// SPDX-License-Identifier: GPL-2.0-only /** * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. * * @File cthw20k1.c * * @Brief * This file contains the implementation of hardware access methord for 20k1. * * @Author Liu Chun * @Date Jun 24 2008 */ #include #include #include #include #include #include #include #include #include #include "cthw20k1.h" #include "ct20k1reg.h" struct hw20k1 { struct hw hw; spinlock_t reg_20k1_lock; spinlock_t reg_pci_lock; }; static u32 hw_read_20kx(struct hw *hw, u32 reg); static void hw_write_20kx(struct hw *hw, u32 reg, u32 data); static u32 hw_read_pci(struct hw *hw, u32 reg); static void hw_write_pci(struct hw *hw, u32 reg, u32 data); /* * Type definition block. * The layout of control structures can be directly applied on 20k2 chip. */ /* * SRC control block definitions. */ /* SRC resource control block */ #define SRCCTL_STATE 0x00000007 #define SRCCTL_BM 0x00000008 #define SRCCTL_RSR 0x00000030 #define SRCCTL_SF 0x000001C0 #define SRCCTL_WR 0x00000200 #define SRCCTL_PM 0x00000400 #define SRCCTL_ROM 0x00001800 #define SRCCTL_VO 0x00002000 #define SRCCTL_ST 0x00004000 #define SRCCTL_IE 0x00008000 #define SRCCTL_ILSZ 0x000F0000 #define SRCCTL_BP 0x00100000 #define SRCCCR_CISZ 0x000007FF #define SRCCCR_CWA 0x001FF800 #define SRCCCR_D 0x00200000 #define SRCCCR_RS 0x01C00000 #define SRCCCR_NAL 0x3E000000 #define SRCCCR_RA 0xC0000000 #define SRCCA_CA 0x03FFFFFF #define SRCCA_RS 0x1C000000 #define SRCCA_NAL 0xE0000000 #define SRCSA_SA 0x03FFFFFF #define SRCLA_LA 0x03FFFFFF /* Mixer Parameter Ring ram Low and Hight register. * Fixed-point value in 8.24 format for parameter channel */ #define MPRLH_PITCH 0xFFFFFFFF /* SRC resource register dirty flags */ union src_dirty { struct { u16 ctl:1; u16 ccr:1; u16 sa:1; u16 la:1; u16 ca:1; u16 mpr:1; u16 czbfs:1; /* Clear Z-Buffers */ u16 rsv:9; } bf; u16 data; }; struct src_rsc_ctrl_blk { unsigned int ctl; unsigned int ccr; unsigned int ca; unsigned int sa; unsigned int la; unsigned int mpr; union src_dirty dirty; }; /* SRC manager control block */ union src_mgr_dirty { struct { u16 enb0:1; u16 enb1:1; u16 enb2:1; u16 enb3:1; u16 enb4:1; u16 enb5:1; u16 enb6:1; u16 enb7:1; u16 enbsa:1; u16 rsv:7; } bf; u16 data; }; struct src_mgr_ctrl_blk { unsigned int enbsa; unsigned int enb[8]; union src_mgr_dirty dirty; }; /* SRCIMP manager control block */ #define SRCAIM_ARC 0x00000FFF #define SRCAIM_NXT 0x00FF0000 #define SRCAIM_SRC 0xFF000000 struct srcimap { unsigned int srcaim; unsigned int idx; }; /* SRCIMP manager register dirty flags */ union srcimp_mgr_dirty { struct { u16 srcimap:1; u16 rsv:15; } bf; u16 data; }; struct srcimp_mgr_ctrl_blk { struct srcimap srcimap; union srcimp_mgr_dirty dirty; }; /* * Function implementation block. */ static int src_get_rsc_ctrl_blk(void **rblk) { struct src_rsc_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) return -ENOMEM; *rblk = blk; return 0; } static int src_put_rsc_ctrl_blk(void *blk) { kfree(blk); return 0; } static int src_set_state(void *blk, unsigned int state) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_STATE, state); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_bm(void *blk, unsigned int bm) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_BM, bm); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_rsr(void *blk, unsigned int rsr) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_RSR, rsr); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_sf(void *blk, unsigned int sf) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_SF, sf); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_wr(void *blk, unsigned int wr) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_WR, wr); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_pm(void *blk, unsigned int pm) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_PM, pm); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_rom(void *blk, unsigned int rom) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_ROM, rom); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_vo(void *blk, unsigned int vo) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_VO, vo); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_st(void *blk, unsigned int st) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_ST, st); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_ie(void *blk, unsigned int ie) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_IE, ie); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_ilsz(void *blk, unsigned int ilsz) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_bp(void *blk, unsigned int bp) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_BP, bp); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_cisz(void *blk, unsigned int cisz) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ccr, SRCCCR_CISZ, cisz); ctl->dirty.bf.ccr = 1; return 0; } static int src_set_ca(void *blk, unsigned int ca) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ca, SRCCA_CA, ca); ctl->dirty.bf.ca = 1; return 0; } static int src_set_sa(void *blk, unsigned int sa) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->sa, SRCSA_SA, sa); ctl->dirty.bf.sa = 1; return 0; } static int src_set_la(void *blk, unsigned int la) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->la, SRCLA_LA, la); ctl->dirty.bf.la = 1; return 0; } static int src_set_pitch(void *blk, unsigned int pitch) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->mpr, MPRLH_PITCH, pitch); ctl->dirty.bf.mpr = 1; return 0; } static int src_set_clear_zbufs(void *blk, unsigned int clear) { ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0); return 0; } static int src_set_dirty(void *blk, unsigned int flags) { ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); return 0; } static int src_set_dirty_all(void *blk) { ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); return 0; } #define AR_SLOT_SIZE 4096 #define AR_SLOT_BLOCK_SIZE 16 #define AR_PTS_PITCH 6 #define AR_PARAM_SRC_OFFSET 0x60 static unsigned int src_param_pitch_mixer(unsigned int src_idx) { return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE; } static int src_commit_write(struct hw *hw, unsigned int idx, void *blk) { struct src_rsc_ctrl_blk *ctl = blk; int i; if (ctl->dirty.bf.czbfs) { /* Clear Z-Buffer registers */ for (i = 0; i < 8; i++) hw_write_20kx(hw, SRCUPZ+idx*0x100+i*0x4, 0); for (i = 0; i < 4; i++) hw_write_20kx(hw, SRCDN0Z+idx*0x100+i*0x4, 0); for (i = 0; i < 8; i++) hw_write_20kx(hw, SRCDN1Z+idx*0x100+i*0x4, 0); ctl->dirty.bf.czbfs = 0; } if (ctl->dirty.bf.mpr) { /* Take the parameter mixer resource in the same group as that * the idx src is in for simplicity. Unlike src, all conjugate * parameter mixer resources must be programmed for * corresponding conjugate src resources. */ unsigned int pm_idx = src_param_pitch_mixer(idx); hw_write_20kx(hw, PRING_LO_HI+4*pm_idx, ctl->mpr); hw_write_20kx(hw, PMOPLO+8*pm_idx, 0x3); hw_write_20kx(hw, PMOPHI+8*pm_idx, 0x0); ctl->dirty.bf.mpr = 0; } if (ctl->dirty.bf.sa) { hw_write_20kx(hw, SRCSA+idx*0x100, ctl->sa); ctl->dirty.bf.sa = 0; } if (ctl->dirty.bf.la) { hw_write_20kx(hw, SRCLA+idx*0x100, ctl->la); ctl->dirty.bf.la = 0; } if (ctl->dirty.bf.ca) { hw_write_20kx(hw, SRCCA+idx*0x100, ctl->ca); ctl->dirty.bf.ca = 0; } /* Write srccf register */ hw_write_20kx(hw, SRCCF+idx*0x100, 0x0); if (ctl->dirty.bf.ccr) { hw_write_20kx(hw, SRCCCR+idx*0x100, ctl->ccr); ctl->dirty.bf.ccr = 0; } if (ctl->dirty.bf.ctl) { hw_write_20kx(hw, SRCCTL+idx*0x100, ctl->ctl); ctl->dirty.bf.ctl = 0; } return 0; } static int src_get_ca(struct hw *hw, unsigned int idx, void *blk) { struct src_rsc_ctrl_blk *ctl = blk; ctl->ca = hw_read_20kx(hw, SRCCA+idx*0x100); ctl->dirty.bf.ca = 0; return get_field(ctl->ca, SRCCA_CA); } static unsigned int src_get_dirty(void *blk) { return ((struct src_rsc_ctrl_blk *)blk)->dirty.data; } static unsigned int src_dirty_conj_mask(void) { return 0x20; } static int src_mgr_enbs_src(void *blk, unsigned int idx) { ((struct src_mgr_ctrl_blk *)blk)->enbsa = ~(0x0); ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1; ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); return 0; } static int src_mgr_enb_src(void *blk, unsigned int idx) { ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); return 0; } static int src_mgr_dsb_src(void *blk, unsigned int idx) { ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32)); ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); return 0; } static int src_mgr_commit_write(struct hw *hw, void *blk) { struct src_mgr_ctrl_blk *ctl = blk; int i; unsigned int ret; if (ctl->dirty.bf.enbsa) { do { ret = hw_read_20kx(hw, SRCENBSTAT); } while (ret & 0x1); hw_write_20kx(hw, SRCENBS, ctl->enbsa); ctl->dirty.bf.enbsa = 0; } for (i = 0; i < 8; i++) { if ((ctl->dirty.data & (0x1 << i))) { hw_write_20kx(hw, SRCENB+(i*0x100), ctl->enb[i]); ctl->dirty.data &= ~(0x1 << i); } } return 0; } static int src_mgr_get_ctrl_blk(void **rblk) { struct src_mgr_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) return -ENOMEM; *rblk = blk; return 0; } static int src_mgr_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int srcimp_mgr_get_ctrl_blk(void **rblk) { struct srcimp_mgr_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) return -ENOMEM; *rblk = blk; return 0; } static int srcimp_mgr_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot) { struct srcimp_mgr_ctrl_blk *ctl = blk; set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot); ctl->dirty.bf.srcimap = 1; return 0; } static int srcimp_mgr_set_imapuser(void *blk, unsigned int user) { struct srcimp_mgr_ctrl_blk *ctl = blk; set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user); ctl->dirty.bf.srcimap = 1; return 0; } static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next) { struct srcimp_mgr_ctrl_blk *ctl = blk; set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next); ctl->dirty.bf.srcimap = 1; return 0; } static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr) { struct srcimp_mgr_ctrl_blk *ctl = blk; ctl->srcimap.idx = addr; ctl->dirty.bf.srcimap = 1; return 0; } static int srcimp_mgr_commit_write(struct hw *hw, void *blk) { struct srcimp_mgr_ctrl_blk *ctl = blk; if (ctl->dirty.bf.srcimap) { hw_write_20kx(hw, SRCIMAP+ctl->srcimap.idx*0x100, ctl->srcimap.srcaim); ctl->dirty.bf.srcimap = 0; } return 0; } /* * AMIXER control block definitions. */ #define AMOPLO_M 0x00000003 #define AMOPLO_X 0x0003FFF0 #define AMOPLO_Y 0xFFFC0000 #define AMOPHI_SADR 0x000000FF #define AMOPHI_SE 0x80000000 /* AMIXER resource register dirty flags */ union amixer_dirty { struct { u16 amoplo:1; u16 amophi:1; u16 rsv:14; } bf; u16 data; }; /* AMIXER resource control block */ struct amixer_rsc_ctrl_blk { unsigned int amoplo; unsigned int amophi; union amixer_dirty dirty; }; static int amixer_set_mode(void *blk, unsigned int mode) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amoplo, AMOPLO_M, mode); ctl->dirty.bf.amoplo = 1; return 0; } static int amixer_set_iv(void *blk, unsigned int iv) { /* 20k1 amixer does not have this field */ return 0; } static int amixer_set_x(void *blk, unsigned int x) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amoplo, AMOPLO_X, x); ctl->dirty.bf.amoplo = 1; return 0; } static int amixer_set_y(void *blk, unsigned int y) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amoplo, AMOPLO_Y, y); ctl->dirty.bf.amoplo = 1; return 0; } static int amixer_set_sadr(void *blk, unsigned int sadr) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amophi, AMOPHI_SADR, sadr); ctl->dirty.bf.amophi = 1; return 0; } static int amixer_set_se(void *blk, unsigned int se) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amophi, AMOPHI_SE, se); ctl->dirty.bf.amophi = 1; return 0; } static int amixer_set_dirty(void *blk, unsigned int flags) { ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); return 0; } static int amixer_set_dirty_all(void *blk) { ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); return 0; } static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk) { struct amixer_rsc_ctrl_blk *ctl = blk; if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) { hw_write_20kx(hw, AMOPLO+idx*8, ctl->amoplo); ctl->dirty.bf.amoplo = 0; hw_write_20kx(hw, AMOPHI+idx*8, ctl->amophi); ctl->dirty.bf.amophi = 0; } return 0; } static int amixer_get_y(void *blk) { struct amixer_rsc_ctrl_blk *ctl = blk; return get_field(ctl->amoplo, AMOPLO_Y); } static unsigned int amixer_get_dirty(void *blk) { return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data; } static int amixer_rsc_get_ctrl_blk(void **rblk) { struct amixer_rsc_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) return -ENOMEM; *rblk = blk; return 0; } static int amixer_rsc_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int amixer_mgr_get_ctrl_blk(void **rblk) { /*amixer_mgr_ctrl_blk_t *blk;*/ *rblk = NULL; /*blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) return -ENOMEM; *rblk = blk;*/ return 0; } static int amixer_mgr_put_ctrl_blk(void *blk) { /*kfree((amixer_mgr_ctrl_blk_t *)blk);*/ return 0; } /* * DAIO control block definitions. */ /* Receiver Sample Rate Tracker Control register */ #define SRTCTL_SRCR 0x000000FF #define SRTCTL_SRCL 0x0000FF00 #define SRTCTL_RSR 0x00030000 #define SRTCTL_DRAT 0x000C0000 #define SRTCTL_RLE 0x10000000 #define SRTCTL_RLP 0x20000000 #define SRTCTL_EC 0x40000000 #define SRTCTL_ET 0x80000000 /* DAIO Receiver register dirty flags */ union dai_dirty { struct { u16 srtctl:1; u16 rsv:15; } bf; u16 data; }; /* DAIO Receiver control block */ struct dai_ctrl_blk { unsigned int srtctl; union dai_dirty dirty; }; /* S/PDIF Transmitter register dirty flags */ union dao_dirty { struct { u16 spos:1; u16 rsv:15; } bf; u16 data; }; /* S/PDIF Transmitter control block */ struct dao_ctrl_blk { unsigned int spos; /* S/PDIF Output Channel Status Register */ union dao_dirty dirty; }; /* Audio Input Mapper RAM */ #define AIM_ARC 0x00000FFF #define AIM_NXT 0x007F0000 struct daoimap { unsigned int aim; unsigned int idx; }; /* I2S Transmitter/Receiver Control register */ #define I2SCTL_EA 0x00000004 #define I2SCTL_EI 0x00000010 /* S/PDIF Transmitter Control register */ #define SPOCTL_OE 0x00000001 #define SPOCTL_OS 0x0000000E #define SPOCTL_RIV 0x00000010 #define SPOCTL_LIV 0x00000020 #define SPOCTL_SR 0x000000C0 /* S/PDIF Receiver Control register */ #define SPICTL_EN 0x00000001 #define SPICTL_I24 0x00000002 #define SPICTL_IB 0x00000004 #define SPICTL_SM 0x00000008 #define SPICTL_VM 0x00000010 /* DAIO manager register dirty flags */ union daio_mgr_dirty { struct { u32 i2soctl:4; u32 i2sictl:4; u32 spoctl:4; u32 spictl:4; u32 daoimap:1; u32 rsv:15; } bf; u32 data; }; /* DAIO manager control block */ struct daio_mgr_ctrl_blk { unsigned int i2sctl; unsigned int spoctl; unsigned int spictl; struct daoimap daoimap; union daio_mgr_dirty dirty; }; static int dai_srt_set_srcr(void *blk, unsigned int src) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srtctl, SRTCTL_SRCR, src); ctl->dirty.bf.srtctl = 1; return 0; } static int dai_srt_set_srcl(void *blk, unsigned int src) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srtctl, SRTCTL_SRCL, src); ctl->dirty.bf.srtctl = 1; return 0; } static int dai_srt_set_rsr(void *blk, unsigned int rsr) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srtctl, SRTCTL_RSR, rsr); ctl->dirty.bf.srtctl = 1; return 0; } static int dai_srt_set_drat(void *blk, unsigned int drat) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srtctl, SRTCTL_DRAT, drat); ctl->dirty.bf.srtctl = 1; return 0; } static int dai_srt_set_ec(void *blk, unsigned int ec) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srtctl, SRTCTL_EC, ec ? 1 : 0); ctl->dirty.bf.srtctl = 1; return 0; } static int dai_srt_set_et(void *blk, unsigned int et) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srtctl, SRTCTL_ET, et ? 1 : 0); ctl->dirty.bf.srtctl = 1; return 0; } static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk) { struct dai_ctrl_blk *ctl = blk; if (ctl->dirty.bf.srtctl) { if (idx < 4) { /* S/PDIF SRTs */ hw_write_20kx(hw, SRTSCTL+0x4*idx, ctl->srtctl); } else { /* I2S SRT */ hw_write_20kx(hw, SRTICTL, ctl->srtctl); } ctl->dirty.bf.srtctl = 0; } return 0; } static int dai_get_ctrl_blk(void **rblk) { struct dai_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) return -ENOMEM; *rblk = blk; return 0; } static int dai_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int dao_set_spos(void *blk, unsigned int spos) { ((struct dao_ctrl_blk *)blk)->spos = spos; ((struct dao_ctrl_blk *)blk)->dirty.bf.spos = 1; return 0; } static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk) { struct dao_ctrl_blk *ctl = blk; if (ctl->dirty.bf.spos) { if (idx < 4) { /* S/PDIF SPOSx */ hw_write_20kx(hw, SPOS+0x4*idx, ctl->spos); } ctl->dirty.bf.spos = 0; } return 0; } static int dao_get_spos(void *blk, unsigned int *spos) { *spos = ((struct dao_ctrl_blk *)blk)->spos; return 0; } static int dao_get_ctrl_blk(void **rblk) { struct dao_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) return -ENOMEM; *rblk = blk; return 0; } static int dao_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int daio_mgr_enb_dai(void *blk, unsigned int idx) { struct daio_mgr_ctrl_blk *ctl = blk; if (idx < 4) { /* S/PDIF input */ set_field(&ctl->spictl, SPICTL_EN << (idx*8), 1); ctl->dirty.bf.spictl |= (0x1 << idx); } else { /* I2S input */ idx %= 4; set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 1); ctl->dirty.bf.i2sictl |= (0x1 << idx); } return 0; } static int daio_mgr_dsb_dai(void *blk, unsigned int idx) { struct daio_mgr_ctrl_blk *ctl = blk; if (idx < 4) { /* S/PDIF input */ set_field(&ctl->spictl, SPICTL_EN << (idx*8), 0); ctl->dirty.bf.spictl |= (0x1 << idx); } else { /* I2S input */ idx %= 4; set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 0); ctl->dirty.bf.i2sictl |= (0x1 << idx); } return 0; } static int daio_mgr_enb_dao(void *blk, unsigned int idx) { struct daio_mgr_ctrl_blk *ctl = blk; if (idx < 4) { /* S/PDIF output */ set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 1); ctl->dirty.bf.spoctl |= (0x1 << idx); } else { /* I2S output */ idx %= 4; set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 1); ctl->dirty.bf.i2soctl |= (0x1 << idx); } return 0; } static int daio_mgr_dsb_dao(void *blk, unsigned int idx) { struct daio_mgr_ctrl_blk *ctl = blk; if (idx < 4) { /* S/PDIF output */ set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 0); ctl->dirty.bf.spoctl |= (0x1 << idx); } else { /* I2S output */ idx %= 4; set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 0); ctl->dirty.bf.i2soctl |= (0x1 << idx); } return 0; } static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf) { struct daio_mgr_ctrl_blk *ctl = blk; if (idx < 4) { /* S/PDIF output */ switch ((conf & 0x7)) { case 0: set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 3); break; /* CDIF */ case 1: set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 0); break; case 2: set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 1); break; case 4: set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 2); break; default: break; } set_field(&ctl->spoctl, SPOCTL_LIV << (idx*8), (conf >> 4) & 0x1); /* Non-audio */ set_field(&ctl->spoctl, SPOCTL_RIV << (idx*8), (conf >> 4) & 0x1); /* Non-audio */ set_field(&ctl->spoctl, SPOCTL_OS << (idx*8), ((conf >> 3) & 0x1) ? 2 : 2); /* Raw */ ctl->dirty.bf.spoctl |= (0x1 << idx); } else { /* I2S output */ /*idx %= 4; */ } return 0; } static int daio_mgr_set_imaparc(void *blk, unsigned int slot) { struct daio_mgr_ctrl_blk *ctl = blk; set_field(&ctl->daoimap.aim, AIM_ARC, slot); ctl->dirty.bf.daoimap = 1; return 0; } static int daio_mgr_set_imapnxt(void *blk, unsigned int next) { struct daio_mgr_ctrl_blk *ctl = blk; set_field(&ctl->daoimap.aim, AIM_NXT, next); ctl->dirty.bf.daoimap = 1; return 0; } static int daio_mgr_set_imapaddr(void *blk, unsigned int addr) { struct daio_mgr_ctrl_blk *ctl = blk; ctl->daoimap.idx = addr; ctl->dirty.bf.daoimap = 1; return 0; } static int daio_mgr_commit_write(struct hw *hw, void *blk) { struct daio_mgr_ctrl_blk *ctl = blk; int i; if (ctl->dirty.bf.i2sictl || ctl->dirty.bf.i2soctl) { for (i = 0; i < 4; i++) { if ((ctl->dirty.bf.i2sictl & (0x1 << i))) ctl->dirty.bf.i2sictl &= ~(0x1 << i); if ((ctl->dirty.bf.i2soctl & (0x1 << i))) ctl->dirty.bf.i2soctl &= ~(0x1 << i); } hw_write_20kx(hw, I2SCTL, ctl->i2sctl); mdelay(1); } if (ctl->dirty.bf.spoctl) { for (i = 0; i < 4; i++) { if ((ctl->dirty.bf.spoctl & (0x1 << i))) ctl->dirty.bf.spoctl &= ~(0x1 << i); } hw_write_20kx(hw, SPOCTL, ctl->spoctl); mdelay(1); } if (ctl->dirty.bf.spictl) { for (i = 0; i < 4; i++) { if ((ctl->dirty.bf.spictl & (0x1 << i))) ctl->dirty.bf.spictl &= ~(0x1 << i); } hw_write_20kx(hw, SPICTL, ctl->spictl); mdelay(1); } if (ctl->dirty.bf.daoimap) { hw_write_20kx(hw, DAOIMAP+ctl->daoimap.idx*4, ctl->daoimap.aim); ctl->dirty.bf.daoimap = 0; } return 0; } static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk) { struct daio_mgr_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) return -ENOMEM; blk->i2sctl = hw_read_20kx(hw, I2SCTL); blk->spoctl = hw_read_20kx(hw, SPOCTL); blk->spictl = hw_read_20kx(hw, SPICTL); *rblk = blk; return 0; } static int daio_mgr_put_ctrl_blk(void *blk) { kfree(blk); return 0; } /* Timer interrupt */ static int set_timer_irq(struct hw *hw, int enable) { hw_write_20kx(hw, GIE, enable ? IT_INT : 0); return 0; } static int set_timer_tick(struct hw *hw, unsigned int ticks) { if (ticks) ticks |= TIMR_IE | TIMR_IP; hw_write_20kx(hw, TIMR, ticks); return 0; } static unsigned int get_wc(struct hw *hw) { return hw_read_20kx(hw, WC); } /* Card hardware initialization block */ struct dac_conf { unsigned int msr; /* master sample rate in rsrs */ }; struct adc_conf { unsigned int msr; /* master sample rate in rsrs */ unsigned char input; /* the input source of ADC */ unsigned char mic20db; /* boost mic by 20db if input is microphone */ }; struct daio_conf { unsigned int msr; /* master sample rate in rsrs */ }; struct trn_conf { unsigned long vm_pgt_phys; }; static int hw_daio_init(struct hw *hw, const struct daio_conf *info) { u32 i2sorg; u32 spdorg; /* Read I2S CTL. Keep original value. */ /*i2sorg = hw_read_20kx(hw, I2SCTL);*/ i2sorg = 0x94040404; /* enable all audio out and I2S-D input */ /* Program I2S with proper master sample rate and enable * the correct I2S channel. */ i2sorg &= 0xfffffffc; /* Enable S/PDIF-out-A in fixed 24-bit data * format and default to 48kHz. */ /* Disable all before doing any changes. */ hw_write_20kx(hw, SPOCTL, 0x0); spdorg = 0x05; switch (info->msr) { case 1: i2sorg |= 1; spdorg |= (0x0 << 6); break; case 2: i2sorg |= 2; spdorg |= (0x1 << 6); break; case 4: i2sorg |= 3; spdorg |= (0x2 << 6); break; default: i2sorg |= 1; break; } hw_write_20kx(hw, I2SCTL, i2sorg); hw_write_20kx(hw, SPOCTL, spdorg); /* Enable S/PDIF-in-A in fixed 24-bit data format. */ /* Disable all before doing any changes. */ hw_write_20kx(hw, SPICTL, 0x0); mdelay(1); spdorg = 0x0a0a0a0a; hw_write_20kx(hw, SPICTL, spdorg); mdelay(1); return 0; } /* TRANSPORT operations */ static int hw_trn_init(struct hw *hw, const struct trn_conf *info) { u32 trnctl; u32 ptp_phys_low, ptp_phys_high; /* Set up device page table */ if ((~0UL) == info->vm_pgt_phys) { dev_err(hw->card->dev, "Wrong device page table page address!\n"); return -1; } trnctl = 0x13; /* 32-bit, 4k-size page */ ptp_phys_low = (u32)info->vm_pgt_phys; ptp_phys_high = upper_32_bits(info->vm_pgt_phys); if (sizeof(void *) == 8) /* 64bit address */ trnctl |= (1 << 2); #if 0 /* Only 4k h/w pages for simplicitiy */ #if PAGE_SIZE == 8192 trnctl |= (1<<5); #endif #endif hw_write_20kx(hw, PTPALX, ptp_phys_low); hw_write_20kx(hw, PTPAHX, ptp_phys_high); hw_write_20kx(hw, TRNCTL, trnctl); hw_write_20kx(hw, TRNIS, 0x200c01); /* really needed? */ return 0; } /* Card initialization */ #define GCTL_EAC 0x00000001 #define GCTL_EAI 0x00000002 #define GCTL_BEP 0x00000004 #define GCTL_BES 0x00000008 #define GCTL_DSP 0x00000010 #define GCTL_DBP 0x00000020 #define GCTL_ABP 0x00000040 #define GCTL_TBP 0x00000080 #define GCTL_SBP 0x00000100 #define GCTL_FBP 0x00000200 #define GCTL_XA 0x00000400 #define GCTL_ET 0x00000800 #define GCTL_PR 0x00001000 #define GCTL_MRL 0x00002000 #define GCTL_SDE 0x00004000 #define GCTL_SDI 0x00008000 #define GCTL_SM 0x00010000 #define GCTL_SR 0x00020000 #define GCTL_SD 0x00040000 #define GCTL_SE 0x00080000 #define GCTL_AID 0x00100000 static int hw_pll_init(struct hw *hw, unsigned int rsr) { unsigned int pllctl; int i; pllctl = (48000 == rsr) ? 0x1480a001 : 0x1480a731; for (i = 0; i < 3; i++) { if (hw_read_20kx(hw, PLLCTL) == pllctl) break; hw_write_20kx(hw, PLLCTL, pllctl); msleep(40); } if (i >= 3) { dev_alert(hw->card->dev, "PLL initialization failed!!!\n"); return -EBUSY; } return 0; } static int hw_auto_init(struct hw *hw) { unsigned int gctl; int i; gctl = hw_read_20kx(hw, GCTL); set_field(&gctl, GCTL_EAI, 0); hw_write_20kx(hw, GCTL, gctl); set_field(&gctl, GCTL_EAI, 1); hw_write_20kx(hw, GCTL, gctl); mdelay(10); for (i = 0; i < 400000; i++) { gctl = hw_read_20kx(hw, GCTL); if (get_field(gctl, GCTL_AID)) break; } if (!get_field(gctl, GCTL_AID)) { dev_alert(hw->card->dev, "Card Auto-init failed!!!\n"); return -EBUSY; } return 0; } static int i2c_unlock(struct hw *hw) { if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) return 0; hw_write_pci(hw, 0xcc, 0x8c); hw_write_pci(hw, 0xcc, 0x0e); if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) return 0; hw_write_pci(hw, 0xcc, 0xee); hw_write_pci(hw, 0xcc, 0xaa); if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) return 0; return -1; } static void i2c_lock(struct hw *hw) { if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) hw_write_pci(hw, 0xcc, 0x00); } static void i2c_write(struct hw *hw, u32 device, u32 addr, u32 data) { unsigned int ret; do { ret = hw_read_pci(hw, 0xEC); } while (!(ret & 0x800000)); hw_write_pci(hw, 0xE0, device); hw_write_pci(hw, 0xE4, (data << 8) | (addr & 0xff)); } /* DAC operations */ static int hw_reset_dac(struct hw *hw) { u32 i; u16 gpioorg; unsigned int ret; if (i2c_unlock(hw)) return -1; do { ret = hw_read_pci(hw, 0xEC); } while (!(ret & 0x800000)); hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ /* To be effective, need to reset the DAC twice. */ for (i = 0; i < 2; i++) { /* set gpio */ msleep(100); gpioorg = (u16)hw_read_20kx(hw, GPIO); gpioorg &= 0xfffd; hw_write_20kx(hw, GPIO, gpioorg); mdelay(1); hw_write_20kx(hw, GPIO, gpioorg | 0x2); } i2c_write(hw, 0x00180080, 0x01, 0x80); i2c_write(hw, 0x00180080, 0x02, 0x10); i2c_lock(hw); return 0; } static int hw_dac_init(struct hw *hw, const struct dac_conf *info) { u32 data; u16 gpioorg; unsigned int ret; if (hw->model == CTSB055X) { /* SB055x, unmute outputs */ gpioorg = (u16)hw_read_20kx(hw, GPIO); gpioorg &= 0xffbf; /* set GPIO6 to low */ gpioorg |= 2; /* set GPIO1 to high */ hw_write_20kx(hw, GPIO, gpioorg); return 0; } /* mute outputs */ gpioorg = (u16)hw_read_20kx(hw, GPIO); gpioorg &= 0xffbf; hw_write_20kx(hw, GPIO, gpioorg); hw_reset_dac(hw); if (i2c_unlock(hw)) return -1; hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ do { ret = hw_read_pci(hw, 0xEC); } while (!(ret & 0x800000)); switch (info->msr) { case 1: data = 0x24; break; case 2: data = 0x25; break; case 4: data = 0x26; break; default: data = 0x24; break; } i2c_write(hw, 0x00180080, 0x06, data); i2c_write(hw, 0x00180080, 0x09, data); i2c_write(hw, 0x00180080, 0x0c, data); i2c_write(hw, 0x00180080, 0x0f, data); i2c_lock(hw); /* unmute outputs */ gpioorg = (u16)hw_read_20kx(hw, GPIO); gpioorg = gpioorg | 0x40; hw_write_20kx(hw, GPIO, gpioorg); return 0; } /* ADC operations */ static int is_adc_input_selected_SB055x(struct hw *hw, enum ADCSRC type) { return 0; } static int is_adc_input_selected_SBx(struct hw *hw, enum ADCSRC type) { u32 data; data = hw_read_20kx(hw, GPIO); switch (type) { case ADC_MICIN: data = ((data & (0x1<<7)) && (data & (0x1<<8))); break; case ADC_LINEIN: data = (!(data & (0x1<<7)) && (data & (0x1<<8))); break; case ADC_NONE: /* Digital I/O */ data = (!(data & (0x1<<8))); break; default: data = 0; } return data; } static int is_adc_input_selected_hendrix(struct hw *hw, enum ADCSRC type) { u32 data; data = hw_read_20kx(hw, GPIO); switch (type) { case ADC_MICIN: data = (data & (0x1 << 7)) ? 1 : 0; break; case ADC_LINEIN: data = (data & (0x1 << 7)) ? 0 : 1; break; default: data = 0; } return data; } static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type) { switch (hw->model) { case CTSB055X: return is_adc_input_selected_SB055x(hw, type); case CTSB073X: return is_adc_input_selected_hendrix(hw, type); case CTUAA: return is_adc_input_selected_hendrix(hw, type); default: return is_adc_input_selected_SBx(hw, type); } } static int adc_input_select_SB055x(struct hw *hw, enum ADCSRC type, unsigned char boost) { u32 data; /* * check and set the following GPIO bits accordingly * ADC_Gain = GPIO2 * DRM_off = GPIO3 * Mic_Pwr_on = GPIO7 * Digital_IO_Sel = GPIO8 * Mic_Sw = GPIO9 * Aux/MicLine_Sw = GPIO12 */ data = hw_read_20kx(hw, GPIO); data &= 0xec73; switch (type) { case ADC_MICIN: data |= (0x1<<7) | (0x1<<8) | (0x1<<9) ; data |= boost ? (0x1<<2) : 0; break; case ADC_LINEIN: data |= (0x1<<8); break; case ADC_AUX: data |= (0x1<<8) | (0x1<<12); break; case ADC_NONE: data |= (0x1<<12); /* set to digital */ break; default: return -1; } hw_write_20kx(hw, GPIO, data); return 0; } static int adc_input_select_SBx(struct hw *hw, enum ADCSRC type, unsigned char boost) { u32 data; u32 i2c_data; unsigned int ret; if (i2c_unlock(hw)) return -1; do { ret = hw_read_pci(hw, 0xEC); } while (!(ret & 0x800000)); /* i2c ready poll */ /* set i2c access mode as Direct Control */ hw_write_pci(hw, 0xEC, 0x05); data = hw_read_20kx(hw, GPIO); switch (type) { case ADC_MICIN: data |= ((0x1 << 7) | (0x1 << 8)); i2c_data = 0x1; /* Mic-in */ break; case ADC_LINEIN: data &= ~(0x1 << 7); data |= (0x1 << 8); i2c_data = 0x2; /* Line-in */ break; case ADC_NONE: data &= ~(0x1 << 8); i2c_data = 0x0; /* set to Digital */ break; default: i2c_lock(hw); return -1; } hw_write_20kx(hw, GPIO, data); i2c_write(hw, 0x001a0080, 0x2a, i2c_data); if (boost) { i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */ i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */ } else { i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */ i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */ } i2c_lock(hw); return 0; } static int adc_input_select_hendrix(struct hw *hw, enum ADCSRC type, unsigned char boost) { u32 data; u32 i2c_data; unsigned int ret; if (i2c_unlock(hw)) return -1; do { ret = hw_read_pci(hw, 0xEC); } while (!(ret & 0x800000)); /* i2c ready poll */ /* set i2c access mode as Direct Control */ hw_write_pci(hw, 0xEC, 0x05); data = hw_read_20kx(hw, GPIO); switch (type) { case ADC_MICIN: data |= (0x1 << 7); i2c_data = 0x1; /* Mic-in */ break; case ADC_LINEIN: data &= ~(0x1 << 7); i2c_data = 0x2; /* Line-in */ break; default: i2c_lock(hw); return -1; } hw_write_20kx(hw, GPIO, data); i2c_write(hw, 0x001a0080, 0x2a, i2c_data); if (boost) { i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */ i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */ } else { i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */ i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */ } i2c_lock(hw); return 0; } static int hw_adc_input_select(struct hw *hw, enum ADCSRC type) { int state = type == ADC_MICIN; switch (hw->model) { case CTSB055X: return adc_input_select_SB055x(hw, type, state); case CTSB073X: return adc_input_select_hendrix(hw, type, state); case CTUAA: return adc_input_select_hendrix(hw, type, state); default: return adc_input_select_SBx(hw, type, state); } } static int adc_init_SB055x(struct hw *hw, int input, int mic20db) { return adc_input_select_SB055x(hw, input, mic20db); } static int adc_init_SBx(struct hw *hw, int input, int mic20db) { u16 gpioorg; u16 input_source; u32 adcdata; unsigned int ret; input_source = 0x100; /* default to analog */ switch (input) { case ADC_MICIN: adcdata = 0x1; input_source = 0x180; /* set GPIO7 to select Mic */ break; case ADC_LINEIN: adcdata = 0x2; break; case ADC_VIDEO: adcdata = 0x4; break; case ADC_AUX: adcdata = 0x8; break; case ADC_NONE: adcdata = 0x0; input_source = 0x0; /* set to Digital */ break; default: adcdata = 0x0; break; } if (i2c_unlock(hw)) return -1; do { ret = hw_read_pci(hw, 0xEC); } while (!(ret & 0x800000)); /* i2c ready poll */ hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ i2c_write(hw, 0x001a0080, 0x0e, 0x08); i2c_write(hw, 0x001a0080, 0x18, 0x0a); i2c_write(hw, 0x001a0080, 0x28, 0x86); i2c_write(hw, 0x001a0080, 0x2a, adcdata); if (mic20db) { i2c_write(hw, 0x001a0080, 0x1c, 0xf7); i2c_write(hw, 0x001a0080, 0x1e, 0xf7); } else { i2c_write(hw, 0x001a0080, 0x1c, 0xcf); i2c_write(hw, 0x001a0080, 0x1e, 0xcf); } if (!(hw_read_20kx(hw, ID0) & 0x100)) i2c_write(hw, 0x001a0080, 0x16, 0x26); i2c_lock(hw); gpioorg = (u16)hw_read_20kx(hw, GPIO); gpioorg &= 0xfe7f; gpioorg |= input_source; hw_write_20kx(hw, GPIO, gpioorg); return 0; } static int hw_adc_init(struct hw *hw, const struct adc_conf *info) { if (hw->model == CTSB055X) return adc_init_SB055x(hw, info->input, info->mic20db); else return adc_init_SBx(hw, info->input, info->mic20db); } static struct capabilities hw_capabilities(struct hw *hw) { struct capabilities cap; /* SB073x and Vista compatible cards have no digit IO switch */ cap.digit_io_switch = !(hw->model == CTSB073X || hw->model == CTUAA); cap.dedicated_mic = 0; cap.output_switch = 0; cap.mic_source_switch = 0; return cap; } #define CTLBITS(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) #define UAA_CFG_PWRSTATUS 0x44 #define UAA_CFG_SPACE_FLAG 0xA0 #define UAA_CORE_CHANGE 0x3FFC static int uaa_to_xfi(struct pci_dev *pci) { unsigned int bar0, bar1, bar2, bar3, bar4, bar5; unsigned int cmd, irq, cl_size, l_timer, pwr; unsigned int is_uaa; unsigned int data[4] = {0}; unsigned int io_base; void __iomem *mem_base; int i; const u32 CTLX = CTLBITS('C', 'T', 'L', 'X'); const u32 CTL_ = CTLBITS('C', 'T', 'L', '-'); const u32 CTLF = CTLBITS('C', 'T', 'L', 'F'); const u32 CTLi = CTLBITS('C', 'T', 'L', 'i'); const u32 CTLA = CTLBITS('C', 'T', 'L', 'A'); const u32 CTLZ = CTLBITS('C', 'T', 'L', 'Z'); const u32 CTLL = CTLBITS('C', 'T', 'L', 'L'); /* By default, Hendrix card UAA Bar0 should be using memory... */ io_base = pci_resource_start(pci, 0); mem_base = ioremap(io_base, pci_resource_len(pci, 0)); if (!mem_base) return -ENOENT; /* Read current mode from Mode Change Register */ for (i = 0; i < 4; i++) data[i] = readl(mem_base + UAA_CORE_CHANGE); /* Determine current mode... */ if (data[0] == CTLA) { is_uaa = ((data[1] == CTLZ && data[2] == CTLL && data[3] == CTLA) || (data[1] == CTLA && data[2] == CTLZ && data[3] == CTLL)); } else if (data[0] == CTLZ) { is_uaa = (data[1] == CTLL && data[2] == CTLA && data[3] == CTLA); } else if (data[0] == CTLL) { is_uaa = (data[1] == CTLA && data[2] == CTLA && data[3] == CTLZ); } else { is_uaa = 0; } if (!is_uaa) { /* Not in UAA mode currently. Return directly. */ iounmap(mem_base); return 0; } pci_read_config_dword(pci, PCI_BASE_ADDRESS_0, &bar0); pci_read_config_dword(pci, PCI_BASE_ADDRESS_1, &bar1); pci_read_config_dword(pci, PCI_BASE_ADDRESS_2, &bar2); pci_read_config_dword(pci, PCI_BASE_ADDRESS_3, &bar3); pci_read_config_dword(pci, PCI_BASE_ADDRESS_4, &bar4); pci_read_config_dword(pci, PCI_BASE_ADDRESS_5, &bar5); pci_read_config_dword(pci, PCI_INTERRUPT_LINE, &irq); pci_read_config_dword(pci, PCI_CACHE_LINE_SIZE, &cl_size); pci_read_config_dword(pci, PCI_LATENCY_TIMER, &l_timer); pci_read_config_dword(pci, UAA_CFG_PWRSTATUS, &pwr); pci_read_config_dword(pci, PCI_COMMAND, &cmd); /* Set up X-Fi core PCI configuration space. */ /* Switch to X-Fi config space with BAR0 exposed. */ pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x87654321); /* Copy UAA's BAR5 into X-Fi BAR0 */ pci_write_config_dword(pci, PCI_BASE_ADDRESS_0, bar5); /* Switch to X-Fi config space without BAR0 exposed. */ pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x12345678); pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, bar1); pci_write_config_dword(pci, PCI_BASE_ADDRESS_2, bar2); pci_write_config_dword(pci, PCI_BASE_ADDRESS_3, bar3); pci_write_config_dword(pci, PCI_BASE_ADDRESS_4, bar4); pci_write_config_dword(pci, PCI_INTERRUPT_LINE, irq); pci_write_config_dword(pci, PCI_CACHE_LINE_SIZE, cl_size); pci_write_config_dword(pci, PCI_LATENCY_TIMER, l_timer); pci_write_config_dword(pci, UAA_CFG_PWRSTATUS, pwr); pci_write_config_dword(pci, PCI_COMMAND, cmd); /* Switch to X-Fi mode */ writel(CTLX, (mem_base + UAA_CORE_CHANGE)); writel(CTL_, (mem_base + UAA_CORE_CHANGE)); writel(CTLF, (mem_base + UAA_CORE_CHANGE)); writel(CTLi, (mem_base + UAA_CORE_CHANGE)); iounmap(mem_base); return 0; } static irqreturn_t ct_20k1_interrupt(int irq, void *dev_id) { struct hw *hw = dev_id; unsigned int status; status = hw_read_20kx(hw, GIP); if (!status) return IRQ_NONE; if (hw->irq_callback) hw->irq_callback(hw->irq_callback_data, status); hw_write_20kx(hw, GIP, status); return IRQ_HANDLED; } static int hw_card_start(struct hw *hw) { int err; struct pci_dev *pci = hw->pci; const unsigned int dma_bits = BITS_PER_LONG; err = pci_enable_device(pci); if (err < 0) return err; /* Set DMA transfer mask */ if (!dma_set_mask(&pci->dev, DMA_BIT_MASK(dma_bits))) { dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(dma_bits)); } else { dma_set_mask(&pci->dev, DMA_BIT_MASK(32)); dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(32)); } if (!hw->io_base) { err = pci_request_regions(pci, "XFi"); if (err < 0) goto error1; if (hw->model == CTUAA) hw->io_base = pci_resource_start(pci, 5); else hw->io_base = pci_resource_start(pci, 0); } /* Switch to X-Fi mode from UAA mode if neeeded */ if (hw->model == CTUAA) { err = uaa_to_xfi(pci); if (err) goto error2; } if (hw->irq < 0) { err = request_irq(pci->irq, ct_20k1_interrupt, IRQF_SHARED, KBUILD_MODNAME, hw); if (err < 0) { dev_err(hw->card->dev, "XFi: Cannot get irq %d\n", pci->irq); goto error2; } hw->irq = pci->irq; hw->card->sync_irq = hw->irq; } pci_set_master(pci); return 0; error2: pci_release_regions(pci); hw->io_base = 0; error1: pci_disable_device(pci); return err; } static int hw_card_stop(struct hw *hw) { unsigned int data; /* disable transport bus master and queueing of request */ hw_write_20kx(hw, TRNCTL, 0x00); /* disable pll */ data = hw_read_20kx(hw, PLLCTL); hw_write_20kx(hw, PLLCTL, (data & (~(0x0F<<12)))); return 0; } static int hw_card_shutdown(struct hw *hw) { if (hw->irq >= 0) free_irq(hw->irq, hw); hw->irq = -1; iounmap(hw->mem_base); hw->mem_base = NULL; if (hw->io_base) pci_release_regions(hw->pci); hw->io_base = 0; pci_disable_device(hw->pci); return 0; } static int hw_card_init(struct hw *hw, struct card_conf *info) { int err; unsigned int gctl; u32 data; struct dac_conf dac_info = {0}; struct adc_conf adc_info = {0}; struct daio_conf daio_info = {0}; struct trn_conf trn_info = {0}; /* Get PCI io port base address and do Hendrix switch if needed. */ err = hw_card_start(hw); if (err) return err; /* PLL init */ err = hw_pll_init(hw, info->rsr); if (err < 0) return err; /* kick off auto-init */ err = hw_auto_init(hw); if (err < 0) return err; /* Enable audio ring */ gctl = hw_read_20kx(hw, GCTL); set_field(&gctl, GCTL_EAC, 1); set_field(&gctl, GCTL_DBP, 1); set_field(&gctl, GCTL_TBP, 1); set_field(&gctl, GCTL_FBP, 1); set_field(&gctl, GCTL_ET, 1); hw_write_20kx(hw, GCTL, gctl); mdelay(10); /* Reset all global pending interrupts */ hw_write_20kx(hw, GIE, 0); /* Reset all SRC pending interrupts */ hw_write_20kx(hw, SRCIP, 0); msleep(30); /* Detect the card ID and configure GPIO accordingly. */ switch (hw->model) { case CTSB055X: hw_write_20kx(hw, GPIOCTL, 0x13fe); break; case CTSB073X: hw_write_20kx(hw, GPIOCTL, 0x00e6); break; case CTUAA: hw_write_20kx(hw, GPIOCTL, 0x00c2); break; default: hw_write_20kx(hw, GPIOCTL, 0x01e6); break; } trn_info.vm_pgt_phys = info->vm_pgt_phys; err = hw_trn_init(hw, &trn_info); if (err < 0) return err; daio_info.msr = info->msr; err = hw_daio_init(hw, &daio_info); if (err < 0) return err; dac_info.msr = info->msr; err = hw_dac_init(hw, &dac_info); if (err < 0) return err; adc_info.msr = info->msr; adc_info.input = ADC_LINEIN; adc_info.mic20db = 0; err = hw_adc_init(hw, &adc_info); if (err < 0) return err; data = hw_read_20kx(hw, SRCMCTL); data |= 0x1; /* Enables input from the audio ring */ hw_write_20kx(hw, SRCMCTL, data); return 0; } #ifdef CONFIG_PM_SLEEP static int hw_suspend(struct hw *hw) { struct pci_dev *pci = hw->pci; hw_card_stop(hw); if (hw->model == CTUAA) { /* Switch to UAA config space. */ pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x0); } return 0; } static int hw_resume(struct hw *hw, struct card_conf *info) { /* Re-initialize card hardware. */ return hw_card_init(hw, info); } #endif static u32 hw_read_20kx(struct hw *hw, u32 reg) { u32 value; unsigned long flags; spin_lock_irqsave( &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); outl(reg, hw->io_base + 0x0); value = inl(hw->io_base + 0x4); spin_unlock_irqrestore( &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); return value; } static void hw_write_20kx(struct hw *hw, u32 reg, u32 data) { unsigned long flags; spin_lock_irqsave( &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); outl(reg, hw->io_base + 0x0); outl(data, hw->io_base + 0x4); spin_unlock_irqrestore( &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); } static u32 hw_read_pci(struct hw *hw, u32 reg) { u32 value; unsigned long flags; spin_lock_irqsave( &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); outl(reg, hw->io_base + 0x10); value = inl(hw->io_base + 0x14); spin_unlock_irqrestore( &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); return value; } static void hw_write_pci(struct hw *hw, u32 reg, u32 data) { unsigned long flags; spin_lock_irqsave( &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); outl(reg, hw->io_base + 0x10); outl(data, hw->io_base + 0x14); spin_unlock_irqrestore( &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); } static const struct hw ct20k1_preset = { .irq = -1, .card_init = hw_card_init, .card_stop = hw_card_stop, .pll_init = hw_pll_init, .is_adc_source_selected = hw_is_adc_input_selected, .select_adc_source = hw_adc_input_select, .capabilities = hw_capabilities, #ifdef CONFIG_PM_SLEEP .suspend = hw_suspend, .resume = hw_resume, #endif .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk, .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk, .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk, .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk, .src_set_state = src_set_state, .src_set_bm = src_set_bm, .src_set_rsr = src_set_rsr, .src_set_sf = src_set_sf, .src_set_wr = src_set_wr, .src_set_pm = src_set_pm, .src_set_rom = src_set_rom, .src_set_vo = src_set_vo, .src_set_st = src_set_st, .src_set_ie = src_set_ie, .src_set_ilsz = src_set_ilsz, .src_set_bp = src_set_bp, .src_set_cisz = src_set_cisz, .src_set_ca = src_set_ca, .src_set_sa = src_set_sa, .src_set_la = src_set_la, .src_set_pitch = src_set_pitch, .src_set_dirty = src_set_dirty, .src_set_clear_zbufs = src_set_clear_zbufs, .src_set_dirty_all = src_set_dirty_all, .src_commit_write = src_commit_write, .src_get_ca = src_get_ca, .src_get_dirty = src_get_dirty, .src_dirty_conj_mask = src_dirty_conj_mask, .src_mgr_enbs_src = src_mgr_enbs_src, .src_mgr_enb_src = src_mgr_enb_src, .src_mgr_dsb_src = src_mgr_dsb_src, .src_mgr_commit_write = src_mgr_commit_write, .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk, .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk, .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc, .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser, .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt, .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr, .srcimp_mgr_commit_write = srcimp_mgr_commit_write, .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk, .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk, .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk, .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk, .amixer_set_mode = amixer_set_mode, .amixer_set_iv = amixer_set_iv, .amixer_set_x = amixer_set_x, .amixer_set_y = amixer_set_y, .amixer_set_sadr = amixer_set_sadr, .amixer_set_se = amixer_set_se, .amixer_set_dirty = amixer_set_dirty, .amixer_set_dirty_all = amixer_set_dirty_all, .amixer_commit_write = amixer_commit_write, .amixer_get_y = amixer_get_y, .amixer_get_dirty = amixer_get_dirty, .dai_get_ctrl_blk = dai_get_ctrl_blk, .dai_put_ctrl_blk = dai_put_ctrl_blk, .dai_srt_set_srco = dai_srt_set_srcr, .dai_srt_set_srcm = dai_srt_set_srcl, .dai_srt_set_rsr = dai_srt_set_rsr, .dai_srt_set_drat = dai_srt_set_drat, .dai_srt_set_ec = dai_srt_set_ec, .dai_srt_set_et = dai_srt_set_et, .dai_commit_write = dai_commit_write, .dao_get_ctrl_blk = dao_get_ctrl_blk, .dao_put_ctrl_blk = dao_put_ctrl_blk, .dao_set_spos = dao_set_spos, .dao_commit_write = dao_commit_write, .dao_get_spos = dao_get_spos, .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk, .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk, .daio_mgr_enb_dai = daio_mgr_enb_dai, .daio_mgr_dsb_dai = daio_mgr_dsb_dai, .daio_mgr_enb_dao = daio_mgr_enb_dao, .daio_mgr_dsb_dao = daio_mgr_dsb_dao, .daio_mgr_dao_init = daio_mgr_dao_init, .daio_mgr_set_imaparc = daio_mgr_set_imaparc, .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt, .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr, .daio_mgr_commit_write = daio_mgr_commit_write, .set_timer_irq = set_timer_irq, .set_timer_tick = set_timer_tick, .get_wc = get_wc, }; int create_20k1_hw_obj(struct hw **rhw) { struct hw20k1 *hw20k1; *rhw = NULL; hw20k1 = kzalloc(sizeof(*hw20k1), GFP_KERNEL); if (!hw20k1) return -ENOMEM; spin_lock_init(&hw20k1->reg_20k1_lock); spin_lock_init(&hw20k1->reg_pci_lock); hw20k1->hw = ct20k1_preset; *rhw = &hw20k1->hw; return 0; } int destroy_20k1_hw_obj(struct hw *hw) { if (hw->io_base) hw_card_shutdown(hw); kfree(container_of(hw, struct hw20k1, hw)); return 0; }