// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2019 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_trace.h" #include "xfs_sysctl.h" #include "xfs_pwork.h" #include /* * Parallel Work Queue * =================== * * Abstract away the details of running a large and "obviously" parallelizable * task across multiple CPUs. Callers initialize the pwork control object with * a desired level of parallelization and a work function. Next, they embed * struct xfs_pwork in whatever structure they use to pass work context to a * worker thread and queue that pwork. The work function will be passed the * pwork item when it is run (from process context) and any returned error will * be recorded in xfs_pwork_ctl.error. Work functions should check for errors * and abort if necessary; the non-zeroness of xfs_pwork_ctl.error does not * stop workqueue item processing. * * This is the rough equivalent of the xfsprogs workqueue code, though we can't * reuse that name here. */ /* Invoke our caller's function. */ static void xfs_pwork_work( struct work_struct *work) { struct xfs_pwork *pwork; struct xfs_pwork_ctl *pctl; int error; pwork = container_of(work, struct xfs_pwork, work); pctl = pwork->pctl; error = pctl->work_fn(pctl->mp, pwork); if (error && !pctl->error) pctl->error = error; if (atomic_dec_and_test(&pctl->nr_work)) wake_up(&pctl->poll_wait); } /* * Set up control data for parallel work. @work_fn is the function that will * be called. @tag will be written into the kernel threads. @nr_threads is * the level of parallelism desired, or 0 for no limit. */ int xfs_pwork_init( struct xfs_mount *mp, struct xfs_pwork_ctl *pctl, xfs_pwork_work_fn work_fn, const char *tag, unsigned int nr_threads) { #ifdef DEBUG if (xfs_globals.pwork_threads >= 0) nr_threads = xfs_globals.pwork_threads; #endif trace_xfs_pwork_init(mp, nr_threads, current->pid); pctl->wq = alloc_workqueue("%s-%d", WQ_FREEZABLE, nr_threads, tag, current->pid); if (!pctl->wq) return -ENOMEM; pctl->work_fn = work_fn; pctl->error = 0; pctl->mp = mp; atomic_set(&pctl->nr_work, 0); init_waitqueue_head(&pctl->poll_wait); return 0; } /* Queue some parallel work. */ void xfs_pwork_queue( struct xfs_pwork_ctl *pctl, struct xfs_pwork *pwork) { INIT_WORK(&pwork->work, xfs_pwork_work); pwork->pctl = pctl; atomic_inc(&pctl->nr_work); queue_work(pctl->wq, &pwork->work); } /* Wait for the work to finish and tear down the control structure. */ int xfs_pwork_destroy( struct xfs_pwork_ctl *pctl) { destroy_workqueue(pctl->wq); pctl->wq = NULL; return pctl->error; } /* * Wait for the work to finish by polling completion status and touch the soft * lockup watchdog. This is for callers such as mount which hold locks. */ void xfs_pwork_poll( struct xfs_pwork_ctl *pctl) { while (wait_event_timeout(pctl->poll_wait, atomic_read(&pctl->nr_work) == 0, HZ) == 0) touch_softlockup_watchdog(); } /* * Return the amount of parallelism that the data device can handle, or 0 for * no limit. */ unsigned int xfs_pwork_guess_datadev_parallelism( struct xfs_mount *mp) { struct xfs_buftarg *btp = mp->m_ddev_targp; /* * For now we'll go with the most conservative setting possible, * which is two threads for an SSD and 1 thread everywhere else. */ return blk_queue_nonrot(btp->bt_bdev->bd_queue) ? 2 : 1; }