/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2012 The Chromium OS Authors. All rights reserved. * * kselftest_harness.h: simple C unit test helper. * * See documentation in Documentation/dev-tools/kselftest.rst * * API inspired by code.google.com/p/googletest */ /** * DOC: example * * .. code-block:: c * * #include "../kselftest_harness.h" * * TEST(standalone_test) { * do_some_stuff; * EXPECT_GT(10, stuff) { * stuff_state_t state; * enumerate_stuff_state(&state); * TH_LOG("expectation failed with state: %s", state.msg); * } * more_stuff; * ASSERT_NE(some_stuff, NULL) TH_LOG("how did it happen?!"); * last_stuff; * EXPECT_EQ(0, last_stuff); * } * * FIXTURE(my_fixture) { * mytype_t *data; * int awesomeness_level; * }; * FIXTURE_SETUP(my_fixture) { * self->data = mytype_new(); * ASSERT_NE(NULL, self->data); * } * FIXTURE_TEARDOWN(my_fixture) { * mytype_free(self->data); * } * TEST_F(my_fixture, data_is_good) { * EXPECT_EQ(1, is_my_data_good(self->data)); * } * * TEST_HARNESS_MAIN */ #ifndef __KSELFTEST_HARNESS_H #define __KSELFTEST_HARNESS_H #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kselftest.h" #define TEST_TIMEOUT_DEFAULT 30 /* Utilities exposed to the test definitions */ #ifndef TH_LOG_STREAM # define TH_LOG_STREAM stderr #endif #ifndef TH_LOG_ENABLED # define TH_LOG_ENABLED 1 #endif /** * TH_LOG() * * @fmt: format string * @...: optional arguments * * .. code-block:: c * * TH_LOG(format, ...) * * Optional debug logging function available for use in tests. * Logging may be enabled or disabled by defining TH_LOG_ENABLED. * E.g., #define TH_LOG_ENABLED 1 * * If no definition is provided, logging is enabled by default. */ #define TH_LOG(fmt, ...) do { \ if (TH_LOG_ENABLED) \ __TH_LOG(fmt, ##__VA_ARGS__); \ } while (0) /* Unconditional logger for internal use. */ #define __TH_LOG(fmt, ...) \ fprintf(TH_LOG_STREAM, "# %s:%d:%s:" fmt "\n", \ __FILE__, __LINE__, _metadata->name, ##__VA_ARGS__) /** * SKIP() * * @statement: statement to run after reporting SKIP * @fmt: format string * @...: optional arguments * * .. code-block:: c * * SKIP(statement, fmt, ...); * * This forces a "pass" after reporting why something is being skipped * and runs "statement", which is usually "return" or "goto skip". */ #define SKIP(statement, fmt, ...) do { \ snprintf(_metadata->results->reason, \ sizeof(_metadata->results->reason), fmt, ##__VA_ARGS__); \ if (TH_LOG_ENABLED) { \ fprintf(TH_LOG_STREAM, "# SKIP %s\n", \ _metadata->results->reason); \ } \ _metadata->exit_code = KSFT_SKIP; \ _metadata->trigger = 0; \ statement; \ } while (0) /** * TEST() - Defines the test function and creates the registration * stub * * @test_name: test name * * .. code-block:: c * * TEST(name) { implementation } * * Defines a test by name. * Names must be unique and tests must not be run in parallel. The * implementation containing block is a function and scoping should be treated * as such. Returning early may be performed with a bare "return;" statement. * * EXPECT_* and ASSERT_* are valid in a TEST() { } context. */ #define TEST(test_name) __TEST_IMPL(test_name, -1) /** * TEST_SIGNAL() * * @test_name: test name * @signal: signal number * * .. code-block:: c * * TEST_SIGNAL(name, signal) { implementation } * * Defines a test by name and the expected term signal. * Names must be unique and tests must not be run in parallel. The * implementation containing block is a function and scoping should be treated * as such. Returning early may be performed with a bare "return;" statement. * * EXPECT_* and ASSERT_* are valid in a TEST() { } context. */ #define TEST_SIGNAL(test_name, signal) __TEST_IMPL(test_name, signal) #define __TEST_IMPL(test_name, _signal) \ static void test_name(struct __test_metadata *_metadata); \ static inline void wrapper_##test_name( \ struct __test_metadata *_metadata, \ struct __fixture_variant_metadata *variant) \ { \ _metadata->setup_completed = true; \ if (setjmp(_metadata->env) == 0) \ test_name(_metadata); \ __test_check_assert(_metadata); \ } \ static struct __test_metadata _##test_name##_object = \ { .name = #test_name, \ .fn = &wrapper_##test_name, \ .fixture = &_fixture_global, \ .termsig = _signal, \ .timeout = TEST_TIMEOUT_DEFAULT, }; \ static void __attribute__((constructor)) _register_##test_name(void) \ { \ __register_test(&_##test_name##_object); \ } \ static void test_name( \ struct __test_metadata __attribute__((unused)) *_metadata) /** * FIXTURE_DATA() - Wraps the struct name so we have one less * argument to pass around * * @datatype_name: datatype name * * .. code-block:: c * * FIXTURE_DATA(datatype_name) * * Almost always, you want just FIXTURE() instead (see below). * This call may be used when the type of the fixture data * is needed. In general, this should not be needed unless * the *self* is being passed to a helper directly. */ #define FIXTURE_DATA(datatype_name) struct _test_data_##datatype_name /** * FIXTURE() - Called once per fixture to setup the data and * register * * @fixture_name: fixture name * * .. code-block:: c * * FIXTURE(fixture_name) { * type property1; * ... * }; * * Defines the data provided to TEST_F()-defined tests as *self*. It should be * populated and cleaned up using FIXTURE_SETUP() and FIXTURE_TEARDOWN(). */ #define FIXTURE(fixture_name) \ FIXTURE_VARIANT(fixture_name); \ static struct __fixture_metadata _##fixture_name##_fixture_object = \ { .name = #fixture_name, }; \ static void __attribute__((constructor)) \ _register_##fixture_name##_data(void) \ { \ __register_fixture(&_##fixture_name##_fixture_object); \ } \ FIXTURE_DATA(fixture_name) /** * FIXTURE_SETUP() - Prepares the setup function for the fixture. * *_metadata* is included so that EXPECT_*, ASSERT_* etc. work correctly. * * @fixture_name: fixture name * * .. code-block:: c * * FIXTURE_SETUP(fixture_name) { implementation } * * Populates the required "setup" function for a fixture. An instance of the * datatype defined with FIXTURE_DATA() will be exposed as *self* for the * implementation. * * ASSERT_* are valid for use in this context and will prempt the execution * of any dependent fixture tests. * * A bare "return;" statement may be used to return early. */ #define FIXTURE_SETUP(fixture_name) \ void fixture_name##_setup( \ struct __test_metadata __attribute__((unused)) *_metadata, \ FIXTURE_DATA(fixture_name) __attribute__((unused)) *self, \ const FIXTURE_VARIANT(fixture_name) \ __attribute__((unused)) *variant) /** * FIXTURE_TEARDOWN() * *_metadata* is included so that EXPECT_*, ASSERT_* etc. work correctly. * * @fixture_name: fixture name * * .. code-block:: c * * FIXTURE_TEARDOWN(fixture_name) { implementation } * * Populates the required "teardown" function for a fixture. An instance of the * datatype defined with FIXTURE_DATA() will be exposed as *self* for the * implementation to clean up. * * A bare "return;" statement may be used to return early. */ #define FIXTURE_TEARDOWN(fixture_name) \ void fixture_name##_teardown( \ struct __test_metadata __attribute__((unused)) *_metadata, \ FIXTURE_DATA(fixture_name) __attribute__((unused)) *self, \ const FIXTURE_VARIANT(fixture_name) \ __attribute__((unused)) *variant) /** * FIXTURE_VARIANT() - Optionally called once per fixture * to declare fixture variant * * @fixture_name: fixture name * * .. code-block:: c * * FIXTURE_VARIANT(fixture_name) { * type property1; * ... * }; * * Defines type of constant parameters provided to FIXTURE_SETUP(), TEST_F() and * FIXTURE_TEARDOWN as *variant*. Variants allow the same tests to be run with * different arguments. */ #define FIXTURE_VARIANT(fixture_name) struct _fixture_variant_##fixture_name /** * FIXTURE_VARIANT_ADD() - Called once per fixture * variant to setup and register the data * * @fixture_name: fixture name * @variant_name: name of the parameter set * * .. code-block:: c * * FIXTURE_VARIANT_ADD(fixture_name, variant_name) { * .property1 = val1, * ... * }; * * Defines a variant of the test fixture, provided to FIXTURE_SETUP() and * TEST_F() as *variant*. Tests of each fixture will be run once for each * variant. */ #define FIXTURE_VARIANT_ADD(fixture_name, variant_name) \ extern FIXTURE_VARIANT(fixture_name) \ _##fixture_name##_##variant_name##_variant; \ static struct __fixture_variant_metadata \ _##fixture_name##_##variant_name##_object = \ { .name = #variant_name, \ .data = &_##fixture_name##_##variant_name##_variant}; \ static void __attribute__((constructor)) \ _register_##fixture_name##_##variant_name(void) \ { \ __register_fixture_variant(&_##fixture_name##_fixture_object, \ &_##fixture_name##_##variant_name##_object); \ } \ FIXTURE_VARIANT(fixture_name) \ _##fixture_name##_##variant_name##_variant = /** * TEST_F() - Emits test registration and helpers for * fixture-based test cases * * @fixture_name: fixture name * @test_name: test name * * .. code-block:: c * * TEST_F(fixture, name) { implementation } * * Defines a test that depends on a fixture (e.g., is part of a test case). * Very similar to TEST() except that *self* is the setup instance of fixture's * datatype exposed for use by the implementation. * * The @test_name code is run in a separate process sharing the same memory * (i.e. vfork), which means that the test process can update its privileges * without impacting the related FIXTURE_TEARDOWN() (e.g. to remove files from * a directory where write access was dropped). */ #define TEST_F(fixture_name, test_name) \ __TEST_F_IMPL(fixture_name, test_name, -1, TEST_TIMEOUT_DEFAULT) #define TEST_F_SIGNAL(fixture_name, test_name, signal) \ __TEST_F_IMPL(fixture_name, test_name, signal, TEST_TIMEOUT_DEFAULT) #define TEST_F_TIMEOUT(fixture_name, test_name, timeout) \ __TEST_F_IMPL(fixture_name, test_name, -1, timeout) #define __TEST_F_IMPL(fixture_name, test_name, signal, tmout) \ static void fixture_name##_##test_name( \ struct __test_metadata *_metadata, \ FIXTURE_DATA(fixture_name) *self, \ const FIXTURE_VARIANT(fixture_name) *variant); \ static inline void wrapper_##fixture_name##_##test_name( \ struct __test_metadata *_metadata, \ struct __fixture_variant_metadata *variant) \ { \ /* fixture data is alloced, setup, and torn down per call. */ \ FIXTURE_DATA(fixture_name) self; \ pid_t child = 1; \ int status = 0; \ memset(&self, 0, sizeof(FIXTURE_DATA(fixture_name))); \ if (setjmp(_metadata->env) == 0) { \ /* Use the same _metadata. */ \ child = vfork(); \ if (child == 0) { \ fixture_name##_setup(_metadata, &self, variant->data); \ /* Let setup failure terminate early. */ \ if (_metadata->exit_code) \ _exit(0); \ _metadata->setup_completed = true; \ fixture_name##_##test_name(_metadata, &self, variant->data); \ } else if (child < 0 || child != waitpid(child, &status, 0)) { \ ksft_print_msg("ERROR SPAWNING TEST GRANDCHILD\n"); \ _metadata->exit_code = KSFT_FAIL; \ } \ } \ if (child == 0) { \ if (_metadata->setup_completed && !_metadata->teardown_parent) \ fixture_name##_teardown(_metadata, &self, variant->data); \ _exit(0); \ } \ if (_metadata->setup_completed && _metadata->teardown_parent) \ fixture_name##_teardown(_metadata, &self, variant->data); \ if (!WIFEXITED(status) && WIFSIGNALED(status)) \ /* Forward signal to __wait_for_test(). */ \ kill(getpid(), WTERMSIG(status)); \ __test_check_assert(_metadata); \ } \ static struct __test_metadata \ _##fixture_name##_##test_name##_object = { \ .name = #test_name, \ .fn = &wrapper_##fixture_name##_##test_name, \ .fixture = &_##fixture_name##_fixture_object, \ .termsig = signal, \ .timeout = tmout, \ .teardown_parent = false, \ }; \ static void __attribute__((constructor)) \ _register_##fixture_name##_##test_name(void) \ { \ __register_test(&_##fixture_name##_##test_name##_object); \ } \ static void fixture_name##_##test_name( \ struct __test_metadata __attribute__((unused)) *_metadata, \ FIXTURE_DATA(fixture_name) __attribute__((unused)) *self, \ const FIXTURE_VARIANT(fixture_name) \ __attribute__((unused)) *variant) /** * TEST_HARNESS_MAIN - Simple wrapper to run the test harness * * .. code-block:: c * * TEST_HARNESS_MAIN * * Use once to append a main() to the test file. */ #define TEST_HARNESS_MAIN \ static void __attribute__((constructor)) \ __constructor_order_last(void) \ { \ if (!__constructor_order) \ __constructor_order = _CONSTRUCTOR_ORDER_BACKWARD; \ } \ int main(int argc, char **argv) { \ return test_harness_run(argc, argv); \ } /** * DOC: operators * * Operators for use in TEST() and TEST_F(). * ASSERT_* calls will stop test execution immediately. * EXPECT_* calls will emit a failure warning, note it, and continue. */ /** * ASSERT_EQ() * * @expected: expected value * @seen: measured value * * ASSERT_EQ(expected, measured): expected == measured */ #define ASSERT_EQ(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, ==, 1) /** * ASSERT_NE() * * @expected: expected value * @seen: measured value * * ASSERT_NE(expected, measured): expected != measured */ #define ASSERT_NE(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, !=, 1) /** * ASSERT_LT() * * @expected: expected value * @seen: measured value * * ASSERT_LT(expected, measured): expected < measured */ #define ASSERT_LT(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, <, 1) /** * ASSERT_LE() * * @expected: expected value * @seen: measured value * * ASSERT_LE(expected, measured): expected <= measured */ #define ASSERT_LE(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, <=, 1) /** * ASSERT_GT() * * @expected: expected value * @seen: measured value * * ASSERT_GT(expected, measured): expected > measured */ #define ASSERT_GT(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, >, 1) /** * ASSERT_GE() * * @expected: expected value * @seen: measured value * * ASSERT_GE(expected, measured): expected >= measured */ #define ASSERT_GE(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, >=, 1) /** * ASSERT_NULL() * * @seen: measured value * * ASSERT_NULL(measured): NULL == measured */ #define ASSERT_NULL(seen) \ __EXPECT(NULL, "NULL", seen, #seen, ==, 1) /** * ASSERT_TRUE() * * @seen: measured value * * ASSERT_TRUE(measured): measured != 0 */ #define ASSERT_TRUE(seen) \ __EXPECT(0, "0", seen, #seen, !=, 1) /** * ASSERT_FALSE() * * @seen: measured value * * ASSERT_FALSE(measured): measured == 0 */ #define ASSERT_FALSE(seen) \ __EXPECT(0, "0", seen, #seen, ==, 1) /** * ASSERT_STREQ() * * @expected: expected value * @seen: measured value * * ASSERT_STREQ(expected, measured): !strcmp(expected, measured) */ #define ASSERT_STREQ(expected, seen) \ __EXPECT_STR(expected, seen, ==, 1) /** * ASSERT_STRNE() * * @expected: expected value * @seen: measured value * * ASSERT_STRNE(expected, measured): strcmp(expected, measured) */ #define ASSERT_STRNE(expected, seen) \ __EXPECT_STR(expected, seen, !=, 1) /** * EXPECT_EQ() * * @expected: expected value * @seen: measured value * * EXPECT_EQ(expected, measured): expected == measured */ #define EXPECT_EQ(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, ==, 0) /** * EXPECT_NE() * * @expected: expected value * @seen: measured value * * EXPECT_NE(expected, measured): expected != measured */ #define EXPECT_NE(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, !=, 0) /** * EXPECT_LT() * * @expected: expected value * @seen: measured value * * EXPECT_LT(expected, measured): expected < measured */ #define EXPECT_LT(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, <, 0) /** * EXPECT_LE() * * @expected: expected value * @seen: measured value * * EXPECT_LE(expected, measured): expected <= measured */ #define EXPECT_LE(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, <=, 0) /** * EXPECT_GT() * * @expected: expected value * @seen: measured value * * EXPECT_GT(expected, measured): expected > measured */ #define EXPECT_GT(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, >, 0) /** * EXPECT_GE() * * @expected: expected value * @seen: measured value * * EXPECT_GE(expected, measured): expected >= measured */ #define EXPECT_GE(expected, seen) \ __EXPECT(expected, #expected, seen, #seen, >=, 0) /** * EXPECT_NULL() * * @seen: measured value * * EXPECT_NULL(measured): NULL == measured */ #define EXPECT_NULL(seen) \ __EXPECT(NULL, "NULL", seen, #seen, ==, 0) /** * EXPECT_TRUE() * * @seen: measured value * * EXPECT_TRUE(measured): 0 != measured */ #define EXPECT_TRUE(seen) \ __EXPECT(0, "0", seen, #seen, !=, 0) /** * EXPECT_FALSE() * * @seen: measured value * * EXPECT_FALSE(measured): 0 == measured */ #define EXPECT_FALSE(seen) \ __EXPECT(0, "0", seen, #seen, ==, 0) /** * EXPECT_STREQ() * * @expected: expected value * @seen: measured value * * EXPECT_STREQ(expected, measured): !strcmp(expected, measured) */ #define EXPECT_STREQ(expected, seen) \ __EXPECT_STR(expected, seen, ==, 0) /** * EXPECT_STRNE() * * @expected: expected value * @seen: measured value * * EXPECT_STRNE(expected, measured): strcmp(expected, measured) */ #define EXPECT_STRNE(expected, seen) \ __EXPECT_STR(expected, seen, !=, 0) #ifndef ARRAY_SIZE #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #endif /* Support an optional handler after and ASSERT_* or EXPECT_*. The approach is * not thread-safe, but it should be fine in most sane test scenarios. * * Using __bail(), which optionally abort()s, is the easiest way to early * return while still providing an optional block to the API consumer. */ #define OPTIONAL_HANDLER(_assert) \ for (; _metadata->trigger; _metadata->trigger = \ __bail(_assert, _metadata)) #define is_signed_type(var) (!!(((__typeof__(var))(-1)) < (__typeof__(var))1)) #define __EXPECT(_expected, _expected_str, _seen, _seen_str, _t, _assert) do { \ /* Avoid multiple evaluation of the cases */ \ __typeof__(_expected) __exp = (_expected); \ __typeof__(_seen) __seen = (_seen); \ if (!(__exp _t __seen)) { \ /* Report with actual signedness to avoid weird output. */ \ switch (is_signed_type(__exp) * 2 + is_signed_type(__seen)) { \ case 0: { \ unsigned long long __exp_print = (uintptr_t)__exp; \ unsigned long long __seen_print = (uintptr_t)__seen; \ __TH_LOG("Expected %s (%llu) %s %s (%llu)", \ _expected_str, __exp_print, #_t, \ _seen_str, __seen_print); \ break; \ } \ case 1: { \ unsigned long long __exp_print = (uintptr_t)__exp; \ long long __seen_print = (intptr_t)__seen; \ __TH_LOG("Expected %s (%llu) %s %s (%lld)", \ _expected_str, __exp_print, #_t, \ _seen_str, __seen_print); \ break; \ } \ case 2: { \ long long __exp_print = (intptr_t)__exp; \ unsigned long long __seen_print = (uintptr_t)__seen; \ __TH_LOG("Expected %s (%lld) %s %s (%llu)", \ _expected_str, __exp_print, #_t, \ _seen_str, __seen_print); \ break; \ } \ case 3: { \ long long __exp_print = (intptr_t)__exp; \ long long __seen_print = (intptr_t)__seen; \ __TH_LOG("Expected %s (%lld) %s %s (%lld)", \ _expected_str, __exp_print, #_t, \ _seen_str, __seen_print); \ break; \ } \ } \ _metadata->exit_code = KSFT_FAIL; \ /* Ensure the optional handler is triggered */ \ _metadata->trigger = 1; \ } \ } while (0); OPTIONAL_HANDLER(_assert) #define __EXPECT_STR(_expected, _seen, _t, _assert) do { \ const char *__exp = (_expected); \ const char *__seen = (_seen); \ if (!(strcmp(__exp, __seen) _t 0)) { \ __TH_LOG("Expected '%s' %s '%s'.", __exp, #_t, __seen); \ _metadata->exit_code = KSFT_FAIL; \ _metadata->trigger = 1; \ } \ } while (0); OPTIONAL_HANDLER(_assert) /* List helpers */ #define __LIST_APPEND(head, item) \ { \ /* Circular linked list where only prev is circular. */ \ if (head == NULL) { \ head = item; \ item->next = NULL; \ item->prev = item; \ return; \ } \ if (__constructor_order == _CONSTRUCTOR_ORDER_FORWARD) { \ item->next = NULL; \ item->prev = head->prev; \ item->prev->next = item; \ head->prev = item; \ } else { \ item->next = head; \ item->next->prev = item; \ item->prev = item; \ head = item; \ } \ } struct __test_results { char reason[1024]; /* Reason for test result */ }; struct __test_metadata; struct __fixture_variant_metadata; /* Contains all the information about a fixture. */ struct __fixture_metadata { const char *name; struct __test_metadata *tests; struct __fixture_variant_metadata *variant; struct __fixture_metadata *prev, *next; } _fixture_global __attribute__((unused)) = { .name = "global", .prev = &_fixture_global, }; struct __test_xfail { struct __fixture_metadata *fixture; struct __fixture_variant_metadata *variant; struct __test_metadata *test; struct __test_xfail *prev, *next; }; /** * XFAIL_ADD() - mark variant + test case combination as expected to fail * @fixture_name: name of the fixture * @variant_name: name of the variant * @test_name: name of the test case * * Mark a combination of variant + test case for a given fixture as expected * to fail. Tests marked this way will report XPASS / XFAIL return codes, * instead of PASS / FAIL,and use respective counters. */ #define XFAIL_ADD(fixture_name, variant_name, test_name) \ static struct __test_xfail \ _##fixture_name##_##variant_name##_##test_name##_xfail = \ { \ .fixture = &_##fixture_name##_fixture_object, \ .variant = &_##fixture_name##_##variant_name##_object, \ .test = &_##fixture_name##_##test_name##_object, \ }; \ static void __attribute__((constructor)) \ _register_##fixture_name##_##variant_name##_##test_name##_xfail(void) \ { \ __register_xfail(&_##fixture_name##_##variant_name##_##test_name##_xfail); \ } static struct __fixture_metadata *__fixture_list = &_fixture_global; static int __constructor_order; #define _CONSTRUCTOR_ORDER_FORWARD 1 #define _CONSTRUCTOR_ORDER_BACKWARD -1 static inline void __register_fixture(struct __fixture_metadata *f) { __LIST_APPEND(__fixture_list, f); } struct __fixture_variant_metadata { const char *name; const void *data; struct __test_xfail *xfails; struct __fixture_variant_metadata *prev, *next; }; static inline void __register_fixture_variant(struct __fixture_metadata *f, struct __fixture_variant_metadata *variant) { __LIST_APPEND(f->variant, variant); } /* Contains all the information for test execution and status checking. */ struct __test_metadata { const char *name; void (*fn)(struct __test_metadata *, struct __fixture_variant_metadata *); pid_t pid; /* pid of test when being run */ struct __fixture_metadata *fixture; int termsig; int exit_code; int trigger; /* extra handler after the evaluation */ int timeout; /* seconds to wait for test timeout */ bool timed_out; /* did this test timeout instead of exiting? */ bool aborted; /* stopped test due to failed ASSERT */ bool setup_completed; /* did setup finish? */ bool teardown_parent; /* run teardown in a parent process */ jmp_buf env; /* for exiting out of test early */ struct __test_results *results; struct __test_metadata *prev, *next; }; static inline bool __test_passed(struct __test_metadata *metadata) { return metadata->exit_code != KSFT_FAIL && metadata->exit_code <= KSFT_SKIP; } /* * Since constructors are called in reverse order, reverse the test * list so tests are run in source declaration order. * https://gcc.gnu.org/onlinedocs/gccint/Initialization.html * However, it seems not all toolchains do this correctly, so use * __constructor_order to detect which direction is called first * and adjust list building logic to get things running in the right * direction. */ static inline void __register_test(struct __test_metadata *t) { __LIST_APPEND(t->fixture->tests, t); } static inline void __register_xfail(struct __test_xfail *xf) { __LIST_APPEND(xf->variant->xfails, xf); } static inline int __bail(int for_realz, struct __test_metadata *t) { /* if this is ASSERT, return immediately. */ if (for_realz) { t->aborted = true; longjmp(t->env, 1); } /* otherwise, end the for loop and continue. */ return 0; } static inline void __test_check_assert(struct __test_metadata *t) { if (t->aborted) abort(); } struct __test_metadata *__active_test; static void __timeout_handler(int sig, siginfo_t *info, void *ucontext) { struct __test_metadata *t = __active_test; /* Sanity check handler execution environment. */ if (!t) { fprintf(TH_LOG_STREAM, "# no active test in SIGALRM handler!?\n"); abort(); } if (sig != SIGALRM || sig != info->si_signo) { fprintf(TH_LOG_STREAM, "# %s: SIGALRM handler caught signal %d!?\n", t->name, sig != SIGALRM ? sig : info->si_signo); abort(); } t->timed_out = true; // signal process group kill(-(t->pid), SIGKILL); } void __wait_for_test(struct __test_metadata *t) { struct sigaction action = { .sa_sigaction = __timeout_handler, .sa_flags = SA_SIGINFO, }; struct sigaction saved_action; int status; if (sigaction(SIGALRM, &action, &saved_action)) { t->exit_code = KSFT_FAIL; fprintf(TH_LOG_STREAM, "# %s: unable to install SIGALRM handler\n", t->name); return; } __active_test = t; t->timed_out = false; alarm(t->timeout); waitpid(t->pid, &status, 0); alarm(0); if (sigaction(SIGALRM, &saved_action, NULL)) { t->exit_code = KSFT_FAIL; fprintf(TH_LOG_STREAM, "# %s: unable to uninstall SIGALRM handler\n", t->name); return; } __active_test = NULL; if (t->timed_out) { t->exit_code = KSFT_FAIL; fprintf(TH_LOG_STREAM, "# %s: Test terminated by timeout\n", t->name); } else if (WIFEXITED(status)) { if (WEXITSTATUS(status) == KSFT_SKIP || WEXITSTATUS(status) == KSFT_XPASS || WEXITSTATUS(status) == KSFT_XFAIL) { t->exit_code = WEXITSTATUS(status); } else if (t->termsig != -1) { t->exit_code = KSFT_FAIL; fprintf(TH_LOG_STREAM, "# %s: Test exited normally instead of by signal (code: %d)\n", t->name, WEXITSTATUS(status)); } else { switch (WEXITSTATUS(status)) { /* Success */ case KSFT_PASS: t->exit_code = KSFT_PASS; break; /* Failure */ default: t->exit_code = KSFT_FAIL; fprintf(TH_LOG_STREAM, "# %s: Test failed\n", t->name); } } } else if (WIFSIGNALED(status)) { t->exit_code = KSFT_FAIL; if (WTERMSIG(status) == SIGABRT) { fprintf(TH_LOG_STREAM, "# %s: Test terminated by assertion\n", t->name); } else if (WTERMSIG(status) == t->termsig) { t->exit_code = KSFT_PASS; } else { fprintf(TH_LOG_STREAM, "# %s: Test terminated unexpectedly by signal %d\n", t->name, WTERMSIG(status)); } } else { fprintf(TH_LOG_STREAM, "# %s: Test ended in some other way [%u]\n", t->name, status); } } static void test_harness_list_tests(void) { struct __fixture_variant_metadata *v; struct __fixture_metadata *f; struct __test_metadata *t; for (f = __fixture_list; f; f = f->next) { v = f->variant; t = f->tests; if (f == __fixture_list) fprintf(stderr, "%-20s %-25s %s\n", "# FIXTURE", "VARIANT", "TEST"); else fprintf(stderr, "--------------------------------------------------------------------------------\n"); do { fprintf(stderr, "%-20s %-25s %s\n", t == f->tests ? f->name : "", v ? v->name : "", t ? t->name : ""); v = v ? v->next : NULL; t = t ? t->next : NULL; } while (v || t); } } static int test_harness_argv_check(int argc, char **argv) { int opt; while ((opt = getopt(argc, argv, "hlF:f:V:v:t:T:r:")) != -1) { switch (opt) { case 'f': case 'F': case 'v': case 'V': case 't': case 'T': case 'r': break; case 'l': test_harness_list_tests(); return KSFT_SKIP; case 'h': default: fprintf(stderr, "Usage: %s [-h|-l] [-t|-T|-v|-V|-f|-F|-r name]\n" "\t-h print help\n" "\t-l list all tests\n" "\n" "\t-t name include test\n" "\t-T name exclude test\n" "\t-v name include variant\n" "\t-V name exclude variant\n" "\t-f name include fixture\n" "\t-F name exclude fixture\n" "\t-r name run specified test\n" "\n" "Test filter options can be specified " "multiple times. The filtering stops\n" "at the first match. For example to " "include all tests from variant 'bla'\n" "but not test 'foo' specify '-T foo -v bla'.\n" "", argv[0]); return opt == 'h' ? KSFT_SKIP : KSFT_FAIL; } } return KSFT_PASS; } static bool test_enabled(int argc, char **argv, struct __fixture_metadata *f, struct __fixture_variant_metadata *v, struct __test_metadata *t) { unsigned int flen = 0, vlen = 0, tlen = 0; bool has_positive = false; int opt; optind = 1; while ((opt = getopt(argc, argv, "F:f:V:v:t:T:r:")) != -1) { has_positive |= islower(opt); switch (tolower(opt)) { case 't': if (!strcmp(t->name, optarg)) return islower(opt); break; case 'f': if (!strcmp(f->name, optarg)) return islower(opt); break; case 'v': if (!strcmp(v->name, optarg)) return islower(opt); break; case 'r': if (!tlen) { flen = strlen(f->name); vlen = strlen(v->name); tlen = strlen(t->name); } if (strlen(optarg) == flen + 1 + vlen + !!vlen + tlen && !strncmp(f->name, &optarg[0], flen) && !strncmp(v->name, &optarg[flen + 1], vlen) && !strncmp(t->name, &optarg[flen + 1 + vlen + !!vlen], tlen)) return true; break; } } /* * If there are no positive tests then we assume user just wants * exclusions and everything else is a pass. */ return !has_positive; } void __run_test(struct __fixture_metadata *f, struct __fixture_variant_metadata *variant, struct __test_metadata *t) { struct __test_xfail *xfail; char test_name[LINE_MAX]; const char *diagnostic; /* reset test struct */ t->exit_code = KSFT_PASS; t->trigger = 0; memset(t->results->reason, 0, sizeof(t->results->reason)); snprintf(test_name, sizeof(test_name), "%s%s%s.%s", f->name, variant->name[0] ? "." : "", variant->name, t->name); ksft_print_msg(" RUN %s ...\n", test_name); /* Make sure output buffers are flushed before fork */ fflush(stdout); fflush(stderr); t->pid = fork(); if (t->pid < 0) { ksft_print_msg("ERROR SPAWNING TEST CHILD\n"); t->exit_code = KSFT_FAIL; } else if (t->pid == 0) { setpgrp(); t->fn(t, variant); _exit(t->exit_code); } else { __wait_for_test(t); } ksft_print_msg(" %4s %s\n", __test_passed(t) ? "OK" : "FAIL", test_name); /* Check if we're expecting this test to fail */ for (xfail = variant->xfails; xfail; xfail = xfail->next) if (xfail->test == t) break; if (xfail) t->exit_code = __test_passed(t) ? KSFT_XPASS : KSFT_XFAIL; if (t->results->reason[0]) diagnostic = t->results->reason; else if (t->exit_code == KSFT_PASS || t->exit_code == KSFT_FAIL) diagnostic = NULL; else diagnostic = "unknown"; ksft_test_result_code(t->exit_code, test_name, diagnostic ? "%s" : "", diagnostic); } static int test_harness_run(int argc, char **argv) { struct __fixture_variant_metadata no_variant = { .name = "", }; struct __fixture_variant_metadata *v; struct __fixture_metadata *f; struct __test_results *results; struct __test_metadata *t; int ret; unsigned int case_count = 0, test_count = 0; unsigned int count = 0; unsigned int pass_count = 0; ret = test_harness_argv_check(argc, argv); if (ret != KSFT_PASS) return ret; for (f = __fixture_list; f; f = f->next) { for (v = f->variant ?: &no_variant; v; v = v->next) { unsigned int old_tests = test_count; for (t = f->tests; t; t = t->next) if (test_enabled(argc, argv, f, v, t)) test_count++; if (old_tests != test_count) case_count++; } } results = mmap(NULL, sizeof(*results), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); ksft_print_header(); ksft_set_plan(test_count); ksft_print_msg("Starting %u tests from %u test cases.\n", test_count, case_count); for (f = __fixture_list; f; f = f->next) { for (v = f->variant ?: &no_variant; v; v = v->next) { for (t = f->tests; t; t = t->next) { if (!test_enabled(argc, argv, f, v, t)) continue; count++; t->results = results; __run_test(f, v, t); t->results = NULL; if (__test_passed(t)) pass_count++; else ret = 1; } } } munmap(results, sizeof(*results)); ksft_print_msg("%s: %u / %u tests passed.\n", ret ? "FAILED" : "PASSED", pass_count, count); ksft_exit(ret == 0); /* unreachable */ return KSFT_FAIL; } static void __attribute__((constructor)) __constructor_order_first(void) { if (!__constructor_order) __constructor_order = _CONSTRUCTOR_ORDER_FORWARD; } #endif /* __KSELFTEST_HARNESS_H */