// SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2019, Intel Corporation. */ #define pr_fmt(fmt) "MPTCP: " fmt #include #include #include #include "protocol.h" static struct workqueue_struct *pm_wq; /* path manager command handlers */ int mptcp_pm_announce_addr(struct mptcp_sock *msk, const struct mptcp_addr_info *addr) { pr_debug("msk=%p, local_id=%d", msk, addr->id); msk->pm.local = *addr; WRITE_ONCE(msk->pm.addr_signal, true); return 0; } int mptcp_pm_remove_addr(struct mptcp_sock *msk, u8 local_id) { return -ENOTSUPP; } int mptcp_pm_remove_subflow(struct mptcp_sock *msk, u8 remote_id) { return -ENOTSUPP; } /* path manager event handlers */ void mptcp_pm_new_connection(struct mptcp_sock *msk, int server_side) { struct mptcp_pm_data *pm = &msk->pm; pr_debug("msk=%p, token=%u side=%d", msk, msk->token, server_side); WRITE_ONCE(pm->server_side, server_side); } bool mptcp_pm_allow_new_subflow(struct mptcp_sock *msk) { struct mptcp_pm_data *pm = &msk->pm; int ret; pr_debug("msk=%p subflows=%d max=%d allow=%d", msk, pm->subflows, pm->subflows_max, READ_ONCE(pm->accept_subflow)); /* try to avoid acquiring the lock below */ if (!READ_ONCE(pm->accept_subflow)) return false; spin_lock_bh(&pm->lock); ret = pm->subflows < pm->subflows_max; if (ret && ++pm->subflows == pm->subflows_max) WRITE_ONCE(pm->accept_subflow, false); spin_unlock_bh(&pm->lock); return ret; } /* return true if the new status bit is currently cleared, that is, this event * can be server, eventually by an already scheduled work */ static bool mptcp_pm_schedule_work(struct mptcp_sock *msk, enum mptcp_pm_status new_status) { pr_debug("msk=%p status=%x new=%lx", msk, msk->pm.status, BIT(new_status)); if (msk->pm.status & BIT(new_status)) return false; msk->pm.status |= BIT(new_status); if (queue_work(pm_wq, &msk->pm.work)) sock_hold((struct sock *)msk); return true; } void mptcp_pm_fully_established(struct mptcp_sock *msk) { struct mptcp_pm_data *pm = &msk->pm; pr_debug("msk=%p", msk); /* try to avoid acquiring the lock below */ if (!READ_ONCE(pm->work_pending)) return; spin_lock_bh(&pm->lock); if (READ_ONCE(pm->work_pending)) mptcp_pm_schedule_work(msk, MPTCP_PM_ESTABLISHED); spin_unlock_bh(&pm->lock); } void mptcp_pm_connection_closed(struct mptcp_sock *msk) { pr_debug("msk=%p", msk); } void mptcp_pm_subflow_established(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow) { struct mptcp_pm_data *pm = &msk->pm; pr_debug("msk=%p", msk); if (!READ_ONCE(pm->work_pending)) return; spin_lock_bh(&pm->lock); if (READ_ONCE(pm->work_pending)) mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED); spin_unlock_bh(&pm->lock); } void mptcp_pm_subflow_closed(struct mptcp_sock *msk, u8 id) { pr_debug("msk=%p", msk); } void mptcp_pm_add_addr_received(struct mptcp_sock *msk, const struct mptcp_addr_info *addr) { struct mptcp_pm_data *pm = &msk->pm; pr_debug("msk=%p remote_id=%d accept=%d", msk, addr->id, READ_ONCE(pm->accept_addr)); /* avoid acquiring the lock if there is no room for fouther addresses */ if (!READ_ONCE(pm->accept_addr)) return; spin_lock_bh(&pm->lock); /* be sure there is something to signal re-checking under PM lock */ if (READ_ONCE(pm->accept_addr) && mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_RECEIVED)) pm->remote = *addr; spin_unlock_bh(&pm->lock); } /* path manager helpers */ bool mptcp_pm_addr_signal(struct mptcp_sock *msk, unsigned int remaining, struct mptcp_addr_info *saddr) { int ret = false; spin_lock_bh(&msk->pm.lock); /* double check after the lock is acquired */ if (!mptcp_pm_should_signal(msk)) goto out_unlock; if (remaining < mptcp_add_addr_len(msk->pm.local.family)) goto out_unlock; *saddr = msk->pm.local; WRITE_ONCE(msk->pm.addr_signal, false); ret = true; out_unlock: spin_unlock_bh(&msk->pm.lock); return ret; } int mptcp_pm_get_local_id(struct mptcp_sock *msk, struct sock_common *skc) { return mptcp_pm_nl_get_local_id(msk, skc); } static void pm_worker(struct work_struct *work) { struct mptcp_pm_data *pm = container_of(work, struct mptcp_pm_data, work); struct mptcp_sock *msk = container_of(pm, struct mptcp_sock, pm); struct sock *sk = (struct sock *)msk; lock_sock(sk); spin_lock_bh(&msk->pm.lock); pr_debug("msk=%p status=%x", msk, pm->status); if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) { pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED); mptcp_pm_nl_add_addr_received(msk); } if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) { pm->status &= ~BIT(MPTCP_PM_ESTABLISHED); mptcp_pm_nl_fully_established(msk); } if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) { pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED); mptcp_pm_nl_subflow_established(msk); } spin_unlock_bh(&msk->pm.lock); release_sock(sk); sock_put(sk); } void mptcp_pm_data_init(struct mptcp_sock *msk) { msk->pm.add_addr_signaled = 0; msk->pm.add_addr_accepted = 0; msk->pm.local_addr_used = 0; msk->pm.subflows = 0; WRITE_ONCE(msk->pm.work_pending, false); WRITE_ONCE(msk->pm.addr_signal, false); WRITE_ONCE(msk->pm.accept_addr, false); WRITE_ONCE(msk->pm.accept_subflow, false); msk->pm.status = 0; spin_lock_init(&msk->pm.lock); INIT_WORK(&msk->pm.work, pm_worker); mptcp_pm_nl_data_init(msk); } void mptcp_pm_close(struct mptcp_sock *msk) { if (cancel_work_sync(&msk->pm.work)) sock_put((struct sock *)msk); } void mptcp_pm_init(void) { pm_wq = alloc_workqueue("pm_wq", WQ_UNBOUND | WQ_MEM_RECLAIM, 8); if (!pm_wq) panic("Failed to allocate workqueue"); mptcp_pm_nl_init(); }