/* SPDX-License-Identifier: GPL-2.0 * * linux/sound/soc.h -- ALSA SoC Layer * * Author: Liam Girdwood * Created: Aug 11th 2005 * Copyright: Wolfson Microelectronics. PLC. */ #ifndef __LINUX_SND_SOC_H #define __LINUX_SND_SOC_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Convenience kcontrol builders */ #define SOC_DOUBLE_VALUE(xreg, shift_left, shift_right, xmax, xinvert, xautodisable) \ ((unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .rreg = xreg, .shift = shift_left, \ .rshift = shift_right, .max = xmax, .platform_max = xmax, \ .invert = xinvert, .autodisable = xautodisable}) #define SOC_DOUBLE_S_VALUE(xreg, shift_left, shift_right, xmin, xmax, xsign_bit, xinvert, xautodisable) \ ((unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .rreg = xreg, .shift = shift_left, \ .rshift = shift_right, .min = xmin, .max = xmax, .platform_max = xmax, \ .sign_bit = xsign_bit, .invert = xinvert, .autodisable = xautodisable}) #define SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert, xautodisable) \ SOC_DOUBLE_VALUE(xreg, xshift, xshift, xmax, xinvert, xautodisable) #define SOC_SINGLE_VALUE_EXT(xreg, xmax, xinvert) \ ((unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .max = xmax, .platform_max = xmax, .invert = xinvert}) #define SOC_DOUBLE_R_VALUE(xlreg, xrreg, xshift, xmax, xinvert) \ ((unsigned long)&(struct soc_mixer_control) \ {.reg = xlreg, .rreg = xrreg, .shift = xshift, .rshift = xshift, \ .max = xmax, .platform_max = xmax, .invert = xinvert}) #define SOC_DOUBLE_R_S_VALUE(xlreg, xrreg, xshift, xmin, xmax, xsign_bit, xinvert) \ ((unsigned long)&(struct soc_mixer_control) \ {.reg = xlreg, .rreg = xrreg, .shift = xshift, .rshift = xshift, \ .max = xmax, .min = xmin, .platform_max = xmax, .sign_bit = xsign_bit, \ .invert = xinvert}) #define SOC_DOUBLE_R_RANGE_VALUE(xlreg, xrreg, xshift, xmin, xmax, xinvert) \ ((unsigned long)&(struct soc_mixer_control) \ {.reg = xlreg, .rreg = xrreg, .shift = xshift, .rshift = xshift, \ .min = xmin, .max = xmax, .platform_max = xmax, .invert = xinvert}) #define SOC_SINGLE(xname, reg, shift, max, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ .put = snd_soc_put_volsw, \ .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert, 0) } #define SOC_SINGLE_RANGE(xname, xreg, xshift, xmin, xmax, xinvert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .info = snd_soc_info_volsw_range, .get = snd_soc_get_volsw_range, \ .put = snd_soc_put_volsw_range, \ .private_value = (unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .rreg = xreg, .shift = xshift, \ .rshift = xshift, .min = xmin, .max = xmax, \ .platform_max = xmax, .invert = xinvert} } #define SOC_SINGLE_TLV(xname, reg, shift, max, invert, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ SNDRV_CTL_ELEM_ACCESS_READWRITE,\ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ .put = snd_soc_put_volsw, \ .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert, 0) } #define SOC_SINGLE_SX_TLV(xname, xreg, xshift, xmin, xmax, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .tlv.p = (tlv_array),\ .info = snd_soc_info_volsw_sx, \ .get = snd_soc_get_volsw_sx,\ .put = snd_soc_put_volsw_sx, \ .private_value = (unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .rreg = xreg, \ .shift = xshift, .rshift = xshift, \ .max = xmax, .min = xmin} } #define SOC_SINGLE_RANGE_TLV(xname, xreg, xshift, xmin, xmax, xinvert, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ SNDRV_CTL_ELEM_ACCESS_READWRITE,\ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw_range, \ .get = snd_soc_get_volsw_range, .put = snd_soc_put_volsw_range, \ .private_value = (unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .rreg = xreg, .shift = xshift, \ .rshift = xshift, .min = xmin, .max = xmax, \ .platform_max = xmax, .invert = xinvert} } #define SOC_DOUBLE(xname, reg, shift_left, shift_right, max, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \ .put = snd_soc_put_volsw, \ .private_value = SOC_DOUBLE_VALUE(reg, shift_left, shift_right, \ max, invert, 0) } #define SOC_DOUBLE_STS(xname, reg, shift_left, shift_right, max, invert) \ { \ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \ .access = SNDRV_CTL_ELEM_ACCESS_READ | \ SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ .private_value = SOC_DOUBLE_VALUE(reg, shift_left, shift_right, \ max, invert, 0) } #define SOC_DOUBLE_R(xname, reg_left, reg_right, xshift, xmax, xinvert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .info = snd_soc_info_volsw, \ .get = snd_soc_get_volsw, .put = snd_soc_put_volsw, \ .private_value = SOC_DOUBLE_R_VALUE(reg_left, reg_right, xshift, \ xmax, xinvert) } #define SOC_DOUBLE_R_RANGE(xname, reg_left, reg_right, xshift, xmin, \ xmax, xinvert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .info = snd_soc_info_volsw_range, \ .get = snd_soc_get_volsw_range, .put = snd_soc_put_volsw_range, \ .private_value = SOC_DOUBLE_R_RANGE_VALUE(reg_left, reg_right, \ xshift, xmin, xmax, xinvert) } #define SOC_DOUBLE_TLV(xname, reg, shift_left, shift_right, max, invert, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ SNDRV_CTL_ELEM_ACCESS_READWRITE,\ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, .get = snd_soc_get_volsw, \ .put = snd_soc_put_volsw, \ .private_value = SOC_DOUBLE_VALUE(reg, shift_left, shift_right, \ max, invert, 0) } #define SOC_DOUBLE_R_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ SNDRV_CTL_ELEM_ACCESS_READWRITE,\ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, \ .get = snd_soc_get_volsw, .put = snd_soc_put_volsw, \ .private_value = SOC_DOUBLE_R_VALUE(reg_left, reg_right, xshift, \ xmax, xinvert) } #define SOC_DOUBLE_R_RANGE_TLV(xname, reg_left, reg_right, xshift, xmin, \ xmax, xinvert, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ SNDRV_CTL_ELEM_ACCESS_READWRITE,\ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw_range, \ .get = snd_soc_get_volsw_range, .put = snd_soc_put_volsw_range, \ .private_value = SOC_DOUBLE_R_RANGE_VALUE(reg_left, reg_right, \ xshift, xmin, xmax, xinvert) } #define SOC_DOUBLE_R_SX_TLV(xname, xreg, xrreg, xshift, xmin, xmax, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw_sx, \ .get = snd_soc_get_volsw_sx, \ .put = snd_soc_put_volsw_sx, \ .private_value = (unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .rreg = xrreg, \ .shift = xshift, .rshift = xshift, \ .max = xmax, .min = xmin} } #define SOC_DOUBLE_R_S_TLV(xname, reg_left, reg_right, xshift, xmin, xmax, xsign_bit, xinvert, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ SNDRV_CTL_ELEM_ACCESS_READWRITE,\ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, \ .get = snd_soc_get_volsw, .put = snd_soc_put_volsw, \ .private_value = SOC_DOUBLE_R_S_VALUE(reg_left, reg_right, xshift, \ xmin, xmax, xsign_bit, xinvert) } #define SOC_SINGLE_S8_TLV(xname, xreg, xmin, xmax, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ .put = snd_soc_put_volsw, \ .private_value = (unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .rreg = xreg, \ .min = xmin, .max = xmax, .platform_max = xmax, \ .sign_bit = 7,} } #define SOC_DOUBLE_S8_TLV(xname, xreg, xmin, xmax, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ .put = snd_soc_put_volsw, \ .private_value = SOC_DOUBLE_S_VALUE(xreg, 0, 8, xmin, xmax, 7, 0, 0) } #define SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xitems, xtexts) \ { .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r, \ .items = xitems, .texts = xtexts, \ .mask = xitems ? roundup_pow_of_two(xitems) - 1 : 0} #define SOC_ENUM_SINGLE(xreg, xshift, xitems, xtexts) \ SOC_ENUM_DOUBLE(xreg, xshift, xshift, xitems, xtexts) #define SOC_ENUM_SINGLE_EXT(xitems, xtexts) \ { .items = xitems, .texts = xtexts } #define SOC_VALUE_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, xitems, xtexts, xvalues) \ { .reg = xreg, .shift_l = xshift_l, .shift_r = xshift_r, \ .mask = xmask, .items = xitems, .texts = xtexts, .values = xvalues} #define SOC_VALUE_ENUM_SINGLE(xreg, xshift, xmask, xitems, xtexts, xvalues) \ SOC_VALUE_ENUM_DOUBLE(xreg, xshift, xshift, xmask, xitems, xtexts, xvalues) #define SOC_VALUE_ENUM_SINGLE_AUTODISABLE(xreg, xshift, xmask, xitems, xtexts, xvalues) \ { .reg = xreg, .shift_l = xshift, .shift_r = xshift, \ .mask = xmask, .items = xitems, .texts = xtexts, \ .values = xvalues, .autodisable = 1} #define SOC_ENUM_SINGLE_VIRT(xitems, xtexts) \ SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, xitems, xtexts) #define SOC_ENUM(xname, xenum) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,\ .info = snd_soc_info_enum_double, \ .get = snd_soc_get_enum_double, .put = snd_soc_put_enum_double, \ .private_value = (unsigned long)&xenum } #define SOC_SINGLE_EXT(xname, xreg, xshift, xmax, xinvert,\ xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_volsw, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert, 0) } #define SOC_DOUBLE_EXT(xname, reg, shift_left, shift_right, max, invert,\ xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .info = snd_soc_info_volsw, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = \ SOC_DOUBLE_VALUE(reg, shift_left, shift_right, max, invert, 0) } #define SOC_DOUBLE_R_EXT(xname, reg_left, reg_right, xshift, xmax, xinvert,\ xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .info = snd_soc_info_volsw, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = SOC_DOUBLE_R_VALUE(reg_left, reg_right, xshift, \ xmax, xinvert) } #define SOC_SINGLE_EXT_TLV(xname, xreg, xshift, xmax, xinvert,\ xhandler_get, xhandler_put, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ SNDRV_CTL_ELEM_ACCESS_READWRITE,\ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = SOC_SINGLE_VALUE(xreg, xshift, xmax, xinvert, 0) } #define SOC_SINGLE_RANGE_EXT_TLV(xname, xreg, xshift, xmin, xmax, xinvert, \ xhandler_get, xhandler_put, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),\ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |\ SNDRV_CTL_ELEM_ACCESS_READWRITE,\ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw_range, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = (unsigned long)&(struct soc_mixer_control) \ {.reg = xreg, .rreg = xreg, .shift = xshift, \ .rshift = xshift, .min = xmin, .max = xmax, \ .platform_max = xmax, .invert = xinvert} } #define SOC_DOUBLE_EXT_TLV(xname, xreg, shift_left, shift_right, xmax, xinvert,\ xhandler_get, xhandler_put, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = SOC_DOUBLE_VALUE(xreg, shift_left, shift_right, \ xmax, xinvert, 0) } #define SOC_DOUBLE_R_EXT_TLV(xname, reg_left, reg_right, xshift, xmax, xinvert,\ xhandler_get, xhandler_put, tlv_array) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \ SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .tlv.p = (tlv_array), \ .info = snd_soc_info_volsw, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = SOC_DOUBLE_R_VALUE(reg_left, reg_right, xshift, \ xmax, xinvert) } #define SOC_SINGLE_BOOL_EXT(xname, xdata, xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_bool_ext, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = xdata } #define SOC_ENUM_EXT(xname, xenum, xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_enum_double, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = (unsigned long)&xenum } #define SOC_VALUE_ENUM_EXT(xname, xenum, xhandler_get, xhandler_put) \ SOC_ENUM_EXT(xname, xenum, xhandler_get, xhandler_put) #define SND_SOC_BYTES(xname, xbase, xregs) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_bytes_info, .get = snd_soc_bytes_get, \ .put = snd_soc_bytes_put, .private_value = \ ((unsigned long)&(struct soc_bytes) \ {.base = xbase, .num_regs = xregs }) } #define SND_SOC_BYTES_E(xname, xbase, xregs, xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_bytes_info, .get = xhandler_get, \ .put = xhandler_put, .private_value = \ ((unsigned long)&(struct soc_bytes) \ {.base = xbase, .num_regs = xregs }) } #define SND_SOC_BYTES_MASK(xname, xbase, xregs, xmask) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_bytes_info, .get = snd_soc_bytes_get, \ .put = snd_soc_bytes_put, .private_value = \ ((unsigned long)&(struct soc_bytes) \ {.base = xbase, .num_regs = xregs, \ .mask = xmask }) } /* * SND_SOC_BYTES_EXT is deprecated, please USE SND_SOC_BYTES_TLV instead */ #define SND_SOC_BYTES_EXT(xname, xcount, xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_bytes_info_ext, \ .get = xhandler_get, .put = xhandler_put, \ .private_value = (unsigned long)&(struct soc_bytes_ext) \ {.max = xcount} } #define SND_SOC_BYTES_TLV(xname, xcount, xhandler_get, xhandler_put) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .access = SNDRV_CTL_ELEM_ACCESS_TLV_READWRITE | \ SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, \ .tlv.c = (snd_soc_bytes_tlv_callback), \ .info = snd_soc_bytes_info_ext, \ .private_value = (unsigned long)&(struct soc_bytes_ext) \ {.max = xcount, .get = xhandler_get, .put = xhandler_put, } } #define SOC_SINGLE_XR_SX(xname, xregbase, xregcount, xnbits, \ xmin, xmax, xinvert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \ .info = snd_soc_info_xr_sx, .get = snd_soc_get_xr_sx, \ .put = snd_soc_put_xr_sx, \ .private_value = (unsigned long)&(struct soc_mreg_control) \ {.regbase = xregbase, .regcount = xregcount, .nbits = xnbits, \ .invert = xinvert, .min = xmin, .max = xmax} } #define SOC_SINGLE_STROBE(xname, xreg, xshift, xinvert) \ SOC_SINGLE_EXT(xname, xreg, xshift, 1, xinvert, \ snd_soc_get_strobe, snd_soc_put_strobe) /* * Simplified versions of above macros, declaring a struct and calculating * ARRAY_SIZE internally */ #define SOC_ENUM_DOUBLE_DECL(name, xreg, xshift_l, xshift_r, xtexts) \ const struct soc_enum name = SOC_ENUM_DOUBLE(xreg, xshift_l, xshift_r, \ ARRAY_SIZE(xtexts), xtexts) #define SOC_ENUM_SINGLE_DECL(name, xreg, xshift, xtexts) \ SOC_ENUM_DOUBLE_DECL(name, xreg, xshift, xshift, xtexts) #define SOC_ENUM_SINGLE_EXT_DECL(name, xtexts) \ const struct soc_enum name = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(xtexts), xtexts) #define SOC_VALUE_ENUM_DOUBLE_DECL(name, xreg, xshift_l, xshift_r, xmask, xtexts, xvalues) \ const struct soc_enum name = SOC_VALUE_ENUM_DOUBLE(xreg, xshift_l, xshift_r, xmask, \ ARRAY_SIZE(xtexts), xtexts, xvalues) #define SOC_VALUE_ENUM_SINGLE_DECL(name, xreg, xshift, xmask, xtexts, xvalues) \ SOC_VALUE_ENUM_DOUBLE_DECL(name, xreg, xshift, xshift, xmask, xtexts, xvalues) #define SOC_VALUE_ENUM_SINGLE_AUTODISABLE_DECL(name, xreg, xshift, xmask, xtexts, xvalues) \ const struct soc_enum name = SOC_VALUE_ENUM_SINGLE_AUTODISABLE(xreg, \ xshift, xmask, ARRAY_SIZE(xtexts), xtexts, xvalues) #define SOC_ENUM_SINGLE_VIRT_DECL(name, xtexts) \ const struct soc_enum name = SOC_ENUM_SINGLE_VIRT(ARRAY_SIZE(xtexts), xtexts) /* * Bias levels * * @ON: Bias is fully on for audio playback and capture operations. * @PREPARE: Prepare for audio operations. Called before DAPM switching for * stream start and stop operations. * @STANDBY: Low power standby state when no playback/capture operations are * in progress. NOTE: The transition time between STANDBY and ON * should be as fast as possible and no longer than 10ms. * @OFF: Power Off. No restrictions on transition times. */ enum snd_soc_bias_level { SND_SOC_BIAS_OFF = 0, SND_SOC_BIAS_STANDBY = 1, SND_SOC_BIAS_PREPARE = 2, SND_SOC_BIAS_ON = 3, }; struct device_node; struct snd_jack; struct snd_soc_card; struct snd_soc_pcm_stream; struct snd_soc_ops; struct snd_soc_pcm_runtime; struct snd_soc_dai; struct snd_soc_dai_driver; struct snd_soc_dai_link; struct snd_soc_component; struct snd_soc_component_driver; struct soc_enum; struct snd_soc_jack; struct snd_soc_jack_zone; struct snd_soc_jack_pin; #include #include #include struct snd_soc_jack_gpio; typedef int (*hw_write_t)(void *,const char* ,int); enum snd_soc_pcm_subclass { SND_SOC_PCM_CLASS_PCM = 0, SND_SOC_PCM_CLASS_BE = 1, }; int snd_soc_register_card(struct snd_soc_card *card); int snd_soc_unregister_card(struct snd_soc_card *card); int devm_snd_soc_register_card(struct device *dev, struct snd_soc_card *card); #ifdef CONFIG_PM_SLEEP int snd_soc_suspend(struct device *dev); int snd_soc_resume(struct device *dev); #else static inline int snd_soc_suspend(struct device *dev) { return 0; } static inline int snd_soc_resume(struct device *dev) { return 0; } #endif int snd_soc_poweroff(struct device *dev); int snd_soc_add_component(struct device *dev, struct snd_soc_component *component, const struct snd_soc_component_driver *component_driver, struct snd_soc_dai_driver *dai_drv, int num_dai); int snd_soc_register_component(struct device *dev, const struct snd_soc_component_driver *component_driver, struct snd_soc_dai_driver *dai_drv, int num_dai); int devm_snd_soc_register_component(struct device *dev, const struct snd_soc_component_driver *component_driver, struct snd_soc_dai_driver *dai_drv, int num_dai); void snd_soc_unregister_component(struct device *dev); struct snd_soc_component *snd_soc_lookup_component(struct device *dev, const char *driver_name); int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num); #ifdef CONFIG_SND_SOC_COMPRESS int snd_soc_new_compress(struct snd_soc_pcm_runtime *rtd, int num); #else static inline int snd_soc_new_compress(struct snd_soc_pcm_runtime *rtd, int num) { return 0; } #endif void snd_soc_disconnect_sync(struct device *dev); struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card, struct snd_soc_dai_link *dai_link); bool snd_soc_runtime_ignore_pmdown_time(struct snd_soc_pcm_runtime *rtd); void snd_soc_runtime_action(struct snd_soc_pcm_runtime *rtd, int stream, int action); static inline void snd_soc_runtime_activate(struct snd_soc_pcm_runtime *rtd, int stream) { snd_soc_runtime_action(rtd, stream, 1); } static inline void snd_soc_runtime_deactivate(struct snd_soc_pcm_runtime *rtd, int stream) { snd_soc_runtime_action(rtd, stream, -1); } int snd_soc_runtime_calc_hw(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hardware *hw, int stream); int snd_soc_runtime_set_dai_fmt(struct snd_soc_pcm_runtime *rtd, unsigned int dai_fmt); #ifdef CONFIG_DMI int snd_soc_set_dmi_name(struct snd_soc_card *card, const char *flavour); #else static inline int snd_soc_set_dmi_name(struct snd_soc_card *card, const char *flavour) { return 0; } #endif /* Utility functions to get clock rates from various things */ int snd_soc_calc_frame_size(int sample_size, int channels, int tdm_slots); int snd_soc_params_to_frame_size(struct snd_pcm_hw_params *params); int snd_soc_calc_bclk(int fs, int sample_size, int channels, int tdm_slots); int snd_soc_params_to_bclk(struct snd_pcm_hw_params *parms); /* set runtime hw params */ int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream, const struct snd_pcm_hardware *hw); /* Jack reporting */ void snd_soc_jack_report(struct snd_soc_jack *jack, int status, int mask); int snd_soc_jack_add_pins(struct snd_soc_jack *jack, int count, struct snd_soc_jack_pin *pins); void snd_soc_jack_notifier_register(struct snd_soc_jack *jack, struct notifier_block *nb); void snd_soc_jack_notifier_unregister(struct snd_soc_jack *jack, struct notifier_block *nb); int snd_soc_jack_add_zones(struct snd_soc_jack *jack, int count, struct snd_soc_jack_zone *zones); int snd_soc_jack_get_type(struct snd_soc_jack *jack, int micbias_voltage); #ifdef CONFIG_GPIOLIB int snd_soc_jack_add_gpios(struct snd_soc_jack *jack, int count, struct snd_soc_jack_gpio *gpios); int snd_soc_jack_add_gpiods(struct device *gpiod_dev, struct snd_soc_jack *jack, int count, struct snd_soc_jack_gpio *gpios); void snd_soc_jack_free_gpios(struct snd_soc_jack *jack, int count, struct snd_soc_jack_gpio *gpios); #else static inline int snd_soc_jack_add_gpios(struct snd_soc_jack *jack, int count, struct snd_soc_jack_gpio *gpios) { return 0; } static inline int snd_soc_jack_add_gpiods(struct device *gpiod_dev, struct snd_soc_jack *jack, int count, struct snd_soc_jack_gpio *gpios) { return 0; } static inline void snd_soc_jack_free_gpios(struct snd_soc_jack *jack, int count, struct snd_soc_jack_gpio *gpios) { } #endif struct snd_ac97 *snd_soc_alloc_ac97_component(struct snd_soc_component *component); struct snd_ac97 *snd_soc_new_ac97_component(struct snd_soc_component *component, unsigned int id, unsigned int id_mask); void snd_soc_free_ac97_component(struct snd_ac97 *ac97); #ifdef CONFIG_SND_SOC_AC97_BUS int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops); int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops, struct platform_device *pdev); extern struct snd_ac97_bus_ops *soc_ac97_ops; #else static inline int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops, struct platform_device *pdev) { return 0; } static inline int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops) { return 0; } #endif /* *Controls */ struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template, void *data, const char *long_name, const char *prefix); int snd_soc_add_component_controls(struct snd_soc_component *component, const struct snd_kcontrol_new *controls, unsigned int num_controls); int snd_soc_add_card_controls(struct snd_soc_card *soc_card, const struct snd_kcontrol_new *controls, int num_controls); int snd_soc_add_dai_controls(struct snd_soc_dai *dai, const struct snd_kcontrol_new *controls, int num_controls); int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo); int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo); int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo); #define snd_soc_info_bool_ext snd_ctl_boolean_mono_info int snd_soc_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); #define snd_soc_get_volsw_2r snd_soc_get_volsw #define snd_soc_put_volsw_2r snd_soc_put_volsw int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo); int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_limit_volume(struct snd_soc_card *card, const char *name, int max); int snd_soc_bytes_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo); int snd_soc_bytes_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_bytes_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *ucontrol); int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *tlv); int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo); int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_get_strobe(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); int snd_soc_put_strobe(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol); /** * struct snd_soc_jack_pin - Describes a pin to update based on jack detection * * @pin: name of the pin to update * @mask: bits to check for in reported jack status * @invert: if non-zero then pin is enabled when status is not reported * @list: internal list entry */ struct snd_soc_jack_pin { struct list_head list; const char *pin; int mask; bool invert; }; /** * struct snd_soc_jack_zone - Describes voltage zones of jack detection * * @min_mv: start voltage in mv * @max_mv: end voltage in mv * @jack_type: type of jack that is expected for this voltage * @debounce_time: debounce_time for jack, codec driver should wait for this * duration before reading the adc for voltages * @list: internal list entry */ struct snd_soc_jack_zone { unsigned int min_mv; unsigned int max_mv; unsigned int jack_type; unsigned int debounce_time; struct list_head list; }; /** * struct snd_soc_jack_gpio - Describes a gpio pin for jack detection * * @gpio: legacy gpio number * @idx: gpio descriptor index within the function of the GPIO * consumer device * @gpiod_dev: GPIO consumer device * @name: gpio name. Also as connection ID for the GPIO consumer * device function name lookup * @report: value to report when jack detected * @invert: report presence in low state * @debounce_time: debounce time in ms * @wake: enable as wake source * @jack_status_check: callback function which overrides the detection * to provide more complex checks (eg, reading an * ADC). */ struct snd_soc_jack_gpio { unsigned int gpio; unsigned int idx; struct device *gpiod_dev; const char *name; int report; int invert; int debounce_time; bool wake; /* private: */ struct snd_soc_jack *jack; struct delayed_work work; struct notifier_block pm_notifier; struct gpio_desc *desc; void *data; /* public: */ int (*jack_status_check)(void *data); }; struct snd_soc_jack { struct mutex mutex; struct snd_jack *jack; struct snd_soc_card *card; struct list_head pins; int status; struct blocking_notifier_head notifier; struct list_head jack_zones; }; /* SoC PCM stream information */ struct snd_soc_pcm_stream { const char *stream_name; u64 formats; /* SNDRV_PCM_FMTBIT_* */ unsigned int rates; /* SNDRV_PCM_RATE_* */ unsigned int rate_min; /* min rate */ unsigned int rate_max; /* max rate */ unsigned int channels_min; /* min channels */ unsigned int channels_max; /* max channels */ unsigned int sig_bits; /* number of bits of content */ }; /* SoC audio ops */ struct snd_soc_ops { int (*startup)(struct snd_pcm_substream *); void (*shutdown)(struct snd_pcm_substream *); int (*hw_params)(struct snd_pcm_substream *, struct snd_pcm_hw_params *); int (*hw_free)(struct snd_pcm_substream *); int (*prepare)(struct snd_pcm_substream *); int (*trigger)(struct snd_pcm_substream *, int); }; struct snd_soc_compr_ops { int (*startup)(struct snd_compr_stream *); void (*shutdown)(struct snd_compr_stream *); int (*set_params)(struct snd_compr_stream *); int (*trigger)(struct snd_compr_stream *); }; struct snd_soc_component* snd_soc_rtdcom_lookup(struct snd_soc_pcm_runtime *rtd, const char *driver_name); struct snd_soc_dai_link_component { const char *name; struct device_node *of_node; const char *dai_name; }; struct snd_soc_dai_link { /* config - must be set by machine driver */ const char *name; /* Codec name */ const char *stream_name; /* Stream name */ /* * You MAY specify the link's CPU-side device, either by device name, * or by DT/OF node, but not both. If this information is omitted, * the CPU-side DAI is matched using .cpu_dai_name only, which hence * must be globally unique. These fields are currently typically used * only for codec to codec links, or systems using device tree. */ /* * You MAY specify the DAI name of the CPU DAI. If this information is * omitted, the CPU-side DAI is matched using .cpu_name/.cpu_of_node * only, which only works well when that device exposes a single DAI. */ struct snd_soc_dai_link_component *cpus; unsigned int num_cpus; /* * You MUST specify the link's codec, either by device name, or by * DT/OF node, but not both. */ /* You MUST specify the DAI name within the codec */ struct snd_soc_dai_link_component *codecs; unsigned int num_codecs; /* * You MAY specify the link's platform/PCM/DMA driver, either by * device name, or by DT/OF node, but not both. Some forms of link * do not need a platform. In such case, platforms are not mandatory. */ struct snd_soc_dai_link_component *platforms; unsigned int num_platforms; int id; /* optional ID for machine driver link identification */ const struct snd_soc_pcm_stream *params; unsigned int num_params; unsigned int dai_fmt; /* format to set on init */ enum snd_soc_dpcm_trigger trigger[2]; /* trigger type for DPCM */ /* codec/machine specific init - e.g. add machine controls */ int (*init)(struct snd_soc_pcm_runtime *rtd); /* optional hw_params re-writing for BE and FE sync */ int (*be_hw_params_fixup)(struct snd_soc_pcm_runtime *rtd, struct snd_pcm_hw_params *params); /* machine stream operations */ const struct snd_soc_ops *ops; const struct snd_soc_compr_ops *compr_ops; /* Mark this pcm with non atomic ops */ unsigned int nonatomic:1; /* For unidirectional dai links */ unsigned int playback_only:1; unsigned int capture_only:1; /* Keep DAI active over suspend */ unsigned int ignore_suspend:1; /* Symmetry requirements */ unsigned int symmetric_rates:1; unsigned int symmetric_channels:1; unsigned int symmetric_samplebits:1; /* Do not create a PCM for this DAI link (Backend link) */ unsigned int no_pcm:1; /* This DAI link can route to other DAI links at runtime (Frontend)*/ unsigned int dynamic:1; /* DPCM capture and Playback support */ unsigned int dpcm_capture:1; unsigned int dpcm_playback:1; /* DPCM used FE & BE merged format */ unsigned int dpcm_merged_format:1; /* DPCM used FE & BE merged channel */ unsigned int dpcm_merged_chan:1; /* DPCM used FE & BE merged rate */ unsigned int dpcm_merged_rate:1; /* pmdown_time is ignored at stop */ unsigned int ignore_pmdown_time:1; /* Do not create a PCM for this DAI link (Backend link) */ unsigned int ignore:1; #ifdef CONFIG_SND_SOC_TOPOLOGY struct snd_soc_dobj dobj; /* For topology */ #endif }; #define for_each_link_codecs(link, i, codec) \ for ((i) = 0; \ ((i) < link->num_codecs) && ((codec) = &link->codecs[i]); \ (i)++) #define for_each_link_platforms(link, i, platform) \ for ((i) = 0; \ ((i) < link->num_platforms) && \ ((platform) = &link->platforms[i]); \ (i)++) #define for_each_link_cpus(link, i, cpu) \ for ((i) = 0; \ ((i) < link->num_cpus) && ((cpu) = &link->cpus[i]); \ (i)++) /* * Sample 1 : Single CPU/Codec/Platform * * SND_SOC_DAILINK_DEFS(test, * DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai")), * DAILINK_COMP_ARRAY(COMP_CODEC("codec", "codec_dai")), * DAILINK_COMP_ARRAY(COMP_PLATFORM("platform"))); * * struct snd_soc_dai_link link = { * ... * SND_SOC_DAILINK_REG(test), * }; * * Sample 2 : Multi CPU/Codec, no Platform * * SND_SOC_DAILINK_DEFS(test, * DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai1"), * COMP_CPU("cpu_dai2")), * DAILINK_COMP_ARRAY(COMP_CODEC("codec1", "codec_dai1"), * COMP_CODEC("codec2", "codec_dai2"))); * * struct snd_soc_dai_link link = { * ... * SND_SOC_DAILINK_REG(test), * }; * * Sample 3 : Define each CPU/Codec/Platform manually * * SND_SOC_DAILINK_DEF(test_cpu, * DAILINK_COMP_ARRAY(COMP_CPU("cpu_dai1"), * COMP_CPU("cpu_dai2"))); * SND_SOC_DAILINK_DEF(test_codec, * DAILINK_COMP_ARRAY(COMP_CODEC("codec1", "codec_dai1"), * COMP_CODEC("codec2", "codec_dai2"))); * SND_SOC_DAILINK_DEF(test_platform, * DAILINK_COMP_ARRAY(COMP_PLATFORM("platform"))); * * struct snd_soc_dai_link link = { * ... * SND_SOC_DAILINK_REG(test_cpu, * test_codec, * test_platform), * }; * * Sample 4 : Sample3 without platform * * struct snd_soc_dai_link link = { * ... * SND_SOC_DAILINK_REG(test_cpu, * test_codec); * }; */ #define SND_SOC_DAILINK_REG1(name) SND_SOC_DAILINK_REG3(name##_cpus, name##_codecs, name##_platforms) #define SND_SOC_DAILINK_REG2(cpu, codec) SND_SOC_DAILINK_REG3(cpu, codec, null_dailink_component) #define SND_SOC_DAILINK_REG3(cpu, codec, platform) \ .cpus = cpu, \ .num_cpus = ARRAY_SIZE(cpu), \ .codecs = codec, \ .num_codecs = ARRAY_SIZE(codec), \ .platforms = platform, \ .num_platforms = ARRAY_SIZE(platform) #define SND_SOC_DAILINK_REGx(_1, _2, _3, func, ...) func #define SND_SOC_DAILINK_REG(...) \ SND_SOC_DAILINK_REGx(__VA_ARGS__, \ SND_SOC_DAILINK_REG3, \ SND_SOC_DAILINK_REG2, \ SND_SOC_DAILINK_REG1)(__VA_ARGS__) #define SND_SOC_DAILINK_DEF(name, def...) \ static struct snd_soc_dai_link_component name[] = { def } #define SND_SOC_DAILINK_DEFS(name, cpu, codec, platform...) \ SND_SOC_DAILINK_DEF(name##_cpus, cpu); \ SND_SOC_DAILINK_DEF(name##_codecs, codec); \ SND_SOC_DAILINK_DEF(name##_platforms, platform) #define DAILINK_COMP_ARRAY(param...) param #define COMP_EMPTY() { } #define COMP_CPU(_dai) { .dai_name = _dai, } #define COMP_CODEC(_name, _dai) { .name = _name, .dai_name = _dai, } #define COMP_PLATFORM(_name) { .name = _name } #define COMP_AUX(_name) { .name = _name } #define COMP_CODEC_CONF(_name) { .name = _name } #define COMP_DUMMY() { .name = "snd-soc-dummy", .dai_name = "snd-soc-dummy-dai", } extern struct snd_soc_dai_link_component null_dailink_component[0]; struct snd_soc_codec_conf { /* * specify device either by device name, or by * DT/OF node, but not both. */ struct snd_soc_dai_link_component dlc; /* * optional map of kcontrol, widget and path name prefixes that are * associated per device */ const char *name_prefix; }; struct snd_soc_aux_dev { /* * specify multi-codec either by device name, or by * DT/OF node, but not both. */ struct snd_soc_dai_link_component dlc; /* codec/machine specific init - e.g. add machine controls */ int (*init)(struct snd_soc_component *component); }; /* SoC card */ struct snd_soc_card { const char *name; const char *long_name; const char *driver_name; const char *components; #ifdef CONFIG_DMI char dmi_longname[80]; #endif /* CONFIG_DMI */ char topology_shortname[32]; struct device *dev; struct snd_card *snd_card; struct module *owner; struct mutex mutex; struct mutex dapm_mutex; /* Mutex for PCM operations */ struct mutex pcm_mutex; enum snd_soc_pcm_subclass pcm_subclass; spinlock_t dpcm_lock; int (*probe)(struct snd_soc_card *card); int (*late_probe)(struct snd_soc_card *card); int (*remove)(struct snd_soc_card *card); /* the pre and post PM functions are used to do any PM work before and * after the codec and DAI's do any PM work. */ int (*suspend_pre)(struct snd_soc_card *card); int (*suspend_post)(struct snd_soc_card *card); int (*resume_pre)(struct snd_soc_card *card); int (*resume_post)(struct snd_soc_card *card); /* callbacks */ int (*set_bias_level)(struct snd_soc_card *, struct snd_soc_dapm_context *dapm, enum snd_soc_bias_level level); int (*set_bias_level_post)(struct snd_soc_card *, struct snd_soc_dapm_context *dapm, enum snd_soc_bias_level level); int (*add_dai_link)(struct snd_soc_card *, struct snd_soc_dai_link *link); void (*remove_dai_link)(struct snd_soc_card *, struct snd_soc_dai_link *link); long pmdown_time; /* CPU <--> Codec DAI links */ struct snd_soc_dai_link *dai_link; /* predefined links only */ int num_links; /* predefined links only */ struct list_head rtd_list; int num_rtd; /* optional codec specific configuration */ struct snd_soc_codec_conf *codec_conf; int num_configs; /* * optional auxiliary devices such as amplifiers or codecs with DAI * link unused */ struct snd_soc_aux_dev *aux_dev; int num_aux_devs; struct list_head aux_comp_list; const struct snd_kcontrol_new *controls; int num_controls; /* * Card-specific routes and widgets. * Note: of_dapm_xxx for Device Tree; Otherwise for driver build-in. */ const struct snd_soc_dapm_widget *dapm_widgets; int num_dapm_widgets; const struct snd_soc_dapm_route *dapm_routes; int num_dapm_routes; const struct snd_soc_dapm_widget *of_dapm_widgets; int num_of_dapm_widgets; const struct snd_soc_dapm_route *of_dapm_routes; int num_of_dapm_routes; /* lists of probed devices belonging to this card */ struct list_head component_dev_list; struct list_head list; struct list_head widgets; struct list_head paths; struct list_head dapm_list; struct list_head dapm_dirty; /* attached dynamic objects */ struct list_head dobj_list; /* Generic DAPM context for the card */ struct snd_soc_dapm_context dapm; struct snd_soc_dapm_stats dapm_stats; struct snd_soc_dapm_update *update; #ifdef CONFIG_DEBUG_FS struct dentry *debugfs_card_root; #endif #ifdef CONFIG_PM_SLEEP struct work_struct deferred_resume_work; #endif u32 pop_time; /* bit field */ unsigned int instantiated:1; unsigned int topology_shortname_created:1; unsigned int fully_routed:1; unsigned int disable_route_checks:1; unsigned int probed:1; void *drvdata; }; #define for_each_card_prelinks(card, i, link) \ for ((i) = 0; \ ((i) < (card)->num_links) && ((link) = &(card)->dai_link[i]); \ (i)++) #define for_each_card_pre_auxs(card, i, aux) \ for ((i) = 0; \ ((i) < (card)->num_aux_devs) && ((aux) = &(card)->aux_dev[i]); \ (i)++) #define for_each_card_rtds(card, rtd) \ list_for_each_entry(rtd, &(card)->rtd_list, list) #define for_each_card_rtds_safe(card, rtd, _rtd) \ list_for_each_entry_safe(rtd, _rtd, &(card)->rtd_list, list) #define for_each_card_auxs(card, component) \ list_for_each_entry(component, &card->aux_comp_list, card_aux_list) #define for_each_card_auxs_safe(card, component, _comp) \ list_for_each_entry_safe(component, _comp, \ &card->aux_comp_list, card_aux_list) #define for_each_card_components(card, component) \ list_for_each_entry(component, &(card)->component_dev_list, card_list) #define for_each_card_dapms(card, dapm) \ list_for_each_entry(dapm, &card->dapm_list, list) #define for_each_card_widgets(card, w)\ list_for_each_entry(w, &card->widgets, list) #define for_each_card_widgets_safe(card, w, _w) \ list_for_each_entry_safe(w, _w, &card->widgets, list) /* SoC machine DAI configuration, glues a codec and cpu DAI together */ struct snd_soc_pcm_runtime { struct device *dev; struct snd_soc_card *card; struct snd_soc_dai_link *dai_link; struct snd_pcm_ops ops; unsigned int params_select; /* currently selected param for dai link */ /* Dynamic PCM BE runtime data */ struct snd_soc_dpcm_runtime dpcm[2]; long pmdown_time; /* runtime devices */ struct snd_pcm *pcm; struct snd_compr *compr; /* * dais = cpu_dai + codec_dai * see * soc_new_pcm_runtime() * asoc_rtd_to_cpu() * asoc_rtd_to_codec() */ struct snd_soc_dai **dais; unsigned int num_codecs; unsigned int num_cpus; struct snd_soc_dapm_widget *playback_widget; struct snd_soc_dapm_widget *capture_widget; struct delayed_work delayed_work; void (*close_delayed_work_func)(struct snd_soc_pcm_runtime *rtd); #ifdef CONFIG_DEBUG_FS struct dentry *debugfs_dpcm_root; #endif unsigned int num; /* 0-based and monotonic increasing */ struct list_head list; /* rtd list of the soc card */ /* bit field */ unsigned int pop_wait:1; unsigned int fe_compr:1; /* for Dynamic PCM */ int num_components; struct snd_soc_component *components[]; /* CPU/Codec/Platform */ }; /* see soc_new_pcm_runtime() */ #define asoc_rtd_to_cpu(rtd, n) (rtd)->dais[n] #define asoc_rtd_to_codec(rtd, n) (rtd)->dais[n + (rtd)->num_cpus] #define for_each_rtd_components(rtd, i, component) \ for ((i) = 0, component = NULL; \ ((i) < rtd->num_components) && ((component) = rtd->components[i]);\ (i)++) #define for_each_rtd_cpu_dais(rtd, i, dai) \ for ((i) = 0; \ ((i) < rtd->num_cpus) && ((dai) = asoc_rtd_to_cpu(rtd, i)); \ (i)++) #define for_each_rtd_cpu_dais_rollback(rtd, i, dai) \ for (; (--(i) >= 0) && ((dai) = asoc_rtd_to_cpu(rtd, i));) #define for_each_rtd_codec_dais(rtd, i, dai) \ for ((i) = 0; \ ((i) < rtd->num_codecs) && ((dai) = asoc_rtd_to_codec(rtd, i)); \ (i)++) #define for_each_rtd_codec_dais_rollback(rtd, i, dai) \ for (; (--(i) >= 0) && ((dai) = asoc_rtd_to_codec(rtd, i));) #define for_each_rtd_dais(rtd, i, dai) \ for ((i) = 0; \ ((i) < (rtd)->num_cpus + (rtd)->num_codecs) && \ ((dai) = (rtd)->dais[i]); \ (i)++) void snd_soc_close_delayed_work(struct snd_soc_pcm_runtime *rtd); /* mixer control */ struct soc_mixer_control { int min, max, platform_max; int reg, rreg; unsigned int shift, rshift; unsigned int sign_bit; unsigned int invert:1; unsigned int autodisable:1; #ifdef CONFIG_SND_SOC_TOPOLOGY struct snd_soc_dobj dobj; #endif }; struct soc_bytes { int base; int num_regs; u32 mask; }; struct soc_bytes_ext { int max; #ifdef CONFIG_SND_SOC_TOPOLOGY struct snd_soc_dobj dobj; #endif /* used for TLV byte control */ int (*get)(struct snd_kcontrol *kcontrol, unsigned int __user *bytes, unsigned int size); int (*put)(struct snd_kcontrol *kcontrol, const unsigned int __user *bytes, unsigned int size); }; /* multi register control */ struct soc_mreg_control { long min, max; unsigned int regbase, regcount, nbits, invert; }; /* enumerated kcontrol */ struct soc_enum { int reg; unsigned char shift_l; unsigned char shift_r; unsigned int items; unsigned int mask; const char * const *texts; const unsigned int *values; unsigned int autodisable:1; #ifdef CONFIG_SND_SOC_TOPOLOGY struct snd_soc_dobj dobj; #endif }; static inline bool snd_soc_volsw_is_stereo(struct soc_mixer_control *mc) { if (mc->reg == mc->rreg && mc->shift == mc->rshift) return false; /* * mc->reg == mc->rreg && mc->shift != mc->rshift, or * mc->reg != mc->rreg means that the control is * stereo (bits in one register or in two registers) */ return true; } static inline unsigned int snd_soc_enum_val_to_item(struct soc_enum *e, unsigned int val) { unsigned int i; if (!e->values) return val; for (i = 0; i < e->items; i++) if (val == e->values[i]) return i; return 0; } static inline unsigned int snd_soc_enum_item_to_val(struct soc_enum *e, unsigned int item) { if (!e->values) return item; return e->values[item]; } /** * snd_soc_kcontrol_component() - Returns the component that registered the * control * @kcontrol: The control for which to get the component * * Note: This function will work correctly if the control has been registered * for a component. With snd_soc_add_codec_controls() or via table based * setup for either a CODEC or component driver. Otherwise the behavior is * undefined. */ static inline struct snd_soc_component *snd_soc_kcontrol_component( struct snd_kcontrol *kcontrol) { return snd_kcontrol_chip(kcontrol); } int snd_soc_util_init(void); void snd_soc_util_exit(void); int snd_soc_of_parse_card_name(struct snd_soc_card *card, const char *propname); int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card, const char *propname); int snd_soc_of_get_slot_mask(struct device_node *np, const char *prop_name, unsigned int *mask); int snd_soc_of_parse_tdm_slot(struct device_node *np, unsigned int *tx_mask, unsigned int *rx_mask, unsigned int *slots, unsigned int *slot_width); void snd_soc_of_parse_node_prefix(struct device_node *np, struct snd_soc_codec_conf *codec_conf, struct device_node *of_node, const char *propname); static inline void snd_soc_of_parse_audio_prefix(struct snd_soc_card *card, struct snd_soc_codec_conf *codec_conf, struct device_node *of_node, const char *propname) { snd_soc_of_parse_node_prefix(card->dev->of_node, codec_conf, of_node, propname); } int snd_soc_of_parse_audio_routing(struct snd_soc_card *card, const char *propname); unsigned int snd_soc_of_parse_daifmt(struct device_node *np, const char *prefix, struct device_node **bitclkmaster, struct device_node **framemaster); int snd_soc_get_dai_id(struct device_node *ep); int snd_soc_get_dai_name(struct of_phandle_args *args, const char **dai_name); int snd_soc_of_get_dai_name(struct device_node *of_node, const char **dai_name); int snd_soc_of_get_dai_link_codecs(struct device *dev, struct device_node *of_node, struct snd_soc_dai_link *dai_link); void snd_soc_of_put_dai_link_codecs(struct snd_soc_dai_link *dai_link); int snd_soc_add_pcm_runtime(struct snd_soc_card *card, struct snd_soc_dai_link *dai_link); void snd_soc_remove_pcm_runtime(struct snd_soc_card *card, struct snd_soc_pcm_runtime *rtd); struct snd_soc_dai *snd_soc_register_dai(struct snd_soc_component *component, struct snd_soc_dai_driver *dai_drv, bool legacy_dai_naming); void snd_soc_unregister_dai(struct snd_soc_dai *dai); struct snd_soc_dai *snd_soc_find_dai( const struct snd_soc_dai_link_component *dlc); #include static inline int snd_soc_fixup_dai_links_platform_name(struct snd_soc_card *card, const char *platform_name) { struct snd_soc_dai_link *dai_link; const char *name; int i; if (!platform_name) /* nothing to do */ return 0; /* set platform name for each dailink */ for_each_card_prelinks(card, i, dai_link) { name = devm_kstrdup(card->dev, platform_name, GFP_KERNEL); if (!name) return -ENOMEM; if (!dai_link->platforms) return -EINVAL; /* only single platform is supported for now */ dai_link->platforms->name = name; } return 0; } #ifdef CONFIG_DEBUG_FS extern struct dentry *snd_soc_debugfs_root; #endif extern const struct dev_pm_ops snd_soc_pm_ops; /* Helper functions */ static inline void snd_soc_dapm_mutex_lock(struct snd_soc_dapm_context *dapm) { mutex_lock_nested(&dapm->card->dapm_mutex, SND_SOC_DAPM_CLASS_RUNTIME); } static inline void snd_soc_dapm_mutex_unlock(struct snd_soc_dapm_context *dapm) { mutex_unlock(&dapm->card->dapm_mutex); } #include #include #endif