// SPDX-License-Identifier: GPL-2.0-or-later /* Copyright 2020 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned int gate_net_id; static struct tc_action_ops act_gate_ops; static ktime_t gate_get_time(struct tcf_gate *gact) { ktime_t mono = ktime_get(); switch (gact->tk_offset) { case TK_OFFS_MAX: return mono; default: return ktime_mono_to_any(mono, gact->tk_offset); } return KTIME_MAX; } static void gate_get_start_time(struct tcf_gate *gact, ktime_t *start) { struct tcf_gate_params *param = &gact->param; ktime_t now, base, cycle; u64 n; base = ns_to_ktime(param->tcfg_basetime); now = gate_get_time(gact); if (ktime_after(base, now)) { *start = base; return; } cycle = param->tcfg_cycletime; n = div64_u64(ktime_sub_ns(now, base), cycle); *start = ktime_add_ns(base, (n + 1) * cycle); } static void gate_start_timer(struct tcf_gate *gact, ktime_t start) { ktime_t expires; expires = hrtimer_get_expires(&gact->hitimer); if (expires == 0) expires = KTIME_MAX; start = min_t(ktime_t, start, expires); hrtimer_start(&gact->hitimer, start, HRTIMER_MODE_ABS_SOFT); } static enum hrtimer_restart gate_timer_func(struct hrtimer *timer) { struct tcf_gate *gact = container_of(timer, struct tcf_gate, hitimer); struct tcf_gate_params *p = &gact->param; struct tcfg_gate_entry *next; ktime_t close_time, now; spin_lock(&gact->tcf_lock); next = gact->next_entry; /* cycle start, clear pending bit, clear total octets */ gact->current_gate_status = next->gate_state ? GATE_ACT_GATE_OPEN : 0; gact->current_entry_octets = 0; gact->current_max_octets = next->maxoctets; gact->current_close_time = ktime_add_ns(gact->current_close_time, next->interval); close_time = gact->current_close_time; if (list_is_last(&next->list, &p->entries)) next = list_first_entry(&p->entries, struct tcfg_gate_entry, list); else next = list_next_entry(next, list); now = gate_get_time(gact); if (ktime_after(now, close_time)) { ktime_t cycle, base; u64 n; cycle = p->tcfg_cycletime; base = ns_to_ktime(p->tcfg_basetime); n = div64_u64(ktime_sub_ns(now, base), cycle); close_time = ktime_add_ns(base, (n + 1) * cycle); } gact->next_entry = next; hrtimer_set_expires(&gact->hitimer, close_time); spin_unlock(&gact->tcf_lock); return HRTIMER_RESTART; } static int tcf_gate_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_gate *gact = to_gate(a); spin_lock(&gact->tcf_lock); tcf_lastuse_update(&gact->tcf_tm); bstats_update(&gact->tcf_bstats, skb); if (unlikely(gact->current_gate_status & GATE_ACT_PENDING)) { spin_unlock(&gact->tcf_lock); return gact->tcf_action; } if (!(gact->current_gate_status & GATE_ACT_GATE_OPEN)) goto drop; if (gact->current_max_octets >= 0) { gact->current_entry_octets += qdisc_pkt_len(skb); if (gact->current_entry_octets > gact->current_max_octets) { gact->tcf_qstats.overlimits++; goto drop; } } spin_unlock(&gact->tcf_lock); return gact->tcf_action; drop: gact->tcf_qstats.drops++; spin_unlock(&gact->tcf_lock); return TC_ACT_SHOT; } static const struct nla_policy entry_policy[TCA_GATE_ENTRY_MAX + 1] = { [TCA_GATE_ENTRY_INDEX] = { .type = NLA_U32 }, [TCA_GATE_ENTRY_GATE] = { .type = NLA_FLAG }, [TCA_GATE_ENTRY_INTERVAL] = { .type = NLA_U32 }, [TCA_GATE_ENTRY_IPV] = { .type = NLA_S32 }, [TCA_GATE_ENTRY_MAX_OCTETS] = { .type = NLA_S32 }, }; static const struct nla_policy gate_policy[TCA_GATE_MAX + 1] = { [TCA_GATE_PARMS] = { .len = sizeof(struct tc_gate), .type = NLA_EXACT_LEN }, [TCA_GATE_PRIORITY] = { .type = NLA_S32 }, [TCA_GATE_ENTRY_LIST] = { .type = NLA_NESTED }, [TCA_GATE_BASE_TIME] = { .type = NLA_U64 }, [TCA_GATE_CYCLE_TIME] = { .type = NLA_U64 }, [TCA_GATE_CYCLE_TIME_EXT] = { .type = NLA_U64 }, [TCA_GATE_FLAGS] = { .type = NLA_U32 }, [TCA_GATE_CLOCKID] = { .type = NLA_S32 }, }; static int fill_gate_entry(struct nlattr **tb, struct tcfg_gate_entry *entry, struct netlink_ext_ack *extack) { u32 interval = 0; entry->gate_state = nla_get_flag(tb[TCA_GATE_ENTRY_GATE]); if (tb[TCA_GATE_ENTRY_INTERVAL]) interval = nla_get_u32(tb[TCA_GATE_ENTRY_INTERVAL]); if (interval == 0) { NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); return -EINVAL; } entry->interval = interval; if (tb[TCA_GATE_ENTRY_IPV]) entry->ipv = nla_get_s32(tb[TCA_GATE_ENTRY_IPV]); else entry->ipv = -1; if (tb[TCA_GATE_ENTRY_MAX_OCTETS]) entry->maxoctets = nla_get_s32(tb[TCA_GATE_ENTRY_MAX_OCTETS]); else entry->maxoctets = -1; return 0; } static int parse_gate_entry(struct nlattr *n, struct tcfg_gate_entry *entry, int index, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_GATE_ENTRY_MAX + 1] = { }; int err; err = nla_parse_nested(tb, TCA_GATE_ENTRY_MAX, n, entry_policy, extack); if (err < 0) { NL_SET_ERR_MSG(extack, "Could not parse nested entry"); return -EINVAL; } entry->index = index; return fill_gate_entry(tb, entry, extack); } static void release_entry_list(struct list_head *entries) { struct tcfg_gate_entry *entry, *e; list_for_each_entry_safe(entry, e, entries, list) { list_del(&entry->list); kfree(entry); } } static int parse_gate_list(struct nlattr *list_attr, struct tcf_gate_params *sched, struct netlink_ext_ack *extack) { struct tcfg_gate_entry *entry; struct nlattr *n; int err, rem; int i = 0; if (!list_attr) return -EINVAL; nla_for_each_nested(n, list_attr, rem) { if (nla_type(n) != TCA_GATE_ONE_ENTRY) { NL_SET_ERR_MSG(extack, "Attribute isn't type 'entry'"); continue; } entry = kzalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) { NL_SET_ERR_MSG(extack, "Not enough memory for entry"); err = -ENOMEM; goto release_list; } err = parse_gate_entry(n, entry, i, extack); if (err < 0) { kfree(entry); goto release_list; } list_add_tail(&entry->list, &sched->entries); i++; } sched->num_entries = i; return i; release_list: release_entry_list(&sched->entries); return err; } static void gate_setup_timer(struct tcf_gate *gact, u64 basetime, enum tk_offsets tko, s32 clockid, bool do_init) { if (!do_init) { if (basetime == gact->param.tcfg_basetime && tko == gact->tk_offset && clockid == gact->param.tcfg_clockid) return; spin_unlock_bh(&gact->tcf_lock); hrtimer_cancel(&gact->hitimer); spin_lock_bh(&gact->tcf_lock); } gact->param.tcfg_basetime = basetime; gact->param.tcfg_clockid = clockid; gact->tk_offset = tko; hrtimer_init(&gact->hitimer, clockid, HRTIMER_MODE_ABS_SOFT); gact->hitimer.function = gate_timer_func; } static int tcf_gate_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, int ovr, int bind, bool rtnl_held, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, gate_net_id); enum tk_offsets tk_offset = TK_OFFS_TAI; struct nlattr *tb[TCA_GATE_MAX + 1]; struct tcf_chain *goto_ch = NULL; u64 cycletime = 0, basetime = 0; struct tcf_gate_params *p; s32 clockid = CLOCK_TAI; struct tcf_gate *gact; struct tc_gate *parm; int ret = 0, err; u32 gflags = 0; s32 prio = -1; ktime_t start; u32 index; if (!nla) return -EINVAL; err = nla_parse_nested(tb, TCA_GATE_MAX, nla, gate_policy, extack); if (err < 0) return err; if (!tb[TCA_GATE_PARMS]) return -EINVAL; if (tb[TCA_GATE_CLOCKID]) { clockid = nla_get_s32(tb[TCA_GATE_CLOCKID]); switch (clockid) { case CLOCK_REALTIME: tk_offset = TK_OFFS_REAL; break; case CLOCK_MONOTONIC: tk_offset = TK_OFFS_MAX; break; case CLOCK_BOOTTIME: tk_offset = TK_OFFS_BOOT; break; case CLOCK_TAI: tk_offset = TK_OFFS_TAI; break; default: NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); return -EINVAL; } } parm = nla_data(tb[TCA_GATE_PARMS]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; if (err && bind) return 0; if (!err) { ret = tcf_idr_create(tn, index, est, a, &act_gate_ops, bind, false, 0); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; } else if (!ovr) { tcf_idr_release(*a, bind); return -EEXIST; } if (tb[TCA_GATE_PRIORITY]) prio = nla_get_s32(tb[TCA_GATE_PRIORITY]); if (tb[TCA_GATE_BASE_TIME]) basetime = nla_get_u64(tb[TCA_GATE_BASE_TIME]); if (tb[TCA_GATE_FLAGS]) gflags = nla_get_u32(tb[TCA_GATE_FLAGS]); gact = to_gate(*a); if (ret == ACT_P_CREATED) INIT_LIST_HEAD(&gact->param.entries); err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; spin_lock_bh(&gact->tcf_lock); p = &gact->param; if (tb[TCA_GATE_CYCLE_TIME]) cycletime = nla_get_u64(tb[TCA_GATE_CYCLE_TIME]); if (tb[TCA_GATE_ENTRY_LIST]) { err = parse_gate_list(tb[TCA_GATE_ENTRY_LIST], p, extack); if (err < 0) goto chain_put; } if (!cycletime) { struct tcfg_gate_entry *entry; ktime_t cycle = 0; list_for_each_entry(entry, &p->entries, list) cycle = ktime_add_ns(cycle, entry->interval); cycletime = cycle; if (!cycletime) { err = -EINVAL; goto chain_put; } } p->tcfg_cycletime = cycletime; if (tb[TCA_GATE_CYCLE_TIME_EXT]) p->tcfg_cycletime_ext = nla_get_u64(tb[TCA_GATE_CYCLE_TIME_EXT]); gate_setup_timer(gact, basetime, tk_offset, clockid, ret == ACT_P_CREATED); p->tcfg_priority = prio; p->tcfg_flags = gflags; gate_get_start_time(gact, &start); gact->current_close_time = start; gact->current_gate_status = GATE_ACT_GATE_OPEN | GATE_ACT_PENDING; gact->next_entry = list_first_entry(&p->entries, struct tcfg_gate_entry, list); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); gate_start_timer(gact, start); spin_unlock_bh(&gact->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (ret == ACT_P_CREATED) tcf_idr_insert(tn, *a); return ret; chain_put: spin_unlock_bh(&gact->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: /* action is not inserted in any list: it's safe to init hitimer * without taking tcf_lock. */ if (ret == ACT_P_CREATED) gate_setup_timer(gact, gact->param.tcfg_basetime, gact->tk_offset, gact->param.tcfg_clockid, true); tcf_idr_release(*a, bind); return err; } static void tcf_gate_cleanup(struct tc_action *a) { struct tcf_gate *gact = to_gate(a); struct tcf_gate_params *p; p = &gact->param; hrtimer_cancel(&gact->hitimer); release_entry_list(&p->entries); } static int dumping_entry(struct sk_buff *skb, struct tcfg_gate_entry *entry) { struct nlattr *item; item = nla_nest_start_noflag(skb, TCA_GATE_ONE_ENTRY); if (!item) return -ENOSPC; if (nla_put_u32(skb, TCA_GATE_ENTRY_INDEX, entry->index)) goto nla_put_failure; if (entry->gate_state && nla_put_flag(skb, TCA_GATE_ENTRY_GATE)) goto nla_put_failure; if (nla_put_u32(skb, TCA_GATE_ENTRY_INTERVAL, entry->interval)) goto nla_put_failure; if (nla_put_s32(skb, TCA_GATE_ENTRY_MAX_OCTETS, entry->maxoctets)) goto nla_put_failure; if (nla_put_s32(skb, TCA_GATE_ENTRY_IPV, entry->ipv)) goto nla_put_failure; return nla_nest_end(skb, item); nla_put_failure: nla_nest_cancel(skb, item); return -1; } static int tcf_gate_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_gate *gact = to_gate(a); struct tc_gate opt = { .index = gact->tcf_index, .refcnt = refcount_read(&gact->tcf_refcnt) - ref, .bindcnt = atomic_read(&gact->tcf_bindcnt) - bind, }; struct tcfg_gate_entry *entry; struct tcf_gate_params *p; struct nlattr *entry_list; struct tcf_t t; spin_lock_bh(&gact->tcf_lock); opt.action = gact->tcf_action; p = &gact->param; if (nla_put(skb, TCA_GATE_PARMS, sizeof(opt), &opt)) goto nla_put_failure; if (nla_put_u64_64bit(skb, TCA_GATE_BASE_TIME, p->tcfg_basetime, TCA_GATE_PAD)) goto nla_put_failure; if (nla_put_u64_64bit(skb, TCA_GATE_CYCLE_TIME, p->tcfg_cycletime, TCA_GATE_PAD)) goto nla_put_failure; if (nla_put_u64_64bit(skb, TCA_GATE_CYCLE_TIME_EXT, p->tcfg_cycletime_ext, TCA_GATE_PAD)) goto nla_put_failure; if (nla_put_s32(skb, TCA_GATE_CLOCKID, p->tcfg_clockid)) goto nla_put_failure; if (nla_put_u32(skb, TCA_GATE_FLAGS, p->tcfg_flags)) goto nla_put_failure; if (nla_put_s32(skb, TCA_GATE_PRIORITY, p->tcfg_priority)) goto nla_put_failure; entry_list = nla_nest_start_noflag(skb, TCA_GATE_ENTRY_LIST); if (!entry_list) goto nla_put_failure; list_for_each_entry(entry, &p->entries, list) { if (dumping_entry(skb, entry) < 0) goto nla_put_failure; } nla_nest_end(skb, entry_list); tcf_tm_dump(&t, &gact->tcf_tm); if (nla_put_64bit(skb, TCA_GATE_TM, sizeof(t), &t, TCA_GATE_PAD)) goto nla_put_failure; spin_unlock_bh(&gact->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&gact->tcf_lock); nlmsg_trim(skb, b); return -1; } static int tcf_gate_walker(struct net *net, struct sk_buff *skb, struct netlink_callback *cb, int type, const struct tc_action_ops *ops, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, gate_net_id); return tcf_generic_walker(tn, skb, cb, type, ops, extack); } static void tcf_gate_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_gate *gact = to_gate(a); struct tcf_t *tm = &gact->tcf_tm; tcf_action_update_stats(a, bytes, packets, drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static int tcf_gate_search(struct net *net, struct tc_action **a, u32 index) { struct tc_action_net *tn = net_generic(net, gate_net_id); return tcf_idr_search(tn, a, index); } static size_t tcf_gate_get_fill_size(const struct tc_action *act) { return nla_total_size(sizeof(struct tc_gate)); } static struct tc_action_ops act_gate_ops = { .kind = "gate", .id = TCA_ID_GATE, .owner = THIS_MODULE, .act = tcf_gate_act, .dump = tcf_gate_dump, .init = tcf_gate_init, .cleanup = tcf_gate_cleanup, .walk = tcf_gate_walker, .stats_update = tcf_gate_stats_update, .get_fill_size = tcf_gate_get_fill_size, .lookup = tcf_gate_search, .size = sizeof(struct tcf_gate), }; static __net_init int gate_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, gate_net_id); return tc_action_net_init(net, tn, &act_gate_ops); } static void __net_exit gate_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, gate_net_id); } static struct pernet_operations gate_net_ops = { .init = gate_init_net, .exit_batch = gate_exit_net, .id = &gate_net_id, .size = sizeof(struct tc_action_net), }; static int __init gate_init_module(void) { return tcf_register_action(&act_gate_ops, &gate_net_ops); } static void __exit gate_cleanup_module(void) { tcf_unregister_action(&act_gate_ops, &gate_net_ops); } module_init(gate_init_module); module_exit(gate_cleanup_module); MODULE_LICENSE("GPL v2");