spi_ptr->reg_base + SPI_MST_CTL_REG_OFFSET(inst)); regval &= ~SPI_MST_CTL_DEVSEL_MASK; regval |= (spi_sub_ptr->prev_val.dev_sel << 25); writel(regval, spi_ptr->reg_base + SPI_MST_CTL_REG_OFFSET(inst)); writel((spi_sub_ptr->prev_val.msi_vector_sel << 4), spi_ptr->reg_base + SPI_PCI_CTRL_REG_OFFSET(inst)); } } static int pci1xxxx_spi_resume(struct device *dev) { struct pci1xxxx_spi *spi_ptr = dev_get_drvdata(dev); struct pci1xxxx_spi_internal *spi_sub_ptr; u32 regval = SPI_RESUME_CONFIG; u8 iter; for (iter = 0; iter < spi_ptr->total_hw_instances; iter++) { spi_sub_ptr = spi_ptr->spi_int[iter]; spi_controller_resume(spi_sub_ptr->spi_host); writel(regval, spi_ptr->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(iter)); /* Restore config at resume */ store_restore_config(spi_ptr, spi_sub_ptr, iter, 0); } return 0; } static int pci1xxxx_spi_suspend(struct device *dev) { struct pci1xxxx_spi *spi_ptr = dev_get_drvdata(dev); struct pci1xxxx_spi_internal *spi_sub_ptr; u32 reg1 = SPI_SUSPEND_CONFIG; u8 iter; for (iter = 0; iter < spi_ptr->total_hw_instances; iter++) { spi_sub_ptr = spi_ptr->spi_int[iter]; while (spi_sub_ptr->spi_xfer_in_progress) msleep(20); /* Store existing config before suspend */ store_restore_config(spi_ptr, spi_sub_ptr, iter, 1); spi_controller_suspend(spi_sub_ptr->spi_host); writel(reg1, spi_ptr->reg_base + SPI_MST_EVENT_MASK_REG_OFFSET(iter)); } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(spi_pm_ops, pci1xxxx_spi_suspend, pci1xxxx_spi_resume); static struct pci_driver pci1xxxx_spi_driver = { .name = DRV_NAME, .id_table = pci1xxxx_spi_pci_id_table, .probe = pci1xxxx_spi_probe, .driver = { .pm = pm_sleep_ptr(&spi_pm_ops), }, }; module_pci_driver(pci1xxxx_spi_driver); MODULE_DESCRIPTION("Microchip Technology Inc. pci1xxxx SPI bus driver"); MODULE_AUTHOR("Tharun Kumar P"); MODULE_AUTHOR("Kumaravel Thiagarajan"); MODULE_LICENSE("GPL v2");