aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/src/hashtables.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/hashtables.c')
-rw-r--r--src/hashtables.c105
1 files changed, 69 insertions, 36 deletions
diff --git a/src/hashtables.c b/src/hashtables.c
index ac6df59..4ba2288 100644
--- a/src/hashtables.c
+++ b/src/hashtables.c
@@ -7,12 +7,16 @@
#include "peer.h"
#include "noise.h"
-static inline struct hlist_head *pubkey_bucket(struct pubkey_hashtable *table, const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
+static inline struct hlist_head *pubkey_bucket(struct pubkey_hashtable *table,
+ const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
{
- /* siphash gives us a secure 64bit number based on a random key. Since the bits are
- * uniformly distributed, we can then mask off to get the bits we need.
+ /* siphash gives us a secure 64bit number based on a random key. Since
+ * the bits are uniformly distributed, we can then mask off to get the
+ * bits we need.
*/
- return &table->hashtable[siphash(pubkey, NOISE_PUBLIC_KEY_LEN, &table->key) & (HASH_SIZE(table->hashtable) - 1)];
+ return &table->hashtable[
+ siphash(pubkey, NOISE_PUBLIC_KEY_LEN, &table->key) &
+ (HASH_SIZE(table->hashtable) - 1)];
}
void pubkey_hashtable_init(struct pubkey_hashtable *table)
@@ -22,14 +26,17 @@ void pubkey_hashtable_init(struct pubkey_hashtable *table)
mutex_init(&table->lock);
}
-void pubkey_hashtable_add(struct pubkey_hashtable *table, struct wireguard_peer *peer)
+void pubkey_hashtable_add(struct pubkey_hashtable *table,
+ struct wireguard_peer *peer)
{
mutex_lock(&table->lock);
- hlist_add_head_rcu(&peer->pubkey_hash, pubkey_bucket(table, peer->handshake.remote_static));
+ hlist_add_head_rcu(&peer->pubkey_hash,
+ pubkey_bucket(table, peer->handshake.remote_static));
mutex_unlock(&table->lock);
}
-void pubkey_hashtable_remove(struct pubkey_hashtable *table, struct wireguard_peer *peer)
+void pubkey_hashtable_remove(struct pubkey_hashtable *table,
+ struct wireguard_peer *peer)
{
mutex_lock(&table->lock);
hlist_del_init_rcu(&peer->pubkey_hash);
@@ -37,13 +44,17 @@ void pubkey_hashtable_remove(struct pubkey_hashtable *table, struct wireguard_pe
}
/* Returns a strong reference to a peer */
-struct wireguard_peer *pubkey_hashtable_lookup(struct pubkey_hashtable *table, const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
+struct wireguard_peer *
+pubkey_hashtable_lookup(struct pubkey_hashtable *table,
+ const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
{
struct wireguard_peer *iter_peer, *peer = NULL;
rcu_read_lock_bh();
- hlist_for_each_entry_rcu_bh(iter_peer, pubkey_bucket(table, pubkey), pubkey_hash) {
- if (!memcmp(pubkey, iter_peer->handshake.remote_static, NOISE_PUBLIC_KEY_LEN)) {
+ hlist_for_each_entry_rcu_bh (iter_peer, pubkey_bucket(table, pubkey),
+ pubkey_hash) {
+ if (!memcmp(pubkey, iter_peer->handshake.remote_static,
+ NOISE_PUBLIC_KEY_LEN)) {
peer = iter_peer;
break;
}
@@ -53,12 +64,14 @@ struct wireguard_peer *pubkey_hashtable_lookup(struct pubkey_hashtable *table, c
return peer;
}
-static inline struct hlist_head *index_bucket(struct index_hashtable *table, const __le32 index)
+static inline struct hlist_head *index_bucket(struct index_hashtable *table,
+ const __le32 index)
{
- /* Since the indices are random and thus all bits are uniformly distributed,
- * we can find its bucket simply by masking.
+ /* Since the indices are random and thus all bits are uniformly
+ * distributed, we can find its bucket simply by masking.
*/
- return &table->hashtable[(__force u32)index & (HASH_SIZE(table->hashtable) - 1)];
+ return &table->hashtable[(__force u32)index &
+ (HASH_SIZE(table->hashtable) - 1)];
}
void index_hashtable_init(struct index_hashtable *table)
@@ -67,9 +80,10 @@ void index_hashtable_init(struct index_hashtable *table)
spin_lock_init(&table->lock);
}
-/* At the moment, we limit ourselves to 2^20 total peers, which generally might amount to 2^20*3
- * items in this hashtable. The algorithm below works by picking a random number and testing it.
- * We can see that these limits mean we usually succeed pretty quickly:
+/* At the moment, we limit ourselves to 2^20 total peers, which generally might
+ * amount to 2^20*3 items in this hashtable. The algorithm below works by
+ * picking a random number and testing it. We can see that these limits mean we
+ * usually succeed pretty quickly:
*
* >>> def calculation(tries, size):
* ... return (size / 2**32)**(tries - 1) * (1 - (size / 2**32))
@@ -83,13 +97,15 @@ void index_hashtable_init(struct index_hashtable *table)
* >>> calculation(4, 2**20 * 3)
* 3.9261394135792216e-10
*
- * At the moment, we don't do any masking, so this algorithm isn't exactly constant time in
- * either the random guessing or in the hash list lookup. We could require a minimum of 3
- * tries, which would successfully mask the guessing. TODO: this would not, however, help
- * with the growing hash lengths.
+ * At the moment, we don't do any masking, so this algorithm isn't exactly
+ * constant time in either the random guessing or in the hash list lookup. We
+ * could require a minimum of 3 tries, which would successfully mask the
+ * guessing. this would not, however, help with the growing hash lengths, which
+ * is another thing to consider moving forward.
*/
-__le32 index_hashtable_insert(struct index_hashtable *table, struct index_hashtable_entry *entry)
+__le32 index_hashtable_insert(struct index_hashtable *table,
+ struct index_hashtable_entry *entry)
{
struct index_hashtable_entry *existing_entry;
@@ -102,23 +118,32 @@ __le32 index_hashtable_insert(struct index_hashtable *table, struct index_hashta
search_unused_slot:
/* First we try to find an unused slot, randomly, while unlocked. */
entry->index = (__force __le32)get_random_u32();
- hlist_for_each_entry_rcu_bh(existing_entry, index_bucket(table, entry->index), index_hash) {
+ hlist_for_each_entry_rcu_bh (existing_entry,
+ index_bucket(table, entry->index),
+ index_hash) {
if (existing_entry->index == entry->index)
- goto search_unused_slot; /* If it's already in use, we continue searching. */
+ /* If it's already in use, we continue searching. */
+ goto search_unused_slot;
}
/* Once we've found an unused slot, we lock it, and then double-check
* that nobody else stole it from us.
*/
spin_lock_bh(&table->lock);
- hlist_for_each_entry_rcu_bh(existing_entry, index_bucket(table, entry->index), index_hash) {
+ hlist_for_each_entry_rcu_bh (existing_entry,
+ index_bucket(table, entry->index),
+ index_hash) {
if (existing_entry->index == entry->index) {
spin_unlock_bh(&table->lock);
- goto search_unused_slot; /* If it was stolen, we start over. */
+ /* If it was stolen, we start over. */
+ goto search_unused_slot;
}
}
- /* Otherwise, we know we have it exclusively (since we're locked), so we insert. */
- hlist_add_head_rcu(&entry->index_hash, index_bucket(table, entry->index));
+ /* Otherwise, we know we have it exclusively (since we're locked),
+ * so we insert.
+ */
+ hlist_add_head_rcu(&entry->index_hash,
+ index_bucket(table, entry->index));
spin_unlock_bh(&table->lock);
rcu_read_unlock_bh();
@@ -126,7 +151,9 @@ search_unused_slot:
return entry->index;
}
-bool index_hashtable_replace(struct index_hashtable *table, struct index_hashtable_entry *old, struct index_hashtable_entry *new)
+bool index_hashtable_replace(struct index_hashtable *table,
+ struct index_hashtable_entry *old,
+ struct index_hashtable_entry *new)
{
if (unlikely(hlist_unhashed(&old->index_hash)))
return false;
@@ -134,17 +161,19 @@ bool index_hashtable_replace(struct index_hashtable *table, struct index_hashtab
new->index = old->index;
hlist_replace_rcu(&old->index_hash, &new->index_hash);
- /* Calling init here NULLs out index_hash, and in fact after this function returns,
- * it's theoretically possible for this to get reinserted elsewhere. That means
- * the RCU lookup below might either terminate early or jump between buckets, in which
- * case the packet simply gets dropped, which isn't terrible.
+ /* Calling init here NULLs out index_hash, and in fact after this
+ * function returns, it's theoretically possible for this to get
+ * reinserted elsewhere. That means the RCU lookup below might either
+ * terminate early or jump between buckets, in which case the packet
+ * simply gets dropped, which isn't terrible.
*/
INIT_HLIST_NODE(&old->index_hash);
spin_unlock_bh(&table->lock);
return true;
}
-void index_hashtable_remove(struct index_hashtable *table, struct index_hashtable_entry *entry)
+void index_hashtable_remove(struct index_hashtable *table,
+ struct index_hashtable_entry *entry)
{
spin_lock_bh(&table->lock);
hlist_del_init_rcu(&entry->index_hash);
@@ -152,12 +181,16 @@ void index_hashtable_remove(struct index_hashtable *table, struct index_hashtabl
}
/* Returns a strong reference to a entry->peer */
-struct index_hashtable_entry *index_hashtable_lookup(struct index_hashtable *table, const enum index_hashtable_type type_mask, const __le32 index, struct wireguard_peer **peer)
+struct index_hashtable_entry *
+index_hashtable_lookup(struct index_hashtable *table,
+ const enum index_hashtable_type type_mask,
+ const __le32 index, struct wireguard_peer **peer)
{
struct index_hashtable_entry *iter_entry, *entry = NULL;
rcu_read_lock_bh();
- hlist_for_each_entry_rcu_bh(iter_entry, index_bucket(table, index), index_hash) {
+ hlist_for_each_entry_rcu_bh (iter_entry, index_bucket(table, index),
+ index_hash) {
if (iter_entry->index == index) {
if (likely(iter_entry->type & type_mask))
entry = iter_entry;