// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause // Copyright 2018 NXP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fsl_micfil.h" #include "fsl_utils.h" #define MICFIL_OSR_DEFAULT 16 enum quality { QUALITY_HIGH, QUALITY_MEDIUM, QUALITY_LOW, QUALITY_VLOW0, QUALITY_VLOW1, QUALITY_VLOW2, }; struct fsl_micfil { struct platform_device *pdev; struct regmap *regmap; const struct fsl_micfil_soc_data *soc; struct clk *busclk; struct clk *mclk; struct clk *pll8k_clk; struct clk *pll11k_clk; struct snd_dmaengine_dai_dma_data dma_params_rx; struct sdma_peripheral_config sdmacfg; struct snd_soc_card *card; unsigned int dataline; char name[32]; int irq[MICFIL_IRQ_LINES]; enum quality quality; int dc_remover; int vad_init_mode; int vad_enabled; int vad_detected; struct fsl_micfil_verid verid; struct fsl_micfil_param param; }; struct fsl_micfil_soc_data { unsigned int fifos; unsigned int fifo_depth; unsigned int dataline; bool imx; bool use_edma; bool use_verid; u64 formats; }; static struct fsl_micfil_soc_data fsl_micfil_imx8mm = { .imx = true, .fifos = 8, .fifo_depth = 8, .dataline = 0xf, .formats = SNDRV_PCM_FMTBIT_S16_LE, }; static struct fsl_micfil_soc_data fsl_micfil_imx8mp = { .imx = true, .fifos = 8, .fifo_depth = 32, .dataline = 0xf, .formats = SNDRV_PCM_FMTBIT_S32_LE, }; static struct fsl_micfil_soc_data fsl_micfil_imx93 = { .imx = true, .fifos = 8, .fifo_depth = 32, .dataline = 0xf, .formats = SNDRV_PCM_FMTBIT_S32_LE, .use_edma = true, .use_verid = true, }; static const struct of_device_id fsl_micfil_dt_ids[] = { { .compatible = "fsl,imx8mm-micfil", .data = &fsl_micfil_imx8mm }, { .compatible = "fsl,imx8mp-micfil", .data = &fsl_micfil_imx8mp }, { .compatible = "fsl,imx93-micfil", .data = &fsl_micfil_imx93 }, {} }; MODULE_DEVICE_TABLE(of, fsl_micfil_dt_ids); static const char * const micfil_quality_select_texts[] = { [QUALITY_HIGH] = "High", [QUALITY_MEDIUM] = "Medium", [QUALITY_LOW] = "Low", [QUALITY_VLOW0] = "VLow0", [QUALITY_VLOW1] = "Vlow1", [QUALITY_VLOW2] = "Vlow2", }; static const struct soc_enum fsl_micfil_quality_enum = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_quality_select_texts), micfil_quality_select_texts); static DECLARE_TLV_DB_SCALE(gain_tlv, 0, 100, 0); static int micfil_set_quality(struct fsl_micfil *micfil) { u32 qsel; switch (micfil->quality) { case QUALITY_HIGH: qsel = MICFIL_QSEL_HIGH_QUALITY; break; case QUALITY_MEDIUM: qsel = MICFIL_QSEL_MEDIUM_QUALITY; break; case QUALITY_LOW: qsel = MICFIL_QSEL_LOW_QUALITY; break; case QUALITY_VLOW0: qsel = MICFIL_QSEL_VLOW0_QUALITY; break; case QUALITY_VLOW1: qsel = MICFIL_QSEL_VLOW1_QUALITY; break; case QUALITY_VLOW2: qsel = MICFIL_QSEL_VLOW2_QUALITY; break; } return regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2, MICFIL_CTRL2_QSEL, FIELD_PREP(MICFIL_CTRL2_QSEL, qsel)); } static int micfil_quality_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); struct fsl_micfil *micfil = snd_soc_component_get_drvdata(cmpnt); ucontrol->value.integer.value[0] = micfil->quality; return 0; } static int micfil_quality_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *cmpnt = snd_soc_kcontrol_component(kcontrol); struct fsl_micfil *micfil = snd_soc_component_get_drvdata(cmpnt); micfil->quality = ucontrol->value.integer.value[0]; return micfil_set_quality(micfil); } static const char * const micfil_hwvad_enable[] = { "Disable (Record only)", "Enable (Record with Vad)", }; static const char * const micfil_hwvad_init_mode[] = { "Envelope mode", "Energy mode", }; static const char * const micfil_hwvad_hpf_texts[] = { "Filter bypass", "Cut-off @1750Hz", "Cut-off @215Hz", "Cut-off @102Hz", }; /* * DC Remover Control * Filter Bypassed 1 1 * Cut-off @21Hz 0 0 * Cut-off @83Hz 0 1 * Cut-off @152HZ 1 0 */ static const char * const micfil_dc_remover_texts[] = { "Cut-off @21Hz", "Cut-off @83Hz", "Cut-off @152Hz", "Bypass", }; static const struct soc_enum hwvad_enable_enum = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_enable), micfil_hwvad_enable); static const struct soc_enum hwvad_init_mode_enum = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_init_mode), micfil_hwvad_init_mode); static const struct soc_enum hwvad_hpf_enum = SOC_ENUM_SINGLE(REG_MICFIL_VAD0_CTRL2, 0, ARRAY_SIZE(micfil_hwvad_hpf_texts), micfil_hwvad_hpf_texts); static const struct soc_enum fsl_micfil_dc_remover_enum = SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_dc_remover_texts), micfil_dc_remover_texts); static int micfil_put_dc_remover_state(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp); unsigned int *item = ucontrol->value.enumerated.item; int val = snd_soc_enum_item_to_val(e, item[0]); int i = 0, ret = 0; u32 reg_val = 0; if (val < 0 || val > 3) return -EINVAL; micfil->dc_remover = val; /* Calculate total value for all channels */ for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++) reg_val |= val << MICFIL_DC_CHX_SHIFT(i); /* Update DC Remover mode for all channels */ ret = snd_soc_component_update_bits(comp, REG_MICFIL_DC_CTRL, MICFIL_DC_CTRL_CONFIG, reg_val); if (ret < 0) return ret; return 0; } static int micfil_get_dc_remover_state(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp); ucontrol->value.enumerated.item[0] = micfil->dc_remover; return 0; } static int hwvad_put_enable(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int *item = ucontrol->value.enumerated.item; struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp); int val = snd_soc_enum_item_to_val(e, item[0]); micfil->vad_enabled = val; return 0; } static int hwvad_get_enable(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp); ucontrol->value.enumerated.item[0] = micfil->vad_enabled; return 0; } static int hwvad_put_init_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct soc_enum *e = (struct soc_enum *)kcontrol->private_value; unsigned int *item = ucontrol->value.enumerated.item; struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp); int val = snd_soc_enum_item_to_val(e, item[0]); /* 0 - Envelope-based Mode * 1 - Energy-based Mode */ micfil->vad_init_mode = val; return 0; } static int hwvad_get_init_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp); ucontrol->value.enumerated.item[0] = micfil->vad_init_mode; return 0; } static int hwvad_detected(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp); ucontrol->value.enumerated.item[0] = micfil->vad_detected; return 0; } static const struct snd_kcontrol_new fsl_micfil_snd_controls[] = { SOC_SINGLE_SX_TLV("CH0 Volume", REG_MICFIL_OUT_CTRL, MICFIL_OUTGAIN_CHX_SHIFT(0), 0x8, 0xF, gain_tlv), SOC_SINGLE_SX_TLV("CH1 Volume", REG_MICFIL_OUT_CTRL, MICFIL_OUTGAIN_CHX_SHIFT(1), 0x8, 0xF, gain_tlv), SOC_SINGLE_SX_TLV("CH2 Volume", REG_MICFIL_OUT_CTRL, MICFIL_OUTGAIN_CHX_SHIFT(2), 0x8, 0xF, gain_tlv), SOC_SINGLE_SX_TLV("CH3 Volume", REG_MICFIL_OUT_CTRL, MICFIL_OUTGAIN_CHX_SHIFT(3), 0x8, 0xF, gain_tlv), SOC_SINGLE_SX_TLV("CH4 Volume", REG_MICFIL_OUT_CTRL, MICFIL_OUTGAIN_CHX_SHIFT(4), 0x8, 0xF, gain_tlv), SOC_SINGLE_SX_TLV("CH5 Volume", REG_MICFIL_OUT_CTRL, MICFIL_OUTGAIN_CHX_SHIFT(5), 0x8, 0xF, gain_tlv), SOC_SINGLE_SX_TLV("CH6 Volume", REG_MICFIL_OUT_CTRL, MICFIL_OUTGAIN_CHX_SHIFT(6), 0x8, 0xF, gain_tlv), SOC_SINGLE_SX_TLV("CH7 Volume", REG_MICFIL_OUT_CTRL, MICFIL_OUTGAIN_CHX_SHIFT(7), 0x8, 0xF, gain_tlv), SOC_ENUM_EXT("MICFIL Quality Select", fsl_micfil_quality_enum, micfil_quality_get, micfil_quality_set), SOC_ENUM_EXT("HWVAD Enablement Switch", hwvad_enable_enum, hwvad_get_enable, hwvad_put_enable), SOC_ENUM_EXT("HWVAD Initialization Mode", hwvad_init_mode_enum, hwvad_get_init_mode, hwvad_put_init_mode), SOC_ENUM("HWVAD High-Pass Filter", hwvad_hpf_enum), SOC_SINGLE("HWVAD ZCD Switch", REG_MICFIL_VAD0_ZCD, 0, 1, 0), SOC_SINGLE("HWVAD ZCD Auto Threshold Switch", REG_MICFIL_VAD0_ZCD, 2, 1, 0), SOC_ENUM_EXT("MICFIL DC Remover Control", fsl_micfil_dc_remover_enum, micfil_get_dc_remover_state, micfil_put_dc_remover_state), SOC_SINGLE("HWVAD Input Gain", REG_MICFIL_VAD0_CTRL2, 8, 15, 0), SOC_SINGLE("HWVAD Sound Gain", REG_MICFIL_VAD0_SCONFIG, 0, 15, 0), SOC_SINGLE("HWVAD Noise Gain", REG_MICFIL_VAD0_NCONFIG, 0, 15, 0), SOC_SINGLE_RANGE("HWVAD Detector Frame Time", REG_MICFIL_VAD0_CTRL2, 16, 0, 63, 0), SOC_SINGLE("HWVAD Detector Initialization Time", REG_MICFIL_VAD0_CTRL1, 8, 31, 0), SOC_SINGLE("HWVAD Noise Filter Adjustment", REG_MICFIL_VAD0_NCONFIG, 8, 31, 0), SOC_SINGLE("HWVAD ZCD Threshold", REG_MICFIL_VAD0_ZCD, 16, 1023, 0), SOC_SINGLE("HWVAD ZCD Adjustment", REG_MICFIL_VAD0_ZCD, 8, 15, 0), SOC_SINGLE("HWVAD ZCD And Behavior Switch", REG_MICFIL_VAD0_ZCD, 4, 1, 0), SOC_SINGLE_BOOL_EXT("VAD Detected", 0, hwvad_detected, NULL), }; static int fsl_micfil_use_verid(struct device *dev) { struct fsl_micfil *micfil = dev_get_drvdata(dev); unsigned int val; int ret; if (!micfil->soc->use_verid) return 0; ret = regmap_read(micfil->regmap, REG_MICFIL_VERID, &val); if (ret < 0) return ret; dev_dbg(dev, "VERID: 0x%016X\n", val); micfil->verid.version = val & (MICFIL_VERID_MAJOR_MASK | MICFIL_VERID_MINOR_MASK); micfil->verid.version >>= MICFIL_VERID_MINOR_SHIFT; micfil->verid.feature = val & MICFIL_VERID_FEATURE_MASK; ret = regmap_read(micfil->regmap, REG_MICFIL_PARAM, &val); if (ret < 0) return ret; dev_dbg(dev, "PARAM: 0x%016X\n", val); micfil->param.hwvad_num = (val & MICFIL_PARAM_NUM_HWVAD_MASK) >> MICFIL_PARAM_NUM_HWVAD_SHIFT; micfil->param.hwvad_zcd = val & MICFIL_PARAM_HWVAD_ZCD; micfil->param.hwvad_energy_mode = val & MICFIL_PARAM_HWVAD_ENERGY_MODE; micfil->param.hwvad = val & MICFIL_PARAM_HWVAD; micfil->param.dc_out_bypass = val & MICFIL_PARAM_DC_OUT_BYPASS; micfil->param.dc_in_bypass = val & MICFIL_PARAM_DC_IN_BYPASS; micfil->param.low_power = val & MICFIL_PARAM_LOW_POWER; micfil->param.fil_out_width = val & MICFIL_PARAM_FIL_OUT_WIDTH; micfil->param.fifo_ptrwid = (val & MICFIL_PARAM_FIFO_PTRWID_MASK) >> MICFIL_PARAM_FIFO_PTRWID_SHIFT; micfil->param.npair = (val & MICFIL_PARAM_NPAIR_MASK) >> MICFIL_PARAM_NPAIR_SHIFT; return 0; } /* The SRES is a self-negated bit which provides the CPU with the * capability to initialize the PDM Interface module through the * slave-bus interface. This bit always reads as zero, and this * bit is only effective when MDIS is cleared */ static int fsl_micfil_reset(struct device *dev) { struct fsl_micfil *micfil = dev_get_drvdata(dev); int ret; ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1, MICFIL_CTRL1_MDIS); if (ret) return ret; ret = regmap_set_bits(micfil->regmap, REG_MICFIL_CTRL1, MICFIL_CTRL1_SRES); if (ret) return ret; /* * SRES is self-cleared bit, but REG_MICFIL_CTRL1 is defined * as non-volatile register, so SRES still remain in regmap * cache after set, that every update of REG_MICFIL_CTRL1, * software reset happens. so clear it explicitly. */ ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1, MICFIL_CTRL1_SRES); if (ret) return ret; /* * Set SRES should clear CHnF flags, But even add delay here * the CHnF may not be cleared sometimes, so clear CHnF explicitly. */ ret = regmap_write_bits(micfil->regmap, REG_MICFIL_STAT, 0xFF, 0xFF); if (ret) return ret; return 0; } static int fsl_micfil_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai); if (!micfil) { dev_err(dai->dev, "micfil dai priv_data not set\n"); return -EINVAL; } return 0; } /* Enable/disable hwvad interrupts */ static int fsl_micfil_configure_hwvad_interrupts(struct fsl_micfil *micfil, int enable) { u32 vadie_reg = enable ? MICFIL_VAD0_CTRL1_IE : 0; u32 vaderie_reg = enable ? MICFIL_VAD0_CTRL1_ERIE : 0; /* Voice Activity Detector Error Interruption */ regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_ERIE, vaderie_reg); /* Voice Activity Detector Interruption */ regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_IE, vadie_reg); return 0; } /* Configuration done only in energy-based initialization mode */ static int fsl_micfil_init_hwvad_energy_mode(struct fsl_micfil *micfil) { /* Keep the VADFRENDIS bitfield cleared. */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2, MICFIL_VAD0_CTRL2_FRENDIS); /* Keep the VADPREFEN bitfield cleared. */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2, MICFIL_VAD0_CTRL2_PREFEN); /* Keep the VADSFILEN bitfield cleared. */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG, MICFIL_VAD0_SCONFIG_SFILEN); /* Keep the VADSMAXEN bitfield cleared. */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG, MICFIL_VAD0_SCONFIG_SMAXEN); /* Keep the VADNFILAUTO bitfield asserted. */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG, MICFIL_VAD0_NCONFIG_NFILAUT); /* Keep the VADNMINEN bitfield cleared. */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG, MICFIL_VAD0_NCONFIG_NMINEN); /* Keep the VADNDECEN bitfield cleared. */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG, MICFIL_VAD0_NCONFIG_NDECEN); /* Keep the VADNOREN bitfield cleared. */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG, MICFIL_VAD0_NCONFIG_NOREN); return 0; } /* Configuration done only in envelope-based initialization mode */ static int fsl_micfil_init_hwvad_envelope_mode(struct fsl_micfil *micfil) { /* Assert the VADFRENDIS bitfield */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2, MICFIL_VAD0_CTRL2_FRENDIS); /* Assert the VADPREFEN bitfield. */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2, MICFIL_VAD0_CTRL2_PREFEN); /* Assert the VADSFILEN bitfield. */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG, MICFIL_VAD0_SCONFIG_SFILEN); /* Assert the VADSMAXEN bitfield. */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG, MICFIL_VAD0_SCONFIG_SMAXEN); /* Clear the VADNFILAUTO bitfield */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG, MICFIL_VAD0_NCONFIG_NFILAUT); /* Assert the VADNMINEN bitfield. */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG, MICFIL_VAD0_NCONFIG_NMINEN); /* Assert the VADNDECEN bitfield. */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG, MICFIL_VAD0_NCONFIG_NDECEN); /* Assert VADNOREN bitfield. */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG, MICFIL_VAD0_NCONFIG_NOREN); return 0; } /* * Hardware Voice Active Detection: The HWVAD takes data from the input * of a selected PDM microphone to detect if there is any * voice activity. When a voice activity is detected, an interrupt could * be delivered to the system. Initialization in section 8.4: * Can work in two modes: * -> Eneveope-based mode (section 8.4.1) * -> Energy-based mode (section 8.4.2) * * It is important to remark that the HWVAD detector could be enabled * or reset only when the MICFIL isn't running i.e. when the BSY_FIL * bit in STAT register is cleared */ static int fsl_micfil_hwvad_enable(struct fsl_micfil *micfil) { int ret; micfil->vad_detected = 0; /* envelope-based specific initialization */ if (micfil->vad_init_mode == MICFIL_HWVAD_ENVELOPE_MODE) ret = fsl_micfil_init_hwvad_envelope_mode(micfil); else ret = fsl_micfil_init_hwvad_energy_mode(micfil); if (ret) return ret; /* Voice Activity Detector Internal Filters Initialization*/ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_ST10); /* Voice Activity Detector Internal Filter */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_ST10); /* Enable Interrupts */ ret = fsl_micfil_configure_hwvad_interrupts(micfil, 1); if (ret) return ret; /* Voice Activity Detector Reset */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_RST); /* Voice Activity Detector Enabled */ regmap_set_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_EN); return 0; } static int fsl_micfil_hwvad_disable(struct fsl_micfil *micfil) { struct device *dev = &micfil->pdev->dev; int ret = 0; /* Disable HWVAD */ regmap_clear_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_EN); /* Disable hwvad interrupts */ ret = fsl_micfil_configure_hwvad_interrupts(micfil, 0); if (ret) dev_err(dev, "Failed to disable interrupts\n"); return ret; } static int fsl_micfil_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai); struct device *dev = &micfil->pdev->dev; int ret; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ret = fsl_micfil_reset(dev); if (ret) { dev_err(dev, "failed to soft reset\n"); return ret; } /* DMA Interrupt Selection - DISEL bits * 00 - DMA and IRQ disabled * 01 - DMA req enabled * 10 - IRQ enabled * 11 - reserved */ ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1, MICFIL_CTRL1_DISEL, FIELD_PREP(MICFIL_CTRL1_DISEL, MICFIL_CTRL1_DISEL_DMA)); if (ret) return ret; /* Enable the module */ ret = regmap_set_bits(micfil->regmap, REG_MICFIL_CTRL1, MICFIL_CTRL1_PDMIEN); if (ret) return ret; if (micfil->vad_enabled) fsl_micfil_hwvad_enable(micfil); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: if (micfil->vad_enabled) fsl_micfil_hwvad_disable(micfil); /* Disable the module */ ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1, MICFIL_CTRL1_PDMIEN); if (ret) return ret; ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1, MICFIL_CTRL1_DISEL, FIELD_PREP(MICFIL_CTRL1_DISEL, MICFIL_CTRL1_DISEL_DISABLE)); if (ret) return ret; break; default: return -EINVAL; } return 0; } static int fsl_micfil_reparent_rootclk(struct fsl_micfil *micfil, unsigned int sample_rate) { struct device *dev = &micfil->pdev->dev; u64 ratio = sample_rate; struct clk *clk; int ret; /* Get root clock */ clk = micfil->mclk; /* Disable clock first, for it was enabled by pm_runtime */ clk_disable_unprepare(clk); fsl_asoc_reparent_pll_clocks(dev, clk, micfil->pll8k_clk, micfil->pll11k_clk, ratio); ret = clk_prepare_enable(clk); if (ret) return ret; return 0; } static int fsl_micfil_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai); unsigned int channels = params_channels(params); unsigned int rate = params_rate(params); int clk_div = 8; int osr = MICFIL_OSR_DEFAULT; int ret; /* 1. Disable the module */ ret = regmap_clear_bits(micfil->regmap, REG_MICFIL_CTRL1, MICFIL_CTRL1_PDMIEN); if (ret) return ret; /* enable channels */ ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1, 0xFF, ((1 << channels) - 1)); if (ret) return ret; ret = fsl_micfil_reparent_rootclk(micfil, rate); if (ret) return ret; ret = clk_set_rate(micfil->mclk, rate * clk_div * osr * 8); if (ret) return ret; ret = micfil_set_quality(micfil); if (ret) return ret; ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2, MICFIL_CTRL2_CLKDIV | MICFIL_CTRL2_CICOSR, FIELD_PREP(MICFIL_CTRL2_CLKDIV, clk_div) | FIELD_PREP(MICFIL_CTRL2_CICOSR, 16 - osr)); /* Configure CIC OSR in VADCICOSR */ regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_CICOSR, FIELD_PREP(MICFIL_VAD0_CTRL1_CICOSR, 16 - osr)); /* Configure source channel in VADCHSEL */ regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1, MICFIL_VAD0_CTRL1_CHSEL, FIELD_PREP(MICFIL_VAD0_CTRL1_CHSEL, (channels - 1))); micfil->dma_params_rx.peripheral_config = &micfil->sdmacfg; micfil->dma_params_rx.peripheral_size = sizeof(micfil->sdmacfg); micfil->sdmacfg.n_fifos_src = channels; micfil->sdmacfg.sw_done = true; micfil->dma_params_rx.maxburst = channels * MICFIL_DMA_MAXBURST_RX; if (micfil->soc->use_edma) micfil->dma_params_rx.maxburst = channels; return 0; } static int fsl_micfil_dai_probe(struct snd_soc_dai *cpu_dai) { struct fsl_micfil *micfil = dev_get_drvdata(cpu_dai->dev); struct device *dev = cpu_dai->dev; unsigned int val = 0; int ret, i; micfil->quality = QUALITY_VLOW0; micfil->card = cpu_dai->component->card; /* set default gain to 2 */ regmap_write(micfil->regmap, REG_MICFIL_OUT_CTRL, 0x22222222); /* set DC Remover in bypass mode*/ for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++) val |= MICFIL_DC_BYPASS << MICFIL_DC_CHX_SHIFT(i); ret = regmap_update_bits(micfil->regmap, REG_MICFIL_DC_CTRL, MICFIL_DC_CTRL_CONFIG, val); if (ret) { dev_err(dev, "failed to set DC Remover mode bits\n"); return ret; } micfil->dc_remover = MICFIL_DC_BYPASS; snd_soc_dai_init_dma_data(cpu_dai, NULL, &micfil->dma_params_rx); /* FIFO Watermark Control - FIFOWMK*/ ret = regmap_update_bits(micfil->regmap, REG_MICFIL_FIFO_CTRL, MICFIL_FIFO_CTRL_FIFOWMK, FIELD_PREP(MICFIL_FIFO_CTRL_FIFOWMK, micfil->soc->fifo_depth - 1)); if (ret) return ret; return 0; } static const struct snd_soc_dai_ops fsl_micfil_dai_ops = { .probe = fsl_micfil_dai_probe, .startup = fsl_micfil_startup, .trigger = fsl_micfil_trigger, .hw_params = fsl_micfil_hw_params, }; static struct snd_soc_dai_driver fsl_micfil_dai = { .capture = { .stream_name = "CPU-Capture", .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000_48000, .formats = SNDRV_PCM_FMTBIT_S16_LE, }, .ops = &fsl_micfil_dai_ops, }; static const struct snd_soc_component_driver fsl_micfil_component = { .name = "fsl-micfil-dai", .controls = fsl_micfil_snd_controls, .num_controls = ARRAY_SIZE(fsl_micfil_snd_controls), .legacy_dai_naming = 1, }; /* REGMAP */ static const struct reg_default fsl_micfil_reg_defaults[] = { {REG_MICFIL_CTRL1, 0x00000000}, {REG_MICFIL_CTRL2, 0x00000000}, {REG_MICFIL_STAT, 0x00000000}, {REG_MICFIL_FIFO_CTRL, 0x00000007}, {REG_MICFIL_FIFO_STAT, 0x00000000}, {REG_MICFIL_DATACH0, 0x00000000}, {REG_MICFIL_DATACH1, 0x00000000}, {REG_MICFIL_DATACH2, 0x00000000}, {REG_MICFIL_DATACH3, 0x00000000}, {REG_MICFIL_DATACH4, 0x00000000}, {REG_MICFIL_DATACH5, 0x00000000}, {REG_MICFIL_DATACH6, 0x00000000}, {REG_MICFIL_DATACH7, 0x00000000}, {REG_MICFIL_DC_CTRL, 0x00000000}, {REG_MICFIL_OUT_CTRL, 0x00000000}, {REG_MICFIL_OUT_STAT, 0x00000000}, {REG_MICFIL_VAD0_CTRL1, 0x00000000}, {REG_MICFIL_VAD0_CTRL2, 0x000A0000}, {REG_MICFIL_VAD0_STAT, 0x00000000}, {REG_MICFIL_VAD0_SCONFIG, 0x00000000}, {REG_MICFIL_VAD0_NCONFIG, 0x80000000}, {REG_MICFIL_VAD0_NDATA, 0x00000000}, {REG_MICFIL_VAD0_ZCD, 0x00000004}, }; static bool fsl_micfil_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_MICFIL_CTRL1: case REG_MICFIL_CTRL2: case REG_MICFIL_STAT: case REG_MICFIL_FIFO_CTRL: case REG_MICFIL_FIFO_STAT: case REG_MICFIL_DATACH0: case REG_MICFIL_DATACH1: case REG_MICFIL_DATACH2: case REG_MICFIL_DATACH3: case REG_MICFIL_DATACH4: case REG_MICFIL_DATACH5: case REG_MICFIL_DATACH6: case REG_MICFIL_DATACH7: case REG_MICFIL_DC_CTRL: case REG_MICFIL_OUT_CTRL: case REG_MICFIL_OUT_STAT: case REG_MICFIL_FSYNC_CTRL: case REG_MICFIL_VERID: case REG_MICFIL_PARAM: case REG_MICFIL_VAD0_CTRL1: case REG_MICFIL_VAD0_CTRL2: case REG_MICFIL_VAD0_STAT: case REG_MICFIL_VAD0_SCONFIG: case REG_MICFIL_VAD0_NCONFIG: case REG_MICFIL_VAD0_NDATA: case REG_MICFIL_VAD0_ZCD: return true; default: return false; } } static bool fsl_micfil_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_MICFIL_CTRL1: case REG_MICFIL_CTRL2: case REG_MICFIL_STAT: /* Write 1 to Clear */ case REG_MICFIL_FIFO_CTRL: case REG_MICFIL_FIFO_STAT: /* Write 1 to Clear */ case REG_MICFIL_DC_CTRL: case REG_MICFIL_OUT_CTRL: case REG_MICFIL_OUT_STAT: /* Write 1 to Clear */ case REG_MICFIL_FSYNC_CTRL: case REG_MICFIL_VAD0_CTRL1: case REG_MICFIL_VAD0_CTRL2: case REG_MICFIL_VAD0_STAT: /* Write 1 to Clear */ case REG_MICFIL_VAD0_SCONFIG: case REG_MICFIL_VAD0_NCONFIG: case REG_MICFIL_VAD0_ZCD: return true; default: return false; } } static bool fsl_micfil_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_MICFIL_STAT: case REG_MICFIL_DATACH0: case REG_MICFIL_DATACH1: case REG_MICFIL_DATACH2: case REG_MICFIL_DATACH3: case REG_MICFIL_DATACH4: case REG_MICFIL_DATACH5: case REG_MICFIL_DATACH6: case REG_MICFIL_DATACH7: case REG_MICFIL_VERID: case REG_MICFIL_PARAM: case REG_MICFIL_VAD0_STAT: case REG_MICFIL_VAD0_NDATA: return true; default: return false; } } static const struct regmap_config fsl_micfil_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = REG_MICFIL_VAD0_ZCD, .reg_defaults = fsl_micfil_reg_defaults, .num_reg_defaults = ARRAY_SIZE(fsl_micfil_reg_defaults), .readable_reg = fsl_micfil_readable_reg, .volatile_reg = fsl_micfil_volatile_reg, .writeable_reg = fsl_micfil_writeable_reg, .cache_type = REGCACHE_RBTREE, }; /* END OF REGMAP */ static irqreturn_t micfil_isr(int irq, void *devid) { struct fsl_micfil *micfil = (struct fsl_micfil *)devid; struct platform_device *pdev = micfil->pdev; u32 stat_reg; u32 fifo_stat_reg; u32 ctrl1_reg; bool dma_enabled; int i; regmap_read(micfil->regmap, REG_MICFIL_STAT, &stat_reg); regmap_read(micfil->regmap, REG_MICFIL_CTRL1, &ctrl1_reg); regmap_read(micfil->regmap, REG_MICFIL_FIFO_STAT, &fifo_stat_reg); dma_enabled = FIELD_GET(MICFIL_CTRL1_DISEL, ctrl1_reg) == MICFIL_CTRL1_DISEL_DMA; /* Channel 0-7 Output Data Flags */ for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++) { if (stat_reg & MICFIL_STAT_CHXF(i)) dev_dbg(&pdev->dev, "Data available in Data Channel %d\n", i); /* if DMA is not enabled, field must be written with 1 * to clear */ if (!dma_enabled) regmap_write_bits(micfil->regmap, REG_MICFIL_STAT, MICFIL_STAT_CHXF(i), 1); } for (i = 0; i < MICFIL_FIFO_NUM; i++) { if (fifo_stat_reg & MICFIL_FIFO_STAT_FIFOX_OVER(i)) dev_dbg(&pdev->dev, "FIFO Overflow Exception flag for channel %d\n", i); if (fifo_stat_reg & MICFIL_FIFO_STAT_FIFOX_UNDER(i)) dev_dbg(&pdev->dev, "FIFO Underflow Exception flag for channel %d\n", i); } return IRQ_HANDLED; } static irqreturn_t micfil_err_isr(int irq, void *devid) { struct fsl_micfil *micfil = (struct fsl_micfil *)devid; struct platform_device *pdev = micfil->pdev; u32 stat_reg; regmap_read(micfil->regmap, REG_MICFIL_STAT, &stat_reg); if (stat_reg & MICFIL_STAT_BSY_FIL) dev_dbg(&pdev->dev, "isr: Decimation Filter is running\n"); if (stat_reg & MICFIL_STAT_FIR_RDY) dev_dbg(&pdev->dev, "isr: FIR Filter Data ready\n"); if (stat_reg & MICFIL_STAT_LOWFREQF) { dev_dbg(&pdev->dev, "isr: ipg_clk_app is too low\n"); regmap_write_bits(micfil->regmap, REG_MICFIL_STAT, MICFIL_STAT_LOWFREQF, 1); } return IRQ_HANDLED; } static irqreturn_t voice_detected_fn(int irq, void *devid) { struct fsl_micfil *micfil = (struct fsl_micfil *)devid; struct snd_kcontrol *kctl; if (!micfil->card) return IRQ_HANDLED; kctl = snd_soc_card_get_kcontrol(micfil->card, "VAD Detected"); if (!kctl) return IRQ_HANDLED; if (micfil->vad_detected) snd_ctl_notify(micfil->card->snd_card, SNDRV_CTL_EVENT_MASK_VALUE, &kctl->id); return IRQ_HANDLED; } static irqreturn_t hwvad_isr(int irq, void *devid) { struct fsl_micfil *micfil = (struct fsl_micfil *)devid; struct device *dev = &micfil->pdev->dev; u32 vad0_reg; int ret; regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &vad0_reg); /* * The only difference between MICFIL_VAD0_STAT_EF and * MICFIL_VAD0_STAT_IF is that the former requires Write * 1 to Clear. Since both flags are set, it is enough * to only read one of them */ if (vad0_reg & MICFIL_VAD0_STAT_IF) { /* Write 1 to clear */ regmap_write_bits(micfil->regmap, REG_MICFIL_VAD0_STAT, MICFIL_VAD0_STAT_IF, MICFIL_VAD0_STAT_IF); micfil->vad_detected = 1; } ret = fsl_micfil_hwvad_disable(micfil); if (ret) dev_err(dev, "Failed to disable hwvad\n"); return IRQ_WAKE_THREAD; } static irqreturn_t hwvad_err_isr(int irq, void *devid) { struct fsl_micfil *micfil = (struct fsl_micfil *)devid; struct device *dev = &micfil->pdev->dev; u32 vad0_reg; regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &vad0_reg); if (vad0_reg & MICFIL_VAD0_STAT_INSATF) dev_dbg(dev, "voice activity input overflow/underflow detected\n"); return IRQ_HANDLED; } static int fsl_micfil_runtime_suspend(struct device *dev); static int fsl_micfil_runtime_resume(struct device *dev); static int fsl_micfil_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct fsl_micfil *micfil; struct resource *res; void __iomem *regs; int ret, i; micfil = devm_kzalloc(&pdev->dev, sizeof(*micfil), GFP_KERNEL); if (!micfil) return -ENOMEM; micfil->pdev = pdev; strscpy(micfil->name, np->name, sizeof(micfil->name)); micfil->soc = of_device_get_match_data(&pdev->dev); /* ipg_clk is used to control the registers * ipg_clk_app is used to operate the filter */ micfil->mclk = devm_clk_get(&pdev->dev, "ipg_clk_app"); if (IS_ERR(micfil->mclk)) { dev_err(&pdev->dev, "failed to get core clock: %ld\n", PTR_ERR(micfil->mclk)); return PTR_ERR(micfil->mclk); } micfil->busclk = devm_clk_get(&pdev->dev, "ipg_clk"); if (IS_ERR(micfil->busclk)) { dev_err(&pdev->dev, "failed to get ipg clock: %ld\n", PTR_ERR(micfil->busclk)); return PTR_ERR(micfil->busclk); } fsl_asoc_get_pll_clocks(&pdev->dev, &micfil->pll8k_clk, &micfil->pll11k_clk); /* init regmap */ regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(regs)) return PTR_ERR(regs); micfil->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_micfil_regmap_config); if (IS_ERR(micfil->regmap)) { dev_err(&pdev->dev, "failed to init MICFIL regmap: %ld\n", PTR_ERR(micfil->regmap)); return PTR_ERR(micfil->regmap); } /* dataline mask for RX */ ret = of_property_read_u32_index(np, "fsl,dataline", 0, &micfil->dataline); if (ret) micfil->dataline = 1; if (micfil->dataline & ~micfil->soc->dataline) { dev_err(&pdev->dev, "dataline setting error, Mask is 0x%X\n", micfil->soc->dataline); return -EINVAL; } /* get IRQs */ for (i = 0; i < MICFIL_IRQ_LINES; i++) { micfil->irq[i] = platform_get_irq(pdev, i); if (micfil->irq[i] < 0) return micfil->irq[i]; } /* Digital Microphone interface interrupt */ ret = devm_request_irq(&pdev->dev, micfil->irq[0], micfil_isr, IRQF_SHARED, micfil->name, micfil); if (ret) { dev_err(&pdev->dev, "failed to claim mic interface irq %u\n", micfil->irq[0]); return ret; } /* Digital Microphone interface error interrupt */ ret = devm_request_irq(&pdev->dev, micfil->irq[1], micfil_err_isr, IRQF_SHARED, micfil->name, micfil); if (ret) { dev_err(&pdev->dev, "failed to claim mic interface error irq %u\n", micfil->irq[1]); return ret; } /* Digital Microphone interface voice activity detector event */ ret = devm_request_threaded_irq(&pdev->dev, micfil->irq[2], hwvad_isr, voice_detected_fn, IRQF_SHARED, micfil->name, micfil); if (ret) { dev_err(&pdev->dev, "failed to claim hwvad event irq %u\n", micfil->irq[0]); return ret; } /* Digital Microphone interface voice activity detector error */ ret = devm_request_irq(&pdev->dev, micfil->irq[3], hwvad_err_isr, IRQF_SHARED, micfil->name, micfil); if (ret) { dev_err(&pdev->dev, "failed to claim hwvad error irq %u\n", micfil->irq[1]); return ret; } micfil->dma_params_rx.chan_name = "rx"; micfil->dma_params_rx.addr = res->start + REG_MICFIL_DATACH0; micfil->dma_params_rx.maxburst = MICFIL_DMA_MAXBURST_RX; platform_set_drvdata(pdev, micfil); pm_runtime_enable(&pdev->dev); if (!pm_runtime_enabled(&pdev->dev)) { ret = fsl_micfil_runtime_resume(&pdev->dev); if (ret) goto err_pm_disable; } ret = pm_runtime_resume_and_get(&pdev->dev); if (ret < 0) goto err_pm_get_sync; /* Get micfil version */ ret = fsl_micfil_use_verid(&pdev->dev); if (ret < 0) dev_warn(&pdev->dev, "Error reading MICFIL version: %d\n", ret); ret = pm_runtime_put_sync(&pdev->dev); if (ret < 0 && ret != -ENOSYS) goto err_pm_get_sync; regcache_cache_only(micfil->regmap, true); /* * Register platform component before registering cpu dai for there * is not defer probe for platform component in snd_soc_add_pcm_runtime(). */ ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0); if (ret) { dev_err(&pdev->dev, "failed to pcm register\n"); goto err_pm_disable; } fsl_micfil_dai.capture.formats = micfil->soc->formats; ret = devm_snd_soc_register_component(&pdev->dev, &fsl_micfil_component, &fsl_micfil_dai, 1); if (ret) { dev_err(&pdev->dev, "failed to register component %s\n", fsl_micfil_component.name); goto err_pm_disable; } return ret; err_pm_get_sync: if (!pm_runtime_status_suspended(&pdev->dev)) fsl_micfil_runtime_suspend(&pdev->dev); err_pm_disable: pm_runtime_disable(&pdev->dev); return ret; } static void fsl_micfil_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } static int fsl_micfil_runtime_suspend(struct device *dev) { struct fsl_micfil *micfil = dev_get_drvdata(dev); regcache_cache_only(micfil->regmap, true); clk_disable_unprepare(micfil->mclk); clk_disable_unprepare(micfil->busclk); return 0; } static int fsl_micfil_runtime_resume(struct device *dev) { struct fsl_micfil *micfil = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(micfil->busclk); if (ret < 0) return ret; ret = clk_prepare_enable(micfil->mclk); if (ret < 0) { clk_disable_unprepare(micfil->busclk); return ret; } regcache_cache_only(micfil->regmap, false); regcache_mark_dirty(micfil->regmap); regcache_sync(micfil->regmap); return 0; } static const struct dev_pm_ops fsl_micfil_pm_ops = { SET_RUNTIME_PM_OPS(fsl_micfil_runtime_suspend, fsl_micfil_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct platform_driver fsl_micfil_driver = { .probe = fsl_micfil_probe, .remove_new = fsl_micfil_remove, .driver = { .name = "fsl-micfil-dai", .pm = &fsl_micfil_pm_ops, .of_match_table = fsl_micfil_dt_ids, }, }; module_platform_driver(fsl_micfil_driver); MODULE_AUTHOR("Cosmin-Gabriel Samoila "); MODULE_DESCRIPTION("NXP PDM Microphone Interface (MICFIL) driver"); MODULE_LICENSE("Dual BSD/GPL");