aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/src/data.c
blob: b5569c77b3c1845821afb7140ad2eedbe326aadf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/* Copyright (C) 2015-2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */

#include "noise.h"
#include "device.h"
#include "peer.h"
#include "messages.h"
#include "packets.h"
#include "queue.h"
#include "timers.h"
#include "hashtables.h"

#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/bitmap.h>
#include <linux/scatterlist.h>
#include <net/ip_tunnels.h>
#include <net/xfrm.h>
#include <crypto/algapi.h>

static struct kmem_cache *crypt_ctx_cache __read_mostly;

int __init init_crypt_cache(void)
{
	crypt_ctx_cache = KMEM_CACHE(crypt_ctx, 0);
	if (!crypt_ctx_cache)
		return -ENOMEM;
	return 0;
}

void deinit_crypt_cache(void)
{
	kmem_cache_destroy(crypt_ctx_cache);
}

static void drop_ctx(struct crypt_ctx *ctx, bool sending)
{
	if (ctx->keypair)
		noise_keypair_put(ctx->keypair);
	peer_put(ctx->peer);
	if (sending)
		skb_queue_purge(&ctx->packets);
	else
		dev_kfree_skb(ctx->skb);
	kmem_cache_free(crypt_ctx_cache, ctx);
}

#define drop_ctx_and_continue(ctx, sending) ({ \
	drop_ctx(ctx, sending); \
	continue; \
})

#define drop_ctx_and_return(ctx, sending) ({ \
	drop_ctx(ctx, sending); \
	return; \
})

/* This is RFC6479, a replay detection bitmap algorithm that avoids bitshifts */
static inline bool counter_validate(union noise_counter *counter, u64 their_counter)
{
	bool ret = false;
	unsigned long index, index_current, top, i;
	spin_lock_bh(&counter->receive.lock);

	if (unlikely(counter->receive.counter >= REJECT_AFTER_MESSAGES + 1 || their_counter >= REJECT_AFTER_MESSAGES))
		goto out;

	++their_counter;

	if (unlikely((COUNTER_WINDOW_SIZE + their_counter) < counter->receive.counter))
		goto out;

	index = their_counter >> ilog2(BITS_PER_LONG);

	if (likely(their_counter > counter->receive.counter)) {
		index_current = counter->receive.counter >> ilog2(BITS_PER_LONG);
		top = min_t(unsigned long, index - index_current, COUNTER_BITS_TOTAL / BITS_PER_LONG);
		for (i = 1; i <= top; ++i)
			counter->receive.backtrack[(i + index_current) & ((COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1)] = 0;
		counter->receive.counter = their_counter;
	}

	index &= (COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1;
	ret = !test_and_set_bit(their_counter & (BITS_PER_LONG - 1), &counter->receive.backtrack[index]);

out:
	spin_unlock_bh(&counter->receive.lock);
	return ret;
}
#include "selftest/counter.h"

static inline unsigned int skb_padding(struct sk_buff *skb)
{
	/* We do this modulo business with the MTU, just in case the networking layer
	 * gives us a packet that's bigger than the MTU. Now that we support GSO, this
	 * shouldn't be a real problem, and this can likely be removed. But, caution! */
	unsigned int last_unit = skb->len % skb->dev->mtu;
	unsigned int padded_size = (last_unit + MESSAGE_PADDING_MULTIPLE - 1) & ~(MESSAGE_PADDING_MULTIPLE - 1);
	if (padded_size > skb->dev->mtu)
		padded_size = skb->dev->mtu;
	return padded_size - last_unit;
}

static inline void skb_reset(struct sk_buff *skb)
{
	skb_scrub_packet(skb, false);
	memset(&skb->headers_start, 0, offsetof(struct sk_buff, headers_end) - offsetof(struct sk_buff, headers_start));
	skb->queue_mapping = 0;
	skb->nohdr = 0;
	skb->peeked = 0;
	skb->mac_len = 0;
	skb->dev = NULL;
#ifdef CONFIG_NET_SCHED
	skb->tc_index = 0;
	skb_reset_tc(skb);
#endif
	skb->hdr_len = skb_headroom(skb);
	skb_reset_mac_header(skb);
	skb_reset_network_header(skb);
	skb_probe_transport_header(skb, 0);
	skb_reset_inner_headers(skb);
}

static inline bool skb_encrypt(struct sk_buff *skb, struct noise_keypair *keypair, bool have_simd)
{
	struct scatterlist sg[MAX_SKB_FRAGS * 2 + 1];
	struct message_data *header;
	unsigned int padding_len, plaintext_len, trailer_len;
	int num_frags;
	struct sk_buff *trailer;

	/* Store the ds bit in the cb */
	PACKET_CB(skb)->ds = ip_tunnel_ecn_encap(0 /* No outer TOS: no leak. TODO: should we use flowi->tos as outer? */, ip_hdr(skb), skb);

	/* Calculate lengths */
	padding_len = skb_padding(skb);
	trailer_len = padding_len + noise_encrypted_len(0);
	plaintext_len = skb->len + padding_len;

	/* Expand data section to have room for padding and auth tag */
	num_frags = skb_cow_data(skb, trailer_len, &trailer);
	if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
		return false;

	/* Set the padding to zeros, and make sure it and the auth tag are part of the skb */
	memset(skb_tail_pointer(trailer), 0, padding_len);

	/* Expand head section to have room for our header and the network stack's headers. */
	if (unlikely(skb_cow_head(skb, DATA_PACKET_HEAD_ROOM) < 0))
		return false;

	/* We have to remember to add the checksum to the innerpacket, in case the receiver forwards it. */
	if (likely(!skb_checksum_setup(skb, true)))
		skb_checksum_help(skb);

	/* Only after checksumming can we safely add on the padding at the end and the header. */
	header = (struct message_data *)skb_push(skb, sizeof(struct message_data));
	header->header.type = cpu_to_le32(MESSAGE_DATA);
	header->key_idx = keypair->remote_index;
	header->counter = cpu_to_le64(PACKET_CB(skb)->nonce);
	pskb_put(skb, trailer, trailer_len);

	/* Now we can encrypt the scattergather segments */
	sg_init_table(sg, num_frags);
	if (skb_to_sgvec(skb, sg, sizeof(struct message_data), noise_encrypted_len(plaintext_len)) <= 0)
		return false;
	return chacha20poly1305_encrypt_sg(sg, sg, plaintext_len, NULL, 0, PACKET_CB(skb)->nonce, keypair->sending.key, have_simd);
}

static inline bool skb_decrypt(struct sk_buff *skb, struct noise_symmetric_key *key)
{
	struct scatterlist sg[MAX_SKB_FRAGS * 2 + 1];
	struct sk_buff *trailer;
	int num_frags;

	if (unlikely(!key))
		return false;

	if (unlikely(!key->is_valid || time_is_before_eq_jiffies64(key->birthdate + REJECT_AFTER_TIME) || key->counter.receive.counter >= REJECT_AFTER_MESSAGES)) {
		key->is_valid = false;
		return false;
	}

	PACKET_CB(skb)->nonce = le64_to_cpu(((struct message_data *)skb->data)->counter);
	skb_pull(skb, sizeof(struct message_data));
	num_frags = skb_cow_data(skb, 0, &trailer);
	if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
		return false;

	sg_init_table(sg, num_frags);
	if (skb_to_sgvec(skb, sg, 0, skb->len) <= 0)
		return false;

	if (!chacha20poly1305_decrypt_sg(sg, sg, skb->len, NULL, 0, PACKET_CB(skb)->nonce, key->key))
		return false;

	return !pskb_trim(skb, skb->len - noise_encrypted_len(0));
}

static inline bool packet_initialize_ctx(struct crypt_ctx *ctx)
{
	struct noise_symmetric_key *key;
	struct sk_buff *skb;

	rcu_read_lock_bh();
	ctx->keypair = noise_keypair_get(rcu_dereference_bh(ctx->peer->keypairs.current_keypair));
	rcu_read_unlock_bh();
	if (unlikely(!ctx->keypair))
		return false;
	key = &ctx->keypair->sending;
	if (unlikely(!key || !key->is_valid))
		goto out_nokey;
	if (unlikely(time_is_before_eq_jiffies64(key->birthdate + REJECT_AFTER_TIME)))
		goto out_invalid;

	skb_queue_walk(&ctx->packets, skb) {
		PACKET_CB(skb)->nonce = atomic64_inc_return(&key->counter.counter) - 1;
		if (unlikely(PACKET_CB(skb)->nonce >= REJECT_AFTER_MESSAGES))
			goto out_invalid;
	}

	return true;

out_invalid:
	key->is_valid = false;
out_nokey:
	noise_keypair_put(ctx->keypair);
	ctx->keypair = NULL;
	return false;
}

void packet_send_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct crypt_queue, work);
	struct sk_buff *skb, *tmp;
	struct wireguard_peer *peer = container_of(queue, struct wireguard_peer, send_queue);
	bool data_sent = false;

	timers_any_authenticated_packet_traversal(peer);
	while ((ctx = queue_first_peer(queue)) != NULL && atomic_read(&ctx->state) == CTX_FINISHED) {
		queue_dequeue(queue);
		skb_queue_walk_safe(&ctx->packets, skb, tmp) {
			bool is_keepalive = skb->len == message_data_len(0);
			if (likely(!socket_send_skb_to_peer(peer, skb, PACKET_CB(skb)->ds) && !is_keepalive))
				data_sent = true;
		}
		noise_keypair_put(ctx->keypair);
		peer_put(ctx->peer);
		kmem_cache_free(crypt_ctx_cache, ctx);
	}
	if (likely(data_sent))
		timers_data_sent(peer);
	keep_key_fresh_send(peer);
}

void packet_encrypt_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct crypt_queue, work);
	struct sk_buff *skb, *tmp;
	struct wireguard_peer *peer;
	bool have_simd = chacha20poly1305_init_simd();

	while ((ctx = queue_dequeue_shared(queue)) != NULL) {
		skb_queue_walk_safe(&ctx->packets, skb, tmp) {
			if (likely(skb_encrypt(skb, ctx->keypair, have_simd))) {
				skb_reset(skb);
			} else {
				__skb_unlink(skb, &ctx->packets);
				dev_kfree_skb(skb);
			}
		}
		/* Dereferencing ctx is unsafe once ctx->state == CTX_FINISHED. */
		peer = peer_rcu_get(ctx->peer);
		atomic_set(&ctx->state, CTX_FINISHED);
		queue_work_on(peer->work_cpu, peer->device->crypt_wq, &peer->send_queue.work);
		peer_put(peer);
	}
	chacha20poly1305_deinit_simd(have_simd);
}

void packet_init_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct crypt_queue, work);
	struct wireguard_peer *peer = container_of(queue, struct wireguard_peer, init_queue);

	spin_lock(&peer->init_queue_lock);
	while ((ctx = queue_first_peer(queue)) != NULL) {
		if (unlikely(!packet_initialize_ctx(ctx))) {
			packet_queue_handshake_initiation(peer, false);
			break;
		}
		queue_dequeue(queue);
		if (unlikely(!queue_enqueue_peer(&peer->send_queue, ctx)))
			drop_ctx_and_continue(ctx, true);
		queue_enqueue_shared(peer->device->encrypt_queue, ctx, peer->device->crypt_wq, &peer->device->encrypt_cpu);
	}
	spin_unlock(&peer->init_queue_lock);
}

void packet_create_data(struct wireguard_peer *peer, struct sk_buff_head *packets)
{
	struct crypt_ctx *ctx;
	struct sk_buff *skb;
	struct wireguard_device *wg = peer->device;
	bool need_handshake = false;

	ctx = kmem_cache_alloc(crypt_ctx_cache, GFP_ATOMIC);
	if (unlikely(!ctx)) {
		skb_queue_purge(packets);
		return;
	}
	skb_queue_head_init(&ctx->packets);
	skb_queue_splice_tail(packets, &ctx->packets);
	ctx->peer = peer_rcu_get(peer);
	ctx->keypair = NULL;
	atomic_set(&ctx->state, CTX_NEW);

	/* If there are already packets on the init queue, these must go behind
	 * them to maintain the correct order, so we can only take the fast path
	 * when the queue is empty. */
	if (likely(queue_empty(&peer->init_queue))) {
		if (likely(packet_initialize_ctx(ctx))) {
			if (unlikely(!queue_enqueue_peer(&peer->send_queue, ctx)))
				drop_ctx_and_return(ctx, true);
			queue_enqueue_shared(wg->encrypt_queue, ctx, wg->crypt_wq, &wg->encrypt_cpu);
			return;
		}
		/* Initialization failed, so we need a new keypair. */
		need_handshake = true;
	}

	/* Packets are kept around in the init queue as long as there is an
	 * ongoing handshake. Throw out the oldest packets instead of the new
	 * ones. If we cannot acquire the lock, packets are being dequeued on
	 * another thread. */
	if (unlikely(queue_full(&peer->init_queue)) && spin_trylock(&peer->init_queue_lock)) {
		struct crypt_ctx *tmp = queue_dequeue_peer(&peer->init_queue);
		if (likely(tmp))
			drop_ctx(tmp, true);
		spin_unlock(&peer->init_queue_lock);
	}
	skb_queue_walk(&ctx->packets, skb)
		skb_orphan(skb);
	if (unlikely(!queue_enqueue_peer(&peer->init_queue, ctx)))
		drop_ctx_and_return(ctx, true);
	if (need_handshake)
		packet_queue_handshake_initiation(peer, false);
	/* If we have a valid keypair, but took the slow path because init_queue
	 * had packets on it, init_queue.worker() may have finished
	 * processing the existing packets and returned since we checked if the
	 * init_queue was empty. Run the worker again if this is the only ctx
	 * remaining on the queue. */
	else if (unlikely(queue_first_peer(&peer->init_queue) == ctx))
		queue_work(peer->device->crypt_wq, &peer->init_queue.work);
}

void packet_receive_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct crypt_queue, work);
	struct sk_buff *skb;

	while ((ctx = queue_first_peer(queue)) != NULL && atomic_read(&ctx->state) == CTX_FINISHED) {
		queue_dequeue(queue);
		if (likely(skb = ctx->skb)) {
			if (unlikely(!counter_validate(&ctx->keypair->receiving.counter, PACKET_CB(skb)->nonce))) {
				net_dbg_ratelimited("%s: Packet has invalid nonce %Lu (max %Lu)\n", ctx->peer->device->dev->name, PACKET_CB(ctx->skb)->nonce, ctx->keypair->receiving.counter.receive.counter);
				dev_kfree_skb(skb);
			} else {
				skb_reset(skb);
				packet_consume_data_done(skb, ctx->peer, &ctx->endpoint, noise_received_with_keypair(&ctx->peer->keypairs, ctx->keypair));
			}
		}
		noise_keypair_put(ctx->keypair);
		peer_put(ctx->peer);
		kmem_cache_free(crypt_ctx_cache, ctx);
	}
}

void packet_decrypt_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct crypt_queue, work);
	struct wireguard_peer *peer;

	while ((ctx = queue_dequeue_shared(queue)) != NULL) {
		if (unlikely(socket_endpoint_from_skb(&ctx->endpoint, ctx->skb) < 0 || !skb_decrypt(ctx->skb, &ctx->keypair->receiving))) {
			dev_kfree_skb(ctx->skb);
			ctx->skb = NULL;
		}
		/* Dereferencing ctx is unsafe once ctx->state == CTX_FINISHED. */
		peer = peer_rcu_get(ctx->peer);
		atomic_set(&ctx->state, CTX_FINISHED);
		queue_work_on(peer->work_cpu, peer->device->crypt_wq, &peer->receive_queue.work);
		peer_put(peer);
	}
}

void packet_consume_data(struct sk_buff *skb, struct wireguard_device *wg)
{
	struct crypt_ctx *ctx;
	__le32 idx = ((struct message_data *)skb->data)->key_idx;

	ctx = kmem_cache_alloc(crypt_ctx_cache, GFP_ATOMIC);
	if (unlikely(!ctx)) {
		dev_kfree_skb(skb);
		return;
	}
	rcu_read_lock_bh();
	ctx->keypair = noise_keypair_get((struct noise_keypair *)index_hashtable_lookup(&wg->index_hashtable, INDEX_HASHTABLE_KEYPAIR, idx));
	rcu_read_unlock_bh();
	if (unlikely(!ctx->keypair)) {
		kmem_cache_free(crypt_ctx_cache, ctx);
		dev_kfree_skb(skb);
		return;
	}
	ctx->skb = skb;
	/* index_hashtable_lookup() already gets a reference to peer. */
	ctx->peer = ctx->keypair->entry.peer;
	atomic_set(&ctx->state, CTX_NEW);

	if (unlikely(!queue_enqueue_peer(&ctx->peer->receive_queue, ctx)))
		drop_ctx_and_return(ctx, false);
	queue_enqueue_shared(wg->decrypt_queue, ctx, wg->crypt_wq, &wg->decrypt_cpu);
}

void peer_purge_queues(struct wireguard_peer *peer)
{
	struct crypt_ctx *ctx;

	if (!spin_trylock(&peer->init_queue_lock))
		return;
	while ((ctx = queue_dequeue_peer(&peer->init_queue)) != NULL)
		drop_ctx(ctx, true);
	spin_unlock(&peer->init_queue_lock);
}