// SPDX-License-Identifier: GPL-2.0 /* * mtu3_qmu.c - Queue Management Unit driver for device controller * * Copyright (C) 2016 MediaTek Inc. * * Author: Chunfeng Yun */ /* * Queue Management Unit (QMU) is designed to unload SW effort * to serve DMA interrupts. * By preparing General Purpose Descriptor (GPD) and Buffer Descriptor (BD), * SW links data buffers and triggers QMU to send / receive data to * host / from device at a time. * And now only GPD is supported. * * For more detailed information, please refer to QMU Programming Guide */ #include #include #include "mtu3.h" #include "mtu3_trace.h" #define QMU_CHECKSUM_LEN 16 #define GPD_FLAGS_HWO BIT(0) #define GPD_FLAGS_BDP BIT(1) #define GPD_FLAGS_BPS BIT(2) #define GPD_FLAGS_ZLP BIT(6) #define GPD_FLAGS_IOC BIT(7) #define GET_GPD_HWO(gpd) (le32_to_cpu((gpd)->dw0_info) & GPD_FLAGS_HWO) #define GPD_RX_BUF_LEN_OG(x) (((x) & 0xffff) << 16) #define GPD_RX_BUF_LEN_EL(x) (((x) & 0xfffff) << 12) #define GPD_RX_BUF_LEN(mtu, x) \ ({ \ typeof(x) x_ = (x); \ ((mtu)->gen2cp) ? GPD_RX_BUF_LEN_EL(x_) : GPD_RX_BUF_LEN_OG(x_); \ }) #define GPD_DATA_LEN_OG(x) ((x) & 0xffff) #define GPD_DATA_LEN_EL(x) ((x) & 0xfffff) #define GPD_DATA_LEN(mtu, x) \ ({ \ typeof(x) x_ = (x); \ ((mtu)->gen2cp) ? GPD_DATA_LEN_EL(x_) : GPD_DATA_LEN_OG(x_); \ }) #define GPD_EXT_FLAG_ZLP BIT(29) #define GPD_EXT_NGP_OG(x) (((x) & 0xf) << 20) #define GPD_EXT_BUF_OG(x) (((x) & 0xf) << 16) #define GPD_EXT_NGP_EL(x) (((x) & 0xf) << 28) #define GPD_EXT_BUF_EL(x) (((x) & 0xf) << 24) #define GPD_EXT_NGP(mtu, x) \ ({ \ typeof(x) x_ = (x); \ ((mtu)->gen2cp) ? GPD_EXT_NGP_EL(x_) : GPD_EXT_NGP_OG(x_); \ }) #define GPD_EXT_BUF(mtu, x) \ ({ \ typeof(x) x_ = (x); \ ((mtu)->gen2cp) ? GPD_EXT_BUF_EL(x_) : GPD_EXT_BUF_OG(x_); \ }) #define HILO_GEN64(hi, lo) (((u64)(hi) << 32) + (lo)) #define HILO_DMA(hi, lo) \ ((dma_addr_t)HILO_GEN64((le32_to_cpu(hi)), (le32_to_cpu(lo)))) static dma_addr_t read_txq_cur_addr(void __iomem *mbase, u8 epnum) { u32 txcpr; u32 txhiar; txcpr = mtu3_readl(mbase, USB_QMU_TQCPR(epnum)); txhiar = mtu3_readl(mbase, USB_QMU_TQHIAR(epnum)); return HILO_DMA(QMU_CUR_GPD_ADDR_HI(txhiar), txcpr); } static dma_addr_t read_rxq_cur_addr(void __iomem *mbase, u8 epnum) { u32 rxcpr; u32 rxhiar; rxcpr = mtu3_readl(mbase, USB_QMU_RQCPR(epnum)); rxhiar = mtu3_readl(mbase, USB_QMU_RQHIAR(epnum)); return HILO_DMA(QMU_CUR_GPD_ADDR_HI(rxhiar), rxcpr); } static void write_txq_start_addr(void __iomem *mbase, u8 epnum, dma_addr_t dma) { u32 tqhiar; mtu3_writel(mbase, USB_QMU_TQSAR(epnum), cpu_to_le32(lower_32_bits(dma))); tqhiar = mtu3_readl(mbase, USB_QMU_TQHIAR(epnum)); tqhiar &= ~QMU_START_ADDR_HI_MSK; tqhiar |= QMU_START_ADDR_HI(upper_32_bits(dma)); mtu3_writel(mbase, USB_QMU_TQHIAR(epnum), tqhiar); } static void write_rxq_start_addr(void __iomem *mbase, u8 epnum, dma_addr_t dma) { u32 rqhiar; mtu3_writel(mbase, USB_QMU_RQSAR(epnum), cpu_to_le32(lower_32_bits(dma))); rqhiar = mtu3_readl(mbase, USB_QMU_RQHIAR(epnum)); rqhiar &= ~QMU_START_ADDR_HI_MSK; rqhiar |= QMU_START_ADDR_HI(upper_32_bits(dma)); mtu3_writel(mbase, USB_QMU_RQHIAR(epnum), rqhiar); } static struct qmu_gpd *gpd_dma_to_virt(struct mtu3_gpd_ring *ring, dma_addr_t dma_addr) { dma_addr_t dma_base = ring->dma; struct qmu_gpd *gpd_head = ring->start; u32 offset = (dma_addr - dma_base) / sizeof(*gpd_head); if (offset >= MAX_GPD_NUM) return NULL; return gpd_head + offset; } static dma_addr_t gpd_virt_to_dma(struct mtu3_gpd_ring *ring, struct qmu_gpd *gpd) { dma_addr_t dma_base = ring->dma; struct qmu_gpd *gpd_head = ring->start; u32 offset; offset = gpd - gpd_head; if (offset >= MAX_GPD_NUM) return 0; return dma_base + (offset * sizeof(*gpd)); } static void gpd_ring_init(struct mtu3_gpd_ring *ring, struct qmu_gpd *gpd) { ring->start = gpd; ring->enqueue = gpd; ring->dequeue = gpd; ring->end = gpd + MAX_GPD_NUM - 1; } static void reset_gpd_list(struct mtu3_ep *mep) { struct mtu3_gpd_ring *ring = &mep->gpd_ring; struct qmu_gpd *gpd = ring->start; if (gpd) { gpd->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO); gpd_ring_init(ring, gpd); } } int mtu3_gpd_ring_alloc(struct mtu3_ep *mep) { struct qmu_gpd *gpd; struct mtu3_gpd_ring *ring = &mep->gpd_ring; /* software own all gpds as default */ gpd = dma_pool_zalloc(mep->mtu->qmu_gpd_pool, GFP_ATOMIC, &ring->dma); if (gpd == NULL) return -ENOMEM; gpd_ring_init(ring, gpd); return 0; } void mtu3_gpd_ring_free(struct mtu3_ep *mep) { struct mtu3_gpd_ring *ring = &mep->gpd_ring; dma_pool_free(mep->mtu->qmu_gpd_pool, ring->start, ring->dma); memset(ring, 0, sizeof(*ring)); } void mtu3_qmu_resume(struct mtu3_ep *mep) { struct mtu3 *mtu = mep->mtu; void __iomem *mbase = mtu->mac_base; int epnum = mep->epnum; u32 offset; offset = mep->is_in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum); mtu3_writel(mbase, offset, QMU_Q_RESUME); if (!(mtu3_readl(mbase, offset) & QMU_Q_ACTIVE)) mtu3_writel(mbase, offset, QMU_Q_RESUME); } static struct qmu_gpd *advance_enq_gpd(struct mtu3_gpd_ring *ring) { if (ring->enqueue < ring->end) ring->enqueue++; else ring->enqueue = ring->start; return ring->enqueue; } static struct qmu_gpd *advance_deq_gpd(struct mtu3_gpd_ring *ring) { if (ring->dequeue < ring->end) ring->dequeue++; else ring->dequeue = ring->start; return ring->dequeue; } /* check if a ring is emtpy */ static int gpd_ring_empty(struct mtu3_gpd_ring *ring) { struct qmu_gpd *enq = ring->enqueue; struct qmu_gpd *next; if (ring->enqueue < ring->end) next = enq + 1; else next = ring->start; /* one gpd is reserved to simplify gpd preparation */ return next == ring->dequeue; } int mtu3_prepare_transfer(struct mtu3_ep *mep) { return gpd_ring_empty(&mep->gpd_ring); } static int mtu3_prepare_tx_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq) { struct qmu_gpd *enq; struct mtu3_gpd_ring *ring = &mep->gpd_ring; struct qmu_gpd *gpd = ring->enqueue; struct usb_request *req = &mreq->request; struct mtu3 *mtu = mep->mtu; dma_addr_t enq_dma; u32 ext_addr; gpd->dw0_info = 0; /* SW own it */ gpd->buffer = cpu_to_le32(lower_32_bits(req->dma)); ext_addr = GPD_EXT_BUF(mtu, upper_32_bits(req->dma)); gpd->dw3_info = cpu_to_le32(GPD_DATA_LEN(mtu, req->length)); /* get the next GPD */ enq = advance_enq_gpd(ring); enq_dma = gpd_virt_to_dma(ring, enq); dev_dbg(mep->mtu->dev, "TX-EP%d queue gpd=%p, enq=%p, qdma=%pad\n", mep->epnum, gpd, enq, &enq_dma); enq->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO); gpd->next_gpd = cpu_to_le32(lower_32_bits(enq_dma)); ext_addr |= GPD_EXT_NGP(mtu, upper_32_bits(enq_dma)); gpd->dw0_info = cpu_to_le32(ext_addr); if (req->zero) { if (mtu->gen2cp) gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_ZLP); else gpd->dw3_info |= cpu_to_le32(GPD_EXT_FLAG_ZLP); } gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_IOC | GPD_FLAGS_HWO); mreq->gpd = gpd; trace_mtu3_prepare_gpd(mep, gpd); return 0; } static int mtu3_prepare_rx_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq) { struct qmu_gpd *enq; struct mtu3_gpd_ring *ring = &mep->gpd_ring; struct qmu_gpd *gpd = ring->enqueue; struct usb_request *req = &mreq->request; struct mtu3 *mtu = mep->mtu; dma_addr_t enq_dma; u32 ext_addr; gpd->dw0_info = 0; /* SW own it */ gpd->buffer = cpu_to_le32(lower_32_bits(req->dma)); ext_addr = GPD_EXT_BUF(mtu, upper_32_bits(req->dma)); gpd->dw0_info = cpu_to_le32(GPD_RX_BUF_LEN(mtu, req->length)); /* get the next GPD */ enq = advance_enq_gpd(ring); enq_dma = gpd_virt_to_dma(ring, enq); dev_dbg(mep->mtu->dev, "RX-EP%d queue gpd=%p, enq=%p, qdma=%pad\n", mep->epnum, gpd, enq, &enq_dma); enq->dw0_info &= cpu_to_le32(~GPD_FLAGS_HWO); gpd->next_gpd = cpu_to_le32(lower_32_bits(enq_dma)); ext_addr |= GPD_EXT_NGP(mtu, upper_32_bits(enq_dma)); gpd->dw3_info = cpu_to_le32(ext_addr); gpd->dw0_info |= cpu_to_le32(GPD_FLAGS_IOC | GPD_FLAGS_HWO); mreq->gpd = gpd; trace_mtu3_prepare_gpd(mep, gpd); return 0; } void mtu3_insert_gpd(struct mtu3_ep *mep, struct mtu3_request *mreq) { if (mep->is_in) mtu3_prepare_tx_gpd(mep, mreq); else mtu3_prepare_rx_gpd(mep, mreq); } int mtu3_qmu_start(struct mtu3_ep *mep) { struct mtu3 *mtu = mep->mtu; void __iomem *mbase = mtu->mac_base; struct mtu3_gpd_ring *ring = &mep->gpd_ring; u8 epnum = mep->epnum; if (mep->is_in) { /* set QMU start address */ write_txq_start_addr(mbase, epnum, ring->dma); mtu3_setbits(mbase, MU3D_EP_TXCR0(epnum), TX_DMAREQEN); /* send zero length packet according to ZLP flag in GPD */ mtu3_setbits(mbase, U3D_QCR1, QMU_TX_ZLP(epnum)); mtu3_writel(mbase, U3D_TQERRIESR0, QMU_TX_LEN_ERR(epnum) | QMU_TX_CS_ERR(epnum)); if (mtu3_readl(mbase, USB_QMU_TQCSR(epnum)) & QMU_Q_ACTIVE) { dev_warn(mtu->dev, "Tx %d Active Now!\n", epnum); return 0; } mtu3_writel(mbase, USB_QMU_TQCSR(epnum), QMU_Q_START); } else { write_rxq_start_addr(mbase, epnum, ring->dma); mtu3_setbits(mbase, MU3D_EP_RXCR0(epnum), RX_DMAREQEN); /* don't expect ZLP */ mtu3_clrbits(mbase, U3D_QCR3, QMU_RX_ZLP(epnum)); /* move to next GPD when receive ZLP */ mtu3_setbits(mbase, U3D_QCR3, QMU_RX_COZ(epnum)); mtu3_writel(mbase, U3D_RQERRIESR0, QMU_RX_LEN_ERR(epnum) | QMU_RX_CS_ERR(epnum)); mtu3_writel(mbase, U3D_RQERRIESR1, QMU_RX_ZLP_ERR(epnum)); if (mtu3_readl(mbase, USB_QMU_RQCSR(epnum)) & QMU_Q_ACTIVE) { dev_warn(mtu->dev, "Rx %d Active Now!\n", epnum); return 0; } mtu3_writel(mbase, USB_QMU_RQCSR(epnum), QMU_Q_START); } return 0; } /* may called in atomic context */ void mtu3_qmu_stop(struct mtu3_ep *mep) { struct mtu3 *mtu = mep->mtu; void __iomem *mbase = mtu->mac_base; int epnum = mep->epnum; u32 value = 0; u32 qcsr; int ret; qcsr = mep->is_in ? USB_QMU_TQCSR(epnum) : USB_QMU_RQCSR(epnum); if (!(mtu3_readl(mbase, qcsr) & QMU_Q_ACTIVE)) { dev_dbg(mtu->dev, "%s's qmu is inactive now!\n", mep->name); return; } mtu3_writel(mbase, qcsr, QMU_Q_STOP); ret = readl_poll_timeout_atomic(mbase + qcsr, value, !(value & QMU_Q_ACTIVE), 1, 1000); if (ret) { dev_err(mtu->dev, "stop %s's qmu failed\n", mep->name); return; } dev_dbg(mtu->dev, "%s's qmu stop now!\n", mep->name); } void mtu3_qmu_flush(struct mtu3_ep *mep) { dev_dbg(mep->mtu->dev, "%s flush QMU %s\n", __func__, ((mep->is_in) ? "TX" : "RX")); /*Stop QMU */ mtu3_qmu_stop(mep); reset_gpd_list(mep); } /* * QMU can't transfer zero length packet directly (a hardware limit * on old SoCs), so when needs to send ZLP, we intentionally trigger * a length error interrupt, and in the ISR sends a ZLP by BMU. */ static void qmu_tx_zlp_error_handler(struct mtu3 *mtu, u8 epnum) { struct mtu3_ep *mep = mtu->in_eps + epnum; struct mtu3_gpd_ring *ring = &mep->gpd_ring; void __iomem *mbase = mtu->mac_base; struct qmu_gpd *gpd_current = NULL; struct mtu3_request *mreq; dma_addr_t cur_gpd_dma; u32 txcsr = 0; int ret; mreq = next_request(mep); if (mreq && mreq->request.length != 0) return; cur_gpd_dma = read_txq_cur_addr(mbase, epnum); gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma); if (GPD_DATA_LEN(mtu, le32_to_cpu(gpd_current->dw3_info)) != 0) { dev_err(mtu->dev, "TX EP%d buffer length error(!=0)\n", epnum); return; } dev_dbg(mtu->dev, "%s send ZLP for req=%p\n", __func__, mreq); trace_mtu3_zlp_exp_gpd(mep, gpd_current); mtu3_clrbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_DMAREQEN); ret = readl_poll_timeout_atomic(mbase + MU3D_EP_TXCR0(mep->epnum), txcsr, !(txcsr & TX_FIFOFULL), 1, 1000); if (ret) { dev_err(mtu->dev, "%s wait for fifo empty fail\n", __func__); return; } mtu3_setbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_TXPKTRDY); /* by pass the current GDP */ gpd_current->dw0_info |= cpu_to_le32(GPD_FLAGS_BPS | GPD_FLAGS_HWO); /*enable DMAREQEN, switch back to QMU mode */ mtu3_setbits(mbase, MU3D_EP_TXCR0(mep->epnum), TX_DMAREQEN); mtu3_qmu_resume(mep); } /* * NOTE: request list maybe is already empty as following case: * queue_tx --> qmu_interrupt(clear interrupt pending, schedule tasklet)--> * queue_tx --> process_tasklet(meanwhile, the second one is transferred, * tasklet process both of them)-->qmu_interrupt for second one. * To avoid upper case, put qmu_done_tx in ISR directly to process it. */ static void qmu_done_tx(struct mtu3 *mtu, u8 epnum) { struct mtu3_ep *mep = mtu->in_eps + epnum; struct mtu3_gpd_ring *ring = &mep->gpd_ring; void __iomem *mbase = mtu->mac_base; struct qmu_gpd *gpd = ring->dequeue; struct qmu_gpd *gpd_current = NULL; struct usb_request *request = NULL; struct mtu3_request *mreq; dma_addr_t cur_gpd_dma; /*transfer phy address got from QMU register to virtual address */ cur_gpd_dma = read_txq_cur_addr(mbase, epnum); gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma); dev_dbg(mtu->dev, "%s EP%d, last=%p, current=%p, enq=%p\n", __func__, epnum, gpd, gpd_current, ring->enqueue); while (gpd != gpd_current && !GET_GPD_HWO(gpd)) { mreq = next_request(mep); if (mreq == NULL || mreq->gpd != gpd) { dev_err(mtu->dev, "no correct TX req is found\n"); break; } request = &mreq->request; request->actual = GPD_DATA_LEN(mtu, le32_to_cpu(gpd->dw3_info)); trace_mtu3_complete_gpd(mep, gpd); mtu3_req_complete(mep, request, 0); gpd = advance_deq_gpd(ring); } dev_dbg(mtu->dev, "%s EP%d, deq=%p, enq=%p, complete\n", __func__, epnum, ring->dequeue, ring->enqueue); } static void qmu_done_rx(struct mtu3 *mtu, u8 epnum) { struct mtu3_ep *mep = mtu->out_eps + epnum; struct mtu3_gpd_ring *ring = &mep->gpd_ring; void __iomem *mbase = mtu->mac_base; struct qmu_gpd *gpd = ring->dequeue; struct qmu_gpd *gpd_current = NULL; struct usb_request *req = NULL; struct mtu3_request *mreq; dma_addr_t cur_gpd_dma; cur_gpd_dma = read_rxq_cur_addr(mbase, epnum); gpd_current = gpd_dma_to_virt(ring, cur_gpd_dma); dev_dbg(mtu->dev, "%s EP%d, last=%p, current=%p, enq=%p\n", __func__, epnum, gpd, gpd_current, ring->enqueue); while (gpd != gpd_current && !GET_GPD_HWO(gpd)) { mreq = next_request(mep); if (mreq == NULL || mreq->gpd != gpd) { dev_err(mtu->dev, "no correct RX req is found\n"); break; } req = &mreq->request; req->actual = GPD_DATA_LEN(mtu, le32_to_cpu(gpd->dw3_info)); trace_mtu3_complete_gpd(mep, gpd); mtu3_req_complete(mep, req, 0); gpd = advance_deq_gpd(ring); } dev_dbg(mtu->dev, "%s EP%d, deq=%p, enq=%p, complete\n", __func__, epnum, ring->dequeue, ring->enqueue); } static void qmu_done_isr(struct mtu3 *mtu, u32 done_status) { int i; for (i = 1; i < mtu->num_eps; i++) { if (done_status & QMU_RX_DONE_INT(i)) qmu_done_rx(mtu, i); if (done_status & QMU_TX_DONE_INT(i)) qmu_done_tx(mtu, i); } } static void qmu_exception_isr(struct mtu3 *mtu, u32 qmu_status) { void __iomem *mbase = mtu->mac_base; u32 errval; int i; if ((qmu_status & RXQ_CSERR_INT) || (qmu_status & RXQ_LENERR_INT)) { errval = mtu3_readl(mbase, U3D_RQERRIR0); for (i = 1; i < mtu->num_eps; i++) { if (errval & QMU_RX_CS_ERR(i)) dev_err(mtu->dev, "Rx %d CS error!\n", i); if (errval & QMU_RX_LEN_ERR(i)) dev_err(mtu->dev, "RX %d Length error\n", i); } mtu3_writel(mbase, U3D_RQERRIR0, errval); } if (qmu_status & RXQ_ZLPERR_INT) { errval = mtu3_readl(mbase, U3D_RQERRIR1); for (i = 1; i < mtu->num_eps; i++) { if (errval & QMU_RX_ZLP_ERR(i)) dev_dbg(mtu->dev, "RX EP%d Recv ZLP\n", i); } mtu3_writel(mbase, U3D_RQERRIR1, errval); } if ((qmu_status & TXQ_CSERR_INT) || (qmu_status & TXQ_LENERR_INT)) { errval = mtu3_readl(mbase, U3D_TQERRIR0); for (i = 1; i < mtu->num_eps; i++) { if (errval & QMU_TX_CS_ERR(i)) dev_err(mtu->dev, "Tx %d checksum error!\n", i); if (errval & QMU_TX_LEN_ERR(i)) qmu_tx_zlp_error_handler(mtu, i); } mtu3_writel(mbase, U3D_TQERRIR0, errval); } } irqreturn_t mtu3_qmu_isr(struct mtu3 *mtu) { void __iomem *mbase = mtu->mac_base; u32 qmu_status; u32 qmu_done_status; /* U3D_QISAR1 is read update */ qmu_status = mtu3_readl(mbase, U3D_QISAR1); qmu_status &= mtu3_readl(mbase, U3D_QIER1); qmu_done_status = mtu3_readl(mbase, U3D_QISAR0); qmu_done_status &= mtu3_readl(mbase, U3D_QIER0); mtu3_writel(mbase, U3D_QISAR0, qmu_done_status); /* W1C */ dev_dbg(mtu->dev, "=== QMUdone[tx=%x, rx=%x] QMUexp[%x] ===\n", (qmu_done_status & 0xFFFF), qmu_done_status >> 16, qmu_status); trace_mtu3_qmu_isr(qmu_done_status, qmu_status); if (qmu_done_status) qmu_done_isr(mtu, qmu_done_status); if (qmu_status) qmu_exception_isr(mtu, qmu_status); return IRQ_HANDLED; } int mtu3_qmu_init(struct mtu3 *mtu) { compiletime_assert(QMU_GPD_SIZE == 16, "QMU_GPD size SHOULD be 16B"); mtu->qmu_gpd_pool = dma_pool_create("QMU_GPD", mtu->dev, QMU_GPD_RING_SIZE, QMU_GPD_SIZE, 0); if (!mtu->qmu_gpd_pool) return -ENOMEM; return 0; } void mtu3_qmu_exit(struct mtu3 *mtu) { dma_pool_destroy(mtu->qmu_gpd_pool); }