/* SPDX-License-Identifier: GPL-2.0 */ #ifndef BTRFS_BLOCK_GROUP_H #define BTRFS_BLOCK_GROUP_H #include #include #include #include #include #include #include #include #include #include #include "free-space-cache.h" struct btrfs_chunk_map; struct btrfs_fs_info; struct btrfs_inode; struct btrfs_trans_handle; enum btrfs_disk_cache_state { BTRFS_DC_WRITTEN, BTRFS_DC_ERROR, BTRFS_DC_CLEAR, BTRFS_DC_SETUP, }; enum btrfs_block_group_size_class { /* Unset */ BTRFS_BG_SZ_NONE, /* 0 < size <= 128K */ BTRFS_BG_SZ_SMALL, /* 128K < size <= 8M */ BTRFS_BG_SZ_MEDIUM, /* 8M < size < BG_LENGTH */ BTRFS_BG_SZ_LARGE, }; /* * This describes the state of the block_group for async discard. This is due * to the two pass nature of it where extent discarding is prioritized over * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting * between lists to prevent contention for discard state variables * (eg. discard_cursor). */ enum btrfs_discard_state { BTRFS_DISCARD_EXTENTS, BTRFS_DISCARD_BITMAPS, BTRFS_DISCARD_RESET_CURSOR, }; /* * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to * only allocate a chunk if we really need one. * * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few * chunks already allocated. This is used as part of the clustering code to * help make sure we have a good pool of storage to cluster in, without filling * the FS with empty chunks * * CHUNK_ALLOC_FORCE means it must try to allocate one * * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from * find_free_extent() that also activaes the zone */ enum btrfs_chunk_alloc_enum { CHUNK_ALLOC_NO_FORCE, CHUNK_ALLOC_LIMITED, CHUNK_ALLOC_FORCE, CHUNK_ALLOC_FORCE_FOR_EXTENT, }; /* Block group flags set at runtime */ enum btrfs_block_group_flags { BLOCK_GROUP_FLAG_IREF, BLOCK_GROUP_FLAG_REMOVED, BLOCK_GROUP_FLAG_TO_COPY, BLOCK_GROUP_FLAG_RELOCATING_REPAIR, BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, /* Does the block group need to be added to the free space tree? */ BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, /* Indicate that the block group is placed on a sequential zone */ BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, /* * Indicate that block group is in the list of new block groups of a * transaction. */ BLOCK_GROUP_FLAG_NEW, }; enum btrfs_caching_type { BTRFS_CACHE_NO, BTRFS_CACHE_STARTED, BTRFS_CACHE_FINISHED, BTRFS_CACHE_ERROR, }; struct btrfs_caching_control { struct list_head list; struct mutex mutex; wait_queue_head_t wait; struct btrfs_work work; struct btrfs_block_group *block_group; /* Track progress of caching during allocation. */ atomic_t progress; refcount_t count; }; /* Once caching_thread() finds this much free space, it will wake up waiters. */ #define CACHING_CTL_WAKE_UP SZ_2M struct btrfs_block_group { struct btrfs_fs_info *fs_info; struct inode *inode; spinlock_t lock; u64 start; u64 length; u64 pinned; u64 reserved; u64 used; u64 delalloc_bytes; u64 bytes_super; u64 flags; u64 cache_generation; u64 global_root_id; /* * The last committed used bytes of this block group, if the above @used * is still the same as @commit_used, we don't need to update block * group item of this block group. */ u64 commit_used; /* * If the free space extent count exceeds this number, convert the block * group to bitmaps. */ u32 bitmap_high_thresh; /* * If the free space extent count drops below this number, convert the * block group back to extents. */ u32 bitmap_low_thresh; /* * It is just used for the delayed data space allocation because * only the data space allocation and the relative metadata update * can be done cross the transaction. */ struct rw_semaphore data_rwsem; /* For raid56, this is a full stripe, without parity */ unsigned long full_stripe_len; unsigned long runtime_flags; unsigned int ro; int disk_cache_state; /* Cache tracking stuff */ int cached; struct btrfs_caching_control *caching_ctl; struct btrfs_space_info *space_info; /* Free space cache stuff */ struct btrfs_free_space_ctl *free_space_ctl; /* Block group cache stuff */ struct rb_node cache_node; /* For block groups in the same raid type */ struct list_head list; refcount_t refs; /* * List of struct btrfs_free_clusters for this block group. * Today it will only have one thing on it, but that may change */ struct list_head cluster_list; /* * Used for several lists: * * 1) struct btrfs_fs_info::unused_bgs * 2) struct btrfs_fs_info::reclaim_bgs * 3) struct btrfs_transaction::deleted_bgs * 4) struct btrfs_trans_handle::new_bgs */ struct list_head bg_list; /* For read-only block groups */ struct list_head ro_list; /* * When non-zero it means the block group's logical address and its * device extents can not be reused for future block group allocations * until the counter goes down to 0. This is to prevent them from being * reused while some task is still using the block group after it was * deleted - we want to make sure they can only be reused for new block * groups after that task is done with the deleted block group. */ atomic_t frozen; /* For discard operations */ struct list_head discard_list; int discard_index; u64 discard_eligible_time; u64 discard_cursor; enum btrfs_discard_state discard_state; /* For dirty block groups */ struct list_head dirty_list; struct list_head io_list; struct btrfs_io_ctl io_ctl; /* * Incremented when doing extent allocations and holding a read lock * on the space_info's groups_sem semaphore. * Decremented when an ordered extent that represents an IO against this * block group's range is created (after it's added to its inode's * root's list of ordered extents) or immediately after the allocation * if it's a metadata extent or fallocate extent (for these cases we * don't create ordered extents). */ atomic_t reservations; /* * Incremented while holding the spinlock *lock* by a task checking if * it can perform a nocow write (incremented if the value for the *ro* * field is 0). Decremented by such tasks once they create an ordered * extent or before that if some error happens before reaching that step. * This is to prevent races between block group relocation and nocow * writes through direct IO. */ atomic_t nocow_writers; /* Lock for free space tree operations. */ struct mutex free_space_lock; /* * Number of extents in this block group used for swap files. * All accesses protected by the spinlock 'lock'. */ int swap_extents; /* * Allocation offset for the block group to implement sequential * allocation. This is used only on a zoned filesystem. */ u64 alloc_offset; u64 zone_unusable; u64 zone_capacity; u64 meta_write_pointer; struct btrfs_chunk_map *physical_map; struct list_head active_bg_list; struct work_struct zone_finish_work; struct extent_buffer *last_eb; enum btrfs_block_group_size_class size_class; }; static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group) { return (block_group->start + block_group->length); } static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg) { lockdep_assert_held(&bg->lock); return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0); } static inline bool btrfs_is_block_group_data_only( struct btrfs_block_group *block_group) { /* * In mixed mode the fragmentation is expected to be high, lowering the * efficiency, so only proper data block groups are considered. */ return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA); } #ifdef CONFIG_BTRFS_DEBUG int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group); #endif struct btrfs_block_group *btrfs_lookup_first_block_group( struct btrfs_fs_info *info, u64 bytenr); struct btrfs_block_group *btrfs_lookup_block_group( struct btrfs_fs_info *info, u64 bytenr); struct btrfs_block_group *btrfs_next_block_group( struct btrfs_block_group *cache); void btrfs_get_block_group(struct btrfs_block_group *cache); void btrfs_put_block_group(struct btrfs_block_group *cache); void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, const u64 start); void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg); struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr); void btrfs_dec_nocow_writers(struct btrfs_block_group *bg); void btrfs_wait_nocow_writers(struct btrfs_block_group *bg); void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, u64 num_bytes); int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait); struct btrfs_caching_control *btrfs_get_caching_control( struct btrfs_block_group *cache); int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end, u64 *total_added_ret); struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( struct btrfs_fs_info *fs_info, const u64 chunk_offset); int btrfs_remove_block_group(struct btrfs_trans_handle *trans, struct btrfs_chunk_map *map); void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); void btrfs_mark_bg_unused(struct btrfs_block_group *bg); void btrfs_reclaim_bgs_work(struct work_struct *work); void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info); void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg); int btrfs_read_block_groups(struct btrfs_fs_info *info); struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 type, u64 chunk_offset, u64 size); void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans); int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, bool do_chunk_alloc); void btrfs_dec_block_group_ro(struct btrfs_block_group *cache); int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans); int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans); int btrfs_setup_space_cache(struct btrfs_trans_handle *trans); int btrfs_update_block_group(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, bool alloc); int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, u64 ram_bytes, u64 num_bytes, int delalloc, bool force_wrong_size_class); void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes, int delalloc); int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, enum btrfs_chunk_alloc_enum force); int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type); void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type); void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans, bool is_item_insertion); u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags); void btrfs_put_block_group_cache(struct btrfs_fs_info *info); int btrfs_free_block_groups(struct btrfs_fs_info *info); int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, u64 physical, u64 **logical, int *naddrs, int *stripe_len); static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); } static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); } static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) { return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); } static inline int btrfs_block_group_done(struct btrfs_block_group *cache) { smp_mb(); return cache->cached == BTRFS_CACHE_FINISHED || cache->cached == BTRFS_CACHE_ERROR; } void btrfs_freeze_block_group(struct btrfs_block_group *cache); void btrfs_unfreeze_block_group(struct btrfs_block_group *cache); bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg); void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount); enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size); int btrfs_use_block_group_size_class(struct btrfs_block_group *bg, enum btrfs_block_group_size_class size_class, bool force_wrong_size_class); bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg); #endif /* BTRFS_BLOCK_GROUP_H */