// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2022 Jonathan Neuschäfer #include #include #include #include #include #include #include #define FIU_CFG 0x00 #define FIU_BURST_BFG 0x01 #define FIU_RESP_CFG 0x02 #define FIU_CFBB_PROT 0x03 #define FIU_FWIN1_LOW 0x04 #define FIU_FWIN1_HIGH 0x06 #define FIU_FWIN2_LOW 0x08 #define FIU_FWIN2_HIGH 0x0a #define FIU_FWIN3_LOW 0x0c #define FIU_FWIN3_HIGH 0x0e #define FIU_PROT_LOCK 0x10 #define FIU_PROT_CLEAR 0x11 #define FIU_SPI_FL_CFG 0x14 #define FIU_UMA_CODE 0x16 #define FIU_UMA_AB0 0x17 #define FIU_UMA_AB1 0x18 #define FIU_UMA_AB2 0x19 #define FIU_UMA_DB0 0x1a #define FIU_UMA_DB1 0x1b #define FIU_UMA_DB2 0x1c #define FIU_UMA_DB3 0x1d #define FIU_UMA_CTS 0x1e #define FIU_UMA_ECTS 0x1f #define FIU_BURST_CFG_R16 3 #define FIU_UMA_CTS_D_SIZE(x) (x) #define FIU_UMA_CTS_A_SIZE BIT(3) #define FIU_UMA_CTS_WR BIT(4) #define FIU_UMA_CTS_CS(x) ((x) << 5) #define FIU_UMA_CTS_EXEC_DONE BIT(7) #define SHM_FLASH_SIZE 0x02 #define SHM_FLASH_SIZE_STALL_HOST BIT(6) /* * I observed a typical wait time of 16 iterations for a UMA transfer to * finish, so this should be a safe limit. */ #define UMA_WAIT_ITERATIONS 100 /* The memory-mapped view of flash is 16 MiB long */ #define MAX_MEMORY_SIZE_PER_CS (16 << 20) #define MAX_MEMORY_SIZE_TOTAL (4 * MAX_MEMORY_SIZE_PER_CS) struct wpcm_fiu_spi { struct device *dev; struct clk *clk; void __iomem *regs; void __iomem *memory; size_t memory_size; struct regmap *shm_regmap; }; static void wpcm_fiu_set_opcode(struct wpcm_fiu_spi *fiu, u8 opcode) { writeb(opcode, fiu->regs + FIU_UMA_CODE); } static void wpcm_fiu_set_addr(struct wpcm_fiu_spi *fiu, u32 addr) { writeb((addr >> 0) & 0xff, fiu->regs + FIU_UMA_AB0); writeb((addr >> 8) & 0xff, fiu->regs + FIU_UMA_AB1); writeb((addr >> 16) & 0xff, fiu->regs + FIU_UMA_AB2); } static void wpcm_fiu_set_data(struct wpcm_fiu_spi *fiu, const u8 *data, unsigned int nbytes) { int i; for (i = 0; i < nbytes; i++) writeb(data[i], fiu->regs + FIU_UMA_DB0 + i); } static void wpcm_fiu_get_data(struct wpcm_fiu_spi *fiu, u8 *data, unsigned int nbytes) { int i; for (i = 0; i < nbytes; i++) data[i] = readb(fiu->regs + FIU_UMA_DB0 + i); } /* * Perform a UMA (User Mode Access) operation, i.e. a software-controlled SPI transfer. */ static int wpcm_fiu_do_uma(struct wpcm_fiu_spi *fiu, unsigned int cs, bool use_addr, bool write, int data_bytes) { int i = 0; u8 cts = FIU_UMA_CTS_EXEC_DONE | FIU_UMA_CTS_CS(cs); if (use_addr) cts |= FIU_UMA_CTS_A_SIZE; if (write) cts |= FIU_UMA_CTS_WR; cts |= FIU_UMA_CTS_D_SIZE(data_bytes); writeb(cts, fiu->regs + FIU_UMA_CTS); for (i = 0; i < UMA_WAIT_ITERATIONS; i++) if (!(readb(fiu->regs + FIU_UMA_CTS) & FIU_UMA_CTS_EXEC_DONE)) return 0; dev_info(fiu->dev, "UMA transfer has not finished in %d iterations\n", UMA_WAIT_ITERATIONS); return -EIO; } static void wpcm_fiu_ects_assert(struct wpcm_fiu_spi *fiu, unsigned int cs) { u8 ects = readb(fiu->regs + FIU_UMA_ECTS); ects &= ~BIT(cs); writeb(ects, fiu->regs + FIU_UMA_ECTS); } static void wpcm_fiu_ects_deassert(struct wpcm_fiu_spi *fiu, unsigned int cs) { u8 ects = readb(fiu->regs + FIU_UMA_ECTS); ects |= BIT(cs); writeb(ects, fiu->regs + FIU_UMA_ECTS); } struct wpcm_fiu_op_shape { bool (*match)(const struct spi_mem_op *op); int (*exec)(struct spi_mem *mem, const struct spi_mem_op *op); }; static bool wpcm_fiu_normal_match(const struct spi_mem_op *op) { // Opcode 0x0b (FAST READ) is treated differently in hardware if (op->cmd.opcode == 0x0b) return false; return (op->addr.nbytes == 0 || op->addr.nbytes == 3) && op->dummy.nbytes == 0 && op->data.nbytes <= 4; } static int wpcm_fiu_normal_exec(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); int ret; wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, op->addr.val); if (op->data.dir == SPI_MEM_DATA_OUT) wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes); ret = wpcm_fiu_do_uma(fiu, spi_get_chipselect(mem->spi, 0), op->addr.nbytes == 3, op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes); if (op->data.dir == SPI_MEM_DATA_IN) wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); return ret; } static bool wpcm_fiu_fast_read_match(const struct spi_mem_op *op) { return op->cmd.opcode == 0x0b && op->addr.nbytes == 3 && op->dummy.nbytes == 1 && op->data.nbytes >= 1 && op->data.nbytes <= 4 && op->data.dir == SPI_MEM_DATA_IN; } static int wpcm_fiu_fast_read_exec(struct spi_mem *mem, const struct spi_mem_op *op) { return -EINVAL; } /* * 4-byte addressing. * * Flash view: [ C A A A A D D D D] * bytes: 13 aa bb cc dd -> 5a a5 f0 0f * FIU's view: [ C A A A][ C D D D D] * FIU mode: [ read/write][ read ] */ static bool wpcm_fiu_4ba_match(const struct spi_mem_op *op) { return op->addr.nbytes == 4 && op->dummy.nbytes == 0 && op->data.nbytes <= 4; } static int wpcm_fiu_4ba_exec(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); int cs = spi_get_chipselect(mem->spi, 0); wpcm_fiu_ects_assert(fiu, cs); wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, op->addr.val >> 8); wpcm_fiu_do_uma(fiu, cs, true, false, 0); wpcm_fiu_set_opcode(fiu, op->addr.val & 0xff); wpcm_fiu_set_addr(fiu, 0); if (op->data.dir == SPI_MEM_DATA_OUT) wpcm_fiu_set_data(fiu, op->data.buf.out, op->data.nbytes); wpcm_fiu_do_uma(fiu, cs, false, op->data.dir == SPI_MEM_DATA_OUT, op->data.nbytes); wpcm_fiu_ects_deassert(fiu, cs); if (op->data.dir == SPI_MEM_DATA_IN) wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); return 0; } /* * RDID (Read Identification) needs special handling because Linux expects to * be able to read 6 ID bytes and FIU can only read up to 4 at once. * * We're lucky in this case, because executing the RDID instruction twice will * result in the same result. * * What we do is as follows (C: write command/opcode byte, D: read data byte, * A: write address byte): * * 1. C D D D * 2. C A A A D D D */ static bool wpcm_fiu_rdid_match(const struct spi_mem_op *op) { return op->cmd.opcode == 0x9f && op->addr.nbytes == 0 && op->dummy.nbytes == 0 && op->data.nbytes == 6 && op->data.dir == SPI_MEM_DATA_IN; } static int wpcm_fiu_rdid_exec(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); int cs = spi_get_chipselect(mem->spi, 0); /* First transfer */ wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, 0); wpcm_fiu_do_uma(fiu, cs, false, false, 3); wpcm_fiu_get_data(fiu, op->data.buf.in, 3); /* Second transfer */ wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, 0); wpcm_fiu_do_uma(fiu, cs, true, false, 3); wpcm_fiu_get_data(fiu, op->data.buf.in + 3, 3); return 0; } /* * With some dummy bytes. * * C A A A X* X D D D D * [C A A A D*][C D D D D] */ static bool wpcm_fiu_dummy_match(const struct spi_mem_op *op) { // Opcode 0x0b (FAST READ) is treated differently in hardware if (op->cmd.opcode == 0x0b) return false; return (op->addr.nbytes == 0 || op->addr.nbytes == 3) && op->dummy.nbytes >= 1 && op->dummy.nbytes <= 5 && op->data.nbytes <= 4; } static int wpcm_fiu_dummy_exec(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); int cs = spi_get_chipselect(mem->spi, 0); wpcm_fiu_ects_assert(fiu, cs); /* First transfer */ wpcm_fiu_set_opcode(fiu, op->cmd.opcode); wpcm_fiu_set_addr(fiu, op->addr.val); wpcm_fiu_do_uma(fiu, cs, op->addr.nbytes != 0, true, op->dummy.nbytes - 1); /* Second transfer */ wpcm_fiu_set_opcode(fiu, 0); wpcm_fiu_set_addr(fiu, 0); wpcm_fiu_do_uma(fiu, cs, false, false, op->data.nbytes); wpcm_fiu_get_data(fiu, op->data.buf.in, op->data.nbytes); wpcm_fiu_ects_deassert(fiu, cs); return 0; } static const struct wpcm_fiu_op_shape wpcm_fiu_op_shapes[] = { { .match = wpcm_fiu_normal_match, .exec = wpcm_fiu_normal_exec }, { .match = wpcm_fiu_fast_read_match, .exec = wpcm_fiu_fast_read_exec }, { .match = wpcm_fiu_4ba_match, .exec = wpcm_fiu_4ba_exec }, { .match = wpcm_fiu_rdid_match, .exec = wpcm_fiu_rdid_exec }, { .match = wpcm_fiu_dummy_match, .exec = wpcm_fiu_dummy_exec }, }; static const struct wpcm_fiu_op_shape *wpcm_fiu_find_op_shape(const struct spi_mem_op *op) { size_t i; for (i = 0; i < ARRAY_SIZE(wpcm_fiu_op_shapes); i++) { const struct wpcm_fiu_op_shape *shape = &wpcm_fiu_op_shapes[i]; if (shape->match(op)) return shape; } return NULL; } static bool wpcm_fiu_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (!spi_mem_default_supports_op(mem, op)) return false; if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) return false; if (op->cmd.buswidth > 1 || op->addr.buswidth > 1 || op->dummy.buswidth > 1 || op->data.buswidth > 1) return false; return wpcm_fiu_find_op_shape(op) != NULL; } /* * In order to ensure the integrity of SPI transfers performed via UMA, * temporarily disable (stall) memory accesses coming from the host CPU. */ static void wpcm_fiu_stall_host(struct wpcm_fiu_spi *fiu, bool stall) { if (fiu->shm_regmap) { int res = regmap_update_bits(fiu->shm_regmap, SHM_FLASH_SIZE, SHM_FLASH_SIZE_STALL_HOST, stall ? SHM_FLASH_SIZE_STALL_HOST : 0); if (res) dev_warn(fiu->dev, "Failed to (un)stall host memory accesses: %d\n", res); } } static int wpcm_fiu_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(mem->spi->controller); const struct wpcm_fiu_op_shape *shape = wpcm_fiu_find_op_shape(op); wpcm_fiu_stall_host(fiu, true); if (shape) return shape->exec(mem, op); wpcm_fiu_stall_host(fiu, false); return -EOPNOTSUPP; } static int wpcm_fiu_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { if (op->data.nbytes > 4) op->data.nbytes = 4; return 0; } static int wpcm_fiu_dirmap_create(struct spi_mem_dirmap_desc *desc) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller); int cs = spi_get_chipselect(desc->mem->spi, 0); if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) return -ENOTSUPP; /* * Unfortunately, FIU only supports a 16 MiB direct mapping window (per * attached flash chip), but the SPI MEM core doesn't support partial * direct mappings. This means that we can't support direct mapping on * flashes that are bigger than 16 MiB. */ if (desc->info.offset + desc->info.length > MAX_MEMORY_SIZE_PER_CS) return -ENOTSUPP; /* Don't read past the memory window */ if (cs * MAX_MEMORY_SIZE_PER_CS + desc->info.offset + desc->info.length > fiu->memory_size) return -ENOTSUPP; return 0; } static ssize_t wpcm_fiu_direct_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(desc->mem->spi->controller); int cs = spi_get_chipselect(desc->mem->spi, 0); if (offs >= MAX_MEMORY_SIZE_PER_CS) return -ENOTSUPP; offs += cs * MAX_MEMORY_SIZE_PER_CS; if (!fiu->memory || offs >= fiu->memory_size) return -ENOTSUPP; len = min_t(size_t, len, fiu->memory_size - offs); memcpy_fromio(buf, fiu->memory + offs, len); return len; } static const struct spi_controller_mem_ops wpcm_fiu_mem_ops = { .adjust_op_size = wpcm_fiu_adjust_op_size, .supports_op = wpcm_fiu_supports_op, .exec_op = wpcm_fiu_exec_op, .dirmap_create = wpcm_fiu_dirmap_create, .dirmap_read = wpcm_fiu_direct_read, }; static void wpcm_fiu_hw_init(struct wpcm_fiu_spi *fiu) { /* Configure memory-mapped flash access */ writeb(FIU_BURST_CFG_R16, fiu->regs + FIU_BURST_BFG); writeb(MAX_MEMORY_SIZE_TOTAL / (512 << 10), fiu->regs + FIU_CFG); writeb(MAX_MEMORY_SIZE_PER_CS / (512 << 10) | BIT(6), fiu->regs + FIU_SPI_FL_CFG); /* Deassert all manually asserted chip selects */ writeb(0x0f, fiu->regs + FIU_UMA_ECTS); } static int wpcm_fiu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_controller *ctrl; struct wpcm_fiu_spi *fiu; struct resource *res; ctrl = devm_spi_alloc_host(dev, sizeof(*fiu)); if (!ctrl) return -ENOMEM; fiu = spi_controller_get_devdata(ctrl); fiu->dev = dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control"); fiu->regs = devm_ioremap_resource(dev, res); if (IS_ERR(fiu->regs)) { dev_err(dev, "Failed to map registers\n"); return PTR_ERR(fiu->regs); } fiu->clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(fiu->clk)) return PTR_ERR(fiu->clk); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory"); fiu->memory = devm_ioremap_resource(dev, res); fiu->memory_size = min_t(size_t, resource_size(res), MAX_MEMORY_SIZE_TOTAL); if (IS_ERR(fiu->memory)) { dev_err(dev, "Failed to map flash memory window\n"); return PTR_ERR(fiu->memory); } fiu->shm_regmap = syscon_regmap_lookup_by_phandle_optional(dev->of_node, "nuvoton,shm"); wpcm_fiu_hw_init(fiu); ctrl->bus_num = -1; ctrl->mem_ops = &wpcm_fiu_mem_ops; ctrl->num_chipselect = 4; ctrl->dev.of_node = dev->of_node; /* * The FIU doesn't include a clock divider, the clock is entirely * determined by the AHB3 bus clock. */ ctrl->min_speed_hz = clk_get_rate(fiu->clk); ctrl->max_speed_hz = clk_get_rate(fiu->clk); return devm_spi_register_controller(dev, ctrl); } static const struct of_device_id wpcm_fiu_dt_ids[] = { { .compatible = "nuvoton,wpcm450-fiu", }, { } }; MODULE_DEVICE_TABLE(of, wpcm_fiu_dt_ids); static struct platform_driver wpcm_fiu_driver = { .driver = { .name = "wpcm450-fiu", .bus = &platform_bus_type, .of_match_table = wpcm_fiu_dt_ids, }, .probe = wpcm_fiu_probe, }; module_platform_driver(wpcm_fiu_driver); MODULE_DESCRIPTION("Nuvoton WPCM450 FIU SPI controller driver"); MODULE_AUTHOR("Jonathan Neuschäfer "); MODULE_LICENSE("GPL");