// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012 - 2014 Allwinner Tech * Pan Nan * * Copyright (C) 2014 Maxime Ripard * Maxime Ripard */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define SUN6I_AUTOSUSPEND_TIMEOUT 2000 #define SUN6I_FIFO_DEPTH 128 #define SUN8I_FIFO_DEPTH 64 #define SUN6I_GBL_CTL_REG 0x04 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0) #define SUN6I_GBL_CTL_MASTER BIT(1) #define SUN6I_GBL_CTL_TP BIT(7) #define SUN6I_GBL_CTL_RST BIT(31) #define SUN6I_TFR_CTL_REG 0x08 #define SUN6I_TFR_CTL_CPHA BIT(0) #define SUN6I_TFR_CTL_CPOL BIT(1) #define SUN6I_TFR_CTL_SPOL BIT(2) #define SUN6I_TFR_CTL_CS_MASK 0x30 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK) #define SUN6I_TFR_CTL_CS_MANUAL BIT(6) #define SUN6I_TFR_CTL_CS_LEVEL BIT(7) #define SUN6I_TFR_CTL_DHB BIT(8) #define SUN6I_TFR_CTL_SDC BIT(11) #define SUN6I_TFR_CTL_FBS BIT(12) #define SUN6I_TFR_CTL_SDM BIT(13) #define SUN6I_TFR_CTL_XCH BIT(31) #define SUN6I_INT_CTL_REG 0x10 #define SUN6I_INT_CTL_RF_RDY BIT(0) #define SUN6I_INT_CTL_TF_ERQ BIT(4) #define SUN6I_INT_CTL_RF_OVF BIT(8) #define SUN6I_INT_CTL_TC BIT(12) #define SUN6I_INT_STA_REG 0x14 #define SUN6I_FIFO_CTL_REG 0x18 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff #define SUN6I_FIFO_CTL_RF_DRQ_EN BIT(8) #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0 #define SUN6I_FIFO_CTL_RF_RST BIT(15) #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16 #define SUN6I_FIFO_CTL_TF_DRQ_EN BIT(24) #define SUN6I_FIFO_CTL_TF_RST BIT(31) #define SUN6I_FIFO_STA_REG 0x1c #define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0) #define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16) #define SUN6I_CLK_CTL_REG 0x24 #define SUN6I_CLK_CTL_CDR2_MASK 0xff #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0) #define SUN6I_CLK_CTL_CDR1_MASK 0xf #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8) #define SUN6I_CLK_CTL_DRS BIT(12) #define SUN6I_MAX_XFER_SIZE 0xffffff #define SUN6I_BURST_CNT_REG 0x30 #define SUN6I_XMIT_CNT_REG 0x34 #define SUN6I_BURST_CTL_CNT_REG 0x38 #define SUN6I_BURST_CTL_CNT_STC_MASK GENMASK(23, 0) #define SUN6I_BURST_CTL_CNT_DRM BIT(28) #define SUN6I_BURST_CTL_CNT_QUAD_EN BIT(29) #define SUN6I_TXDATA_REG 0x200 #define SUN6I_RXDATA_REG 0x300 struct sun6i_spi_cfg { unsigned long fifo_depth; bool has_clk_ctl; u32 mode_bits; }; struct sun6i_spi { struct spi_controller *host; void __iomem *base_addr; dma_addr_t dma_addr_rx; dma_addr_t dma_addr_tx; struct clk *hclk; struct clk *mclk; struct reset_control *rstc; struct completion done; struct completion dma_rx_done; const u8 *tx_buf; u8 *rx_buf; int len; const struct sun6i_spi_cfg *cfg; }; static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg) { return readl(sspi->base_addr + reg); } static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value) { writel(value, sspi->base_addr + reg); } static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi) { u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg); } static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi) { u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG); return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg); } static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask) { u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG); reg &= ~mask; sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); } static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi) { u32 len; u8 byte; /* See how much data is available */ len = sun6i_spi_get_rx_fifo_count(sspi); while (len--) { byte = readb(sspi->base_addr + SUN6I_RXDATA_REG); if (sspi->rx_buf) *sspi->rx_buf++ = byte; } } static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi) { u32 cnt; int len; u8 byte; /* See how much data we can fit */ cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi); len = min((int)cnt, sspi->len); while (len--) { byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG); sspi->len--; } } static void sun6i_spi_set_cs(struct spi_device *spi, bool enable) { struct sun6i_spi *sspi = spi_controller_get_devdata(spi->controller); u32 reg; reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); reg &= ~SUN6I_TFR_CTL_CS_MASK; reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0)); if (enable) reg |= SUN6I_TFR_CTL_CS_LEVEL; else reg &= ~SUN6I_TFR_CTL_CS_LEVEL; sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); } static size_t sun6i_spi_max_transfer_size(struct spi_device *spi) { return SUN6I_MAX_XFER_SIZE - 1; } static void sun6i_spi_dma_rx_cb(void *param) { struct sun6i_spi *sspi = param; complete(&sspi->dma_rx_done); } static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi, struct spi_transfer *tfr) { struct dma_async_tx_descriptor *rxdesc, *txdesc; struct spi_controller *host = sspi->host; rxdesc = NULL; if (tfr->rx_buf) { struct dma_slave_config rxconf = { .direction = DMA_DEV_TO_MEM, .src_addr = sspi->dma_addr_rx, .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, .src_maxburst = 8, }; dmaengine_slave_config(host->dma_rx, &rxconf); rxdesc = dmaengine_prep_slave_sg(host->dma_rx, tfr->rx_sg.sgl, tfr->rx_sg.nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!rxdesc) return -EINVAL; rxdesc->callback_param = sspi; rxdesc->callback = sun6i_spi_dma_rx_cb; } txdesc = NULL; if (tfr->tx_buf) { struct dma_slave_config txconf = { .direction = DMA_MEM_TO_DEV, .dst_addr = sspi->dma_addr_tx, .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .dst_maxburst = 8, }; dmaengine_slave_config(host->dma_tx, &txconf); txdesc = dmaengine_prep_slave_sg(host->dma_tx, tfr->tx_sg.sgl, tfr->tx_sg.nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!txdesc) { if (rxdesc) dmaengine_terminate_sync(host->dma_rx); return -EINVAL; } } if (tfr->rx_buf) { dmaengine_submit(rxdesc); dma_async_issue_pending(host->dma_rx); } if (tfr->tx_buf) { dmaengine_submit(txdesc); dma_async_issue_pending(host->dma_tx); } return 0; } static int sun6i_spi_transfer_one(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *tfr) { struct sun6i_spi *sspi = spi_controller_get_devdata(host); unsigned int div, div_cdr1, div_cdr2, timeout; unsigned int start, end, tx_time; unsigned int trig_level; unsigned int tx_len = 0, rx_len = 0, nbits = 0; bool use_dma; int ret = 0; u32 reg; if (tfr->len > SUN6I_MAX_XFER_SIZE) return -EINVAL; reinit_completion(&sspi->done); reinit_completion(&sspi->dma_rx_done); sspi->tx_buf = tfr->tx_buf; sspi->rx_buf = tfr->rx_buf; sspi->len = tfr->len; use_dma = host->can_dma ? host->can_dma(host, spi, tfr) : false; /* Clear pending interrupts */ sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0); /* Reset FIFO */ sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST); reg = 0; if (!use_dma) { /* * Setup FIFO interrupt trigger level * Here we choose 3/4 of the full fifo depth, as it's * the hardcoded value used in old generation of Allwinner * SPI controller. (See spi-sun4i.c) */ trig_level = sspi->cfg->fifo_depth / 4 * 3; } else { /* * Setup FIFO DMA request trigger level * We choose 1/2 of the full fifo depth, that value will * be used as DMA burst length. */ trig_level = sspi->cfg->fifo_depth / 2; if (tfr->tx_buf) reg |= SUN6I_FIFO_CTL_TF_DRQ_EN; if (tfr->rx_buf) reg |= SUN6I_FIFO_CTL_RF_DRQ_EN; } reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) | (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS); sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg); /* * Setup the transfer control register: Chip Select, * polarities, etc. */ reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); if (spi->mode & SPI_CPOL) reg |= SUN6I_TFR_CTL_CPOL; else reg &= ~SUN6I_TFR_CTL_CPOL; if (spi->mode & SPI_CPHA) reg |= SUN6I_TFR_CTL_CPHA; else reg &= ~SUN6I_TFR_CTL_CPHA; if (spi->mode & SPI_LSB_FIRST) reg |= SUN6I_TFR_CTL_FBS; else reg &= ~SUN6I_TFR_CTL_FBS; /* * If it's a TX only transfer, we don't want to fill the RX * FIFO with bogus data */ if (sspi->rx_buf) { reg &= ~SUN6I_TFR_CTL_DHB; rx_len = tfr->len; } else { reg |= SUN6I_TFR_CTL_DHB; } /* We want to control the chip select manually */ reg |= SUN6I_TFR_CTL_CS_MANUAL; sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); if (sspi->cfg->has_clk_ctl) { unsigned int mclk_rate = clk_get_rate(sspi->mclk); /* Ensure that we have a parent clock fast enough */ if (mclk_rate < (2 * tfr->speed_hz)) { clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); mclk_rate = clk_get_rate(sspi->mclk); } /* * Setup clock divider. * * We have two choices there. Either we can use the clock * divide rate 1, which is calculated thanks to this formula: * SPI_CLK = MOD_CLK / (2 ^ cdr) * Or we can use CDR2, which is calculated with the formula: * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) * Wether we use the former or the latter is set through the * DRS bit. * * First try CDR2, and if we can't reach the expected * frequency, fall back to CDR1. */ div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz); div_cdr2 = DIV_ROUND_UP(div_cdr1, 2); if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) { reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS; tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2); } else { div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1)); reg = SUN6I_CLK_CTL_CDR1(div); tfr->effective_speed_hz = mclk_rate / (1 << div); } sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg); } else { clk_set_rate(sspi->mclk, tfr->speed_hz); tfr->effective_speed_hz = clk_get_rate(sspi->mclk); /* * Configure work mode. * * There are three work modes depending on the controller clock * frequency: * - normal sample mode : CLK <= 24MHz SDM=1 SDC=0 * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0 * - delay one-cycle sample mode : CLK >= 80MHz SDM=0 SDC=1 */ reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC); if (tfr->effective_speed_hz <= 24000000) reg |= SUN6I_TFR_CTL_SDM; else if (tfr->effective_speed_hz >= 80000000) reg |= SUN6I_TFR_CTL_SDC; sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg); } /* Finally enable the bus - doing so before might raise SCK to HIGH */ reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG); reg |= SUN6I_GBL_CTL_BUS_ENABLE; sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg); /* Setup the transfer now... */ if (sspi->tx_buf) { tx_len = tfr->len; nbits = tfr->tx_nbits; } else if (tfr->rx_buf) { nbits = tfr->rx_nbits; } switch (nbits) { case SPI_NBITS_DUAL: reg = SUN6I_BURST_CTL_CNT_DRM; break; case SPI_NBITS_QUAD: reg = SUN6I_BURST_CTL_CNT_QUAD_EN; break; case SPI_NBITS_SINGLE: default: reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len); } /* Setup the counters */ sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg); sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len); sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len); if (!use_dma) { /* Fill the TX FIFO */ sun6i_spi_fill_fifo(sspi); } else { ret = sun6i_spi_prepare_dma(sspi, tfr); if (ret) { dev_warn(&host->dev, "%s: prepare DMA failed, ret=%d", dev_name(&spi->dev), ret); return ret; } } /* Enable the interrupts */ reg = SUN6I_INT_CTL_TC; if (!use_dma) { if (rx_len > sspi->cfg->fifo_depth) reg |= SUN6I_INT_CTL_RF_RDY; if (tx_len > sspi->cfg->fifo_depth) reg |= SUN6I_INT_CTL_TF_ERQ; } sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg); /* Start the transfer */ reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG); sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH); tx_time = spi_controller_xfer_timeout(host, tfr); start = jiffies; timeout = wait_for_completion_timeout(&sspi->done, msecs_to_jiffies(tx_time)); if (!use_dma) { sun6i_spi_drain_fifo(sspi); } else { if (timeout && rx_len) { /* * Even though RX on the peripheral side has finished * RX DMA might still be in flight */ timeout = wait_for_completion_timeout(&sspi->dma_rx_done, timeout); if (!timeout) dev_warn(&host->dev, "RX DMA timeout\n"); } } end = jiffies; if (!timeout) { dev_warn(&host->dev, "%s: timeout transferring %u bytes@%iHz for %i(%i)ms", dev_name(&spi->dev), tfr->len, tfr->speed_hz, jiffies_to_msecs(end - start), tx_time); ret = -ETIMEDOUT; } sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0); if (ret && use_dma) { dmaengine_terminate_sync(host->dma_rx); dmaengine_terminate_sync(host->dma_tx); } return ret; } static irqreturn_t sun6i_spi_handler(int irq, void *dev_id) { struct sun6i_spi *sspi = dev_id; u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG); /* Transfer complete */ if (status & SUN6I_INT_CTL_TC) { sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC); complete(&sspi->done); return IRQ_HANDLED; } /* Receive FIFO 3/4 full */ if (status & SUN6I_INT_CTL_RF_RDY) { sun6i_spi_drain_fifo(sspi); /* Only clear the interrupt _after_ draining the FIFO */ sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY); return IRQ_HANDLED; } /* Transmit FIFO 3/4 empty */ if (status & SUN6I_INT_CTL_TF_ERQ) { sun6i_spi_fill_fifo(sspi); if (!sspi->len) /* nothing left to transmit */ sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ); /* Only clear the interrupt _after_ re-seeding the FIFO */ sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ); return IRQ_HANDLED; } return IRQ_NONE; } static int sun6i_spi_runtime_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct sun6i_spi *sspi = spi_controller_get_devdata(host); int ret; ret = clk_prepare_enable(sspi->hclk); if (ret) { dev_err(dev, "Couldn't enable AHB clock\n"); goto out; } ret = clk_prepare_enable(sspi->mclk); if (ret) { dev_err(dev, "Couldn't enable module clock\n"); goto err; } ret = reset_control_deassert(sspi->rstc); if (ret) { dev_err(dev, "Couldn't deassert the device from reset\n"); goto err2; } sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP); return 0; err2: clk_disable_unprepare(sspi->mclk); err: clk_disable_unprepare(sspi->hclk); out: return ret; } static int sun6i_spi_runtime_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct sun6i_spi *sspi = spi_controller_get_devdata(host); reset_control_assert(sspi->rstc); clk_disable_unprepare(sspi->mclk); clk_disable_unprepare(sspi->hclk); return 0; } static bool sun6i_spi_can_dma(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *xfer) { struct sun6i_spi *sspi = spi_controller_get_devdata(host); /* * If the number of spi words to transfer is less or equal than * the fifo length we can just fill the fifo and wait for a single * irq, so don't bother setting up dma */ return xfer->len > sspi->cfg->fifo_depth; } static int sun6i_spi_probe(struct platform_device *pdev) { struct spi_controller *host; struct sun6i_spi *sspi; struct resource *mem; int ret = 0, irq; host = spi_alloc_host(&pdev->dev, sizeof(struct sun6i_spi)); if (!host) { dev_err(&pdev->dev, "Unable to allocate SPI Host\n"); return -ENOMEM; } platform_set_drvdata(pdev, host); sspi = spi_controller_get_devdata(host); sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); if (IS_ERR(sspi->base_addr)) { ret = PTR_ERR(sspi->base_addr); goto err_free_host; } irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = -ENXIO; goto err_free_host; } ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler, 0, "sun6i-spi", sspi); if (ret) { dev_err(&pdev->dev, "Cannot request IRQ\n"); goto err_free_host; } sspi->host = host; sspi->cfg = of_device_get_match_data(&pdev->dev); host->max_speed_hz = 100 * 1000 * 1000; host->min_speed_hz = 3 * 1000; host->use_gpio_descriptors = true; host->set_cs = sun6i_spi_set_cs; host->transfer_one = sun6i_spi_transfer_one; host->num_chipselect = 4; host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST | sspi->cfg->mode_bits; host->bits_per_word_mask = SPI_BPW_MASK(8); host->dev.of_node = pdev->dev.of_node; host->auto_runtime_pm = true; host->max_transfer_size = sun6i_spi_max_transfer_size; sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); if (IS_ERR(sspi->hclk)) { dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); ret = PTR_ERR(sspi->hclk); goto err_free_host; } sspi->mclk = devm_clk_get(&pdev->dev, "mod"); if (IS_ERR(sspi->mclk)) { dev_err(&pdev->dev, "Unable to acquire module clock\n"); ret = PTR_ERR(sspi->mclk); goto err_free_host; } init_completion(&sspi->done); init_completion(&sspi->dma_rx_done); sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(sspi->rstc)) { dev_err(&pdev->dev, "Couldn't get reset controller\n"); ret = PTR_ERR(sspi->rstc); goto err_free_host; } host->dma_tx = dma_request_chan(&pdev->dev, "tx"); if (IS_ERR(host->dma_tx)) { /* Check tx to see if we need defer probing driver */ if (PTR_ERR(host->dma_tx) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_free_host; } dev_warn(&pdev->dev, "Failed to request TX DMA channel\n"); host->dma_tx = NULL; } host->dma_rx = dma_request_chan(&pdev->dev, "rx"); if (IS_ERR(host->dma_rx)) { if (PTR_ERR(host->dma_rx) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_free_dma_tx; } dev_warn(&pdev->dev, "Failed to request RX DMA channel\n"); host->dma_rx = NULL; } if (host->dma_tx && host->dma_rx) { sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG; sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG; host->can_dma = sun6i_spi_can_dma; } /* * This wake-up/shutdown pattern is to be able to have the * device woken up, even if runtime_pm is disabled */ ret = sun6i_spi_runtime_resume(&pdev->dev); if (ret) { dev_err(&pdev->dev, "Couldn't resume the device\n"); goto err_free_dma_rx; } pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = devm_spi_register_controller(&pdev->dev, host); if (ret) { dev_err(&pdev->dev, "cannot register SPI host\n"); goto err_pm_disable; } return 0; err_pm_disable: pm_runtime_disable(&pdev->dev); sun6i_spi_runtime_suspend(&pdev->dev); err_free_dma_rx: if (host->dma_rx) dma_release_channel(host->dma_rx); err_free_dma_tx: if (host->dma_tx) dma_release_channel(host->dma_tx); err_free_host: spi_controller_put(host); return ret; } static void sun6i_spi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); pm_runtime_force_suspend(&pdev->dev); if (host->dma_tx) dma_release_channel(host->dma_tx); if (host->dma_rx) dma_release_channel(host->dma_rx); } static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = { .fifo_depth = SUN6I_FIFO_DEPTH, .has_clk_ctl = true, }; static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = { .fifo_depth = SUN8I_FIFO_DEPTH, .has_clk_ctl = true, }; static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = { .fifo_depth = SUN8I_FIFO_DEPTH, .mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD, }; static const struct of_device_id sun6i_spi_match[] = { { .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg }, { .compatible = "allwinner,sun8i-h3-spi", .data = &sun8i_h3_spi_cfg }, { .compatible = "allwinner,sun50i-r329-spi", .data = &sun50i_r329_spi_cfg }, {} }; MODULE_DEVICE_TABLE(of, sun6i_spi_match); static const struct dev_pm_ops sun6i_spi_pm_ops = { .runtime_resume = sun6i_spi_runtime_resume, .runtime_suspend = sun6i_spi_runtime_suspend, }; static struct platform_driver sun6i_spi_driver = { .probe = sun6i_spi_probe, .remove_new = sun6i_spi_remove, .driver = { .name = "sun6i-spi", .of_match_table = sun6i_spi_match, .pm = &sun6i_spi_pm_ops, }, }; module_platform_driver(sun6i_spi_driver); MODULE_AUTHOR("Pan Nan "); MODULE_AUTHOR("Maxime Ripard "); MODULE_DESCRIPTION("Allwinner A31 SPI controller driver"); MODULE_LICENSE("GPL");