/* * Strictly speaking, this is not a test. But it can report during test * runs so relative performace can be measured. */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../kselftest.h" unsigned long long timing(clockid_t clk_id, unsigned long long samples) { struct timespec start, finish; unsigned long long i; pid_t pid, ret; pid = getpid(); assert(clock_gettime(clk_id, &start) == 0); for (i = 0; i < samples; i++) { ret = syscall(__NR_getpid); assert(pid == ret); } assert(clock_gettime(clk_id, &finish) == 0); i = finish.tv_sec - start.tv_sec; i *= 1000000000ULL; i += finish.tv_nsec - start.tv_nsec; ksft_print_msg("%lu.%09lu - %lu.%09lu = %llu (%.1fs)\n", finish.tv_sec, finish.tv_nsec, start.tv_sec, start.tv_nsec, i, (double)i / 1000000000.0); return i; } unsigned long long calibrate(void) { struct timespec start, finish; unsigned long long i, samples, step = 9973; pid_t pid, ret; int seconds = 15; ksft_print_msg("Calibrating sample size for %d seconds worth of syscalls ...\n", seconds); samples = 0; pid = getpid(); assert(clock_gettime(CLOCK_MONOTONIC, &start) == 0); do { for (i = 0; i < step; i++) { ret = syscall(__NR_getpid); assert(pid == ret); } assert(clock_gettime(CLOCK_MONOTONIC, &finish) == 0); samples += step; i = finish.tv_sec - start.tv_sec; i *= 1000000000ULL; i += finish.tv_nsec - start.tv_nsec; } while (i < 1000000000ULL); return samples * seconds; } bool approx(int i_one, int i_two) { /* * This continues to be a noisy test. Instead of a 1% comparison * go with 10%. */ double one = i_one, one_bump = one * 0.1; double two = i_two, two_bump = two * 0.1; one_bump = one + MAX(one_bump, 2.0); two_bump = two + MAX(two_bump, 2.0); /* Equal to, or within 1% or 2 digits */ if (one == two || (one > two && one <= two_bump) || (two > one && two <= one_bump)) return true; return false; } bool le(int i_one, int i_two) { if (i_one <= i_two) return true; return false; } long compare(const char *name_one, const char *name_eval, const char *name_two, unsigned long long one, bool (*eval)(int, int), unsigned long long two, bool skip) { bool good; if (skip) { ksft_test_result_skip("%s %s %s\n", name_one, name_eval, name_two); return 0; } ksft_print_msg("\t%s %s %s (%lld %s %lld): ", name_one, name_eval, name_two, (long long)one, name_eval, (long long)two); if (one > INT_MAX) { ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)one); good = false; goto out; } if (two > INT_MAX) { ksft_print_msg("Miscalculation! Measurement went negative: %lld\n", (long long)two); good = false; goto out; } good = eval(one, two); printf("%s\n", good ? "✔️" : "❌"); out: ksft_test_result(good, "%s %s %s\n", name_one, name_eval, name_two); return good ? 0 : 1; } /* Pin to a single CPU so the benchmark won't bounce around the system. */ void affinity(void) { long cpu; ulong ncores = sysconf(_SC_NPROCESSORS_CONF); cpu_set_t *setp = CPU_ALLOC(ncores); ulong setsz = CPU_ALLOC_SIZE(ncores); /* * Totally unscientific way to avoid CPUs that might be busier: * choose the highest CPU instead of the lowest. */ for (cpu = ncores - 1; cpu >= 0; cpu--) { CPU_ZERO_S(setsz, setp); CPU_SET_S(cpu, setsz, setp); if (sched_setaffinity(getpid(), setsz, setp) == -1) continue; printf("Pinned to CPU %lu of %lu\n", cpu + 1, ncores); goto out; } fprintf(stderr, "Could not set CPU affinity -- calibration may not work well"); out: CPU_FREE(setp); } int main(int argc, char *argv[]) { struct sock_filter bitmap_filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, nr)), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog bitmap_prog = { .len = (unsigned short)ARRAY_SIZE(bitmap_filter), .filter = bitmap_filter, }; struct sock_filter filter[] = { BPF_STMT(BPF_LD|BPF_W|BPF_ABS, offsetof(struct seccomp_data, args[0])), BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), }; struct sock_fprog prog = { .len = (unsigned short)ARRAY_SIZE(filter), .filter = filter, }; long ret, bits; unsigned long long samples, calc; unsigned long long native, filter1, filter2, bitmap1, bitmap2; unsigned long long entry, per_filter1, per_filter2; bool skip = false; setbuf(stdout, NULL); ksft_print_header(); ksft_set_plan(7); ksft_print_msg("Running on:\n"); ksft_print_msg(""); system("uname -a"); ksft_print_msg("Current BPF sysctl settings:\n"); /* Avoid using "sysctl" which may not be installed. */ ksft_print_msg(""); system("grep -H . /proc/sys/net/core/bpf_jit_enable"); ksft_print_msg(""); system("grep -H . /proc/sys/net/core/bpf_jit_harden"); affinity(); if (argc > 1) samples = strtoull(argv[1], NULL, 0); else samples = calibrate(); ksft_print_msg("Benchmarking %llu syscalls...\n", samples); /* Native call */ native = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid native: %llu ns\n", native); ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); assert(ret == 0); /* One filter resulting in a bitmap */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); assert(ret == 0); bitmap1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid RET_ALLOW 1 filter (bitmap): %llu ns\n", bitmap1); /* Second filter resulting in a bitmap */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); assert(ret == 0); bitmap2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid RET_ALLOW 2 filters (bitmap): %llu ns\n", bitmap2); /* Third filter, can no longer be converted to bitmap */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); assert(ret == 0); filter1 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid RET_ALLOW 3 filters (full): %llu ns\n", filter1); /* Fourth filter, can not be converted to bitmap because of filter 3 */ ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bitmap_prog); assert(ret == 0); filter2 = timing(CLOCK_PROCESS_CPUTIME_ID, samples) / samples; ksft_print_msg("getpid RET_ALLOW 4 filters (full): %llu ns\n", filter2); /* Estimations */ #define ESTIMATE(fmt, var, what) do { \ var = (what); \ ksft_print_msg("Estimated " fmt ": %llu ns\n", var); \ if (var > INT_MAX) { \ skip = true; \ ret |= 1; \ } \ } while (0) ESTIMATE("total seccomp overhead for 1 bitmapped filter", calc, bitmap1 - native); ESTIMATE("total seccomp overhead for 2 bitmapped filters", calc, bitmap2 - native); ESTIMATE("total seccomp overhead for 3 full filters", calc, filter1 - native); ESTIMATE("total seccomp overhead for 4 full filters", calc, filter2 - native); ESTIMATE("seccomp entry overhead", entry, bitmap1 - native - (bitmap2 - bitmap1)); ESTIMATE("seccomp per-filter overhead (last 2 diff)", per_filter1, filter2 - filter1); ESTIMATE("seccomp per-filter overhead (filters / 4)", per_filter2, (filter2 - native - entry) / 4); ksft_print_msg("Expectations:\n"); ret |= compare("native", "≤", "1 bitmap", native, le, bitmap1, skip); bits = compare("native", "≤", "1 filter", native, le, filter1, skip); if (bits) skip = true; ret |= compare("per-filter (last 2 diff)", "≈", "per-filter (filters / 4)", per_filter1, approx, per_filter2, skip); bits = compare("1 bitmapped", "≈", "2 bitmapped", bitmap1 - native, approx, bitmap2 - native, skip); if (bits) { ksft_print_msg("Skipping constant action bitmap expectations: they appear unsupported.\n"); skip = true; } ret |= compare("entry", "≈", "1 bitmapped", entry, approx, bitmap1 - native, skip); ret |= compare("entry", "≈", "2 bitmapped", entry, approx, bitmap2 - native, skip); ret |= compare("native + entry + (per filter * 4)", "≈", "4 filters total", entry + (per_filter1 * 4) + native, approx, filter2, skip); if (ret) ksft_print_msg("Saw unexpected benchmark result. Try running again with more samples?\n"); ksft_finished(); }