// SPDX-License-Identifier: GPL-2.0 /* * ucall support. A ucall is a "hypercall to userspace". * * Copyright (C) 2018, Red Hat, Inc. */ #include "kvm_util.h" #include "kvm_util_internal.h" #define UCALL_PIO_PORT ((uint16_t)0x1000) static ucall_type_t ucall_type; static vm_vaddr_t *ucall_exit_mmio_addr; static bool ucall_mmio_init(struct kvm_vm *vm, vm_paddr_t gpa) { if (kvm_userspace_memory_region_find(vm, gpa, gpa + 1)) return false; virt_pg_map(vm, gpa, gpa, 0); ucall_exit_mmio_addr = (vm_vaddr_t *)gpa; sync_global_to_guest(vm, ucall_exit_mmio_addr); return true; } void ucall_init(struct kvm_vm *vm, ucall_type_t type, void *arg) { ucall_type = type; sync_global_to_guest(vm, ucall_type); if (type == UCALL_PIO) return; if (type == UCALL_MMIO) { vm_paddr_t gpa, start, end, step, offset; unsigned bits; bool ret; if (arg) { gpa = (vm_paddr_t)arg; ret = ucall_mmio_init(vm, gpa); TEST_ASSERT(ret, "Can't set ucall mmio address to %lx", gpa); return; } /* * Find an address within the allowed physical and virtual address * spaces, that does _not_ have a KVM memory region associated with * it. Identity mapping an address like this allows the guest to * access it, but as KVM doesn't know what to do with it, it * will assume it's something userspace handles and exit with * KVM_EXIT_MMIO. Well, at least that's how it works for AArch64. * Here we start with a guess that the addresses around 5/8th * of the allowed space are unmapped and then work both down and * up from there in 1/16th allowed space sized steps. * * Note, we need to use VA-bits - 1 when calculating the allowed * virtual address space for an identity mapping because the upper * half of the virtual address space is the two's complement of the * lower and won't match physical addresses. */ bits = vm->va_bits - 1; bits = vm->pa_bits < bits ? vm->pa_bits : bits; end = 1ul << bits; start = end * 5 / 8; step = end / 16; for (offset = 0; offset < end - start; offset += step) { if (ucall_mmio_init(vm, start - offset)) return; if (ucall_mmio_init(vm, start + offset)) return; } TEST_ASSERT(false, "Can't find a ucall mmio address"); } } void ucall_uninit(struct kvm_vm *vm) { ucall_type = 0; sync_global_to_guest(vm, ucall_type); ucall_exit_mmio_addr = 0; sync_global_to_guest(vm, ucall_exit_mmio_addr); } static void ucall_pio_exit(struct ucall *uc) { #ifdef __x86_64__ asm volatile("in %[port], %%al" : : [port] "d" (UCALL_PIO_PORT), "D" (uc) : "rax"); #endif } static void ucall_mmio_exit(struct ucall *uc) { *ucall_exit_mmio_addr = (vm_vaddr_t)uc; } void ucall(uint64_t cmd, int nargs, ...) { struct ucall uc = { .cmd = cmd, }; va_list va; int i; nargs = nargs <= UCALL_MAX_ARGS ? nargs : UCALL_MAX_ARGS; va_start(va, nargs); for (i = 0; i < nargs; ++i) uc.args[i] = va_arg(va, uint64_t); va_end(va); switch (ucall_type) { case UCALL_PIO: ucall_pio_exit(&uc); break; case UCALL_MMIO: ucall_mmio_exit(&uc); break; }; } uint64_t get_ucall(struct kvm_vm *vm, uint32_t vcpu_id, struct ucall *uc) { struct kvm_run *run = vcpu_state(vm, vcpu_id); memset(uc, 0, sizeof(*uc)); #ifdef __x86_64__ if (ucall_type == UCALL_PIO && run->exit_reason == KVM_EXIT_IO && run->io.port == UCALL_PIO_PORT) { struct kvm_regs regs; vcpu_regs_get(vm, vcpu_id, ®s); memcpy(uc, addr_gva2hva(vm, (vm_vaddr_t)regs.rdi), sizeof(*uc)); return uc->cmd; } #endif if (ucall_type == UCALL_MMIO && run->exit_reason == KVM_EXIT_MMIO && run->mmio.phys_addr == (uint64_t)ucall_exit_mmio_addr) { vm_vaddr_t gva; TEST_ASSERT(run->mmio.is_write && run->mmio.len == 8, "Unexpected ucall exit mmio address access"); gva = *(vm_vaddr_t *)run->mmio.data; memcpy(uc, addr_gva2hva(vm, gva), sizeof(*uc)); } return uc->cmd; }