aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/src/data.c
blob: c673ce614788645f74b6f8507ff44e4cdfa01051 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/* Copyright (C) 2015-2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */

#include "noise.h"
#include "device.h"
#include "peer.h"
#include "messages.h"
#include "packets.h"
#include "timers.h"
#include "hashtables.h"

#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/bitmap.h>
#include <linux/scatterlist.h>
#include <net/ip_tunnels.h>
#include <net/xfrm.h>
#include <crypto/algapi.h>

struct crypt_ctx {
	struct list_head per_peer_head;
	struct list_head per_device_head;
	union {
		struct sk_buff_head packets;
		struct sk_buff *skb;
	};
	struct wireguard_peer *peer;
	struct noise_keypair *keypair;
	struct endpoint endpoint;
	atomic_t is_finished;
};

static struct list_head *queue_dequeue(struct crypt_queue *queue)
{
	struct list_head *head;
	spin_lock_bh(&queue->lock);
	head = READ_ONCE(queue->list.next);
	if (&queue->list == head) {
		spin_unlock_bh(&queue->lock);
		return NULL;
	}
	list_del(head);
	--queue->qlen;
	spin_unlock_bh(&queue->lock);
	return head;
}

static bool queue_enqueue(struct crypt_queue *queue, struct list_head *head, int limit)
{
	spin_lock_bh(&queue->lock);
	if (limit && queue->qlen >= limit) {
		spin_unlock_bh(&queue->lock);
		return false;
	}
	++queue->qlen;
	list_add_tail(head, &queue->list);
	spin_unlock_bh(&queue->lock);
	return true;
}

static inline struct crypt_ctx *queue_dequeue_per_peer(struct crypt_queue *queue)
{
	struct list_head *head = queue_dequeue(queue);
	return head ? list_entry(head, struct crypt_ctx, per_peer_head) : NULL;
}

static inline struct crypt_ctx *queue_dequeue_per_device(struct crypt_queue *queue, bool sending)
{
	struct list_head *head = queue_dequeue(queue);
	struct crypt_ctx *ctx;
	if (!head)
		return NULL;
	ctx = list_entry(head, struct crypt_ctx, per_device_head);
	if (sending)
		dql_completed(&queue->dql, skb_queue_len(&ctx->packets));
	else
		dql_completed(&queue->dql, 1);
	return ctx;
}

static inline bool queue_enqueue_per_peer(struct crypt_queue *queue, struct crypt_ctx *ctx)
{
	/* TODO: While using MAX_QUEUED_PACKETS makes sense for the init_queue, it's
	 * not ideal to be using this for the encrypt/decrypt queues or the send/receive
	 * queues, where dynamic_queue_limit (dql) should be used instead. */
	return queue_enqueue(queue, &(ctx)->per_peer_head, MAX_QUEUED_PACKETS);
}

static inline int cpumask_next_online_dql(int *next, struct dql *dql)
{
	int cpu = *next;
	while (unlikely(!cpumask_test_cpu(cpu, cpu_online_mask)))
		cpu = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits;
	if (dql_avail(dql) < 0)
		*next = cpumask_next(cpu, cpu_online_mask) % nr_cpumask_bits;
	else
		*next = cpu;
	return cpu;
}

static inline void queue_enqueue_per_device(struct crypt_queue *queue, struct crypt_ctx *ctx, struct workqueue_struct *wq, int *next_cpu, bool sending)
{
	int cpu = cpumask_next_online_dql(next_cpu, &queue->dql);
	if (sending)
		dql_queued(&queue->dql, skb_queue_len(&ctx->packets));
	else
		dql_queued(&queue->dql, 1);
	queue_enqueue(queue, &ctx->per_device_head, 0);
	queue_work_on(cpu, wq, &per_cpu_ptr(queue->worker, cpu)->work);
}

static inline struct crypt_ctx *queue_first_per_peer(struct crypt_queue *queue)
{
	return list_first_entry_or_null(&(queue)->list, struct crypt_ctx, per_peer_head);
}

/* This is RFC6479, a replay detection bitmap algorithm that avoids bitshifts */
static inline bool counter_validate(union noise_counter *counter, u64 their_counter)
{
	bool ret = false;
	unsigned long index, index_current, top, i;
	spin_lock_bh(&counter->receive.lock);

	if (unlikely(counter->receive.counter >= REJECT_AFTER_MESSAGES + 1 || their_counter >= REJECT_AFTER_MESSAGES))
		goto out;

	++their_counter;

	if (unlikely((COUNTER_WINDOW_SIZE + their_counter) < counter->receive.counter))
		goto out;

	index = their_counter >> ilog2(BITS_PER_LONG);

	if (likely(their_counter > counter->receive.counter)) {
		index_current = counter->receive.counter >> ilog2(BITS_PER_LONG);
		top = min_t(unsigned long, index - index_current, COUNTER_BITS_TOTAL / BITS_PER_LONG);
		for (i = 1; i <= top; ++i)
			counter->receive.backtrack[(i + index_current) & ((COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1)] = 0;
		counter->receive.counter = their_counter;
	}

	index &= (COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1;
	ret = !test_and_set_bit(their_counter & (BITS_PER_LONG - 1), &counter->receive.backtrack[index]);

out:
	spin_unlock_bh(&counter->receive.lock);
	return ret;
}
#include "selftest/counter.h"

static inline int choose_cpu(int *stored_cpu, unsigned int id)
{
	unsigned int cpu = *stored_cpu, cpu_index, i;
	if (unlikely(cpu == nr_cpumask_bits || !cpumask_test_cpu(cpu, cpu_online_mask))) {
		cpu_index = id % cpumask_weight(cpu_online_mask);
		cpu = cpumask_first(cpu_online_mask);
		for (i = 0; i < cpu_index; ++i)
			cpu = cpumask_next(cpu, cpu_online_mask);
		*stored_cpu = cpu;
	}
	return cpu;
}

static inline unsigned int skb_padding(struct sk_buff *skb)
{
	/* We do this modulo business with the MTU, just in case the networking layer
	 * gives us a packet that's bigger than the MTU. Now that we support GSO, this
	 * shouldn't be a real problem, and this can likely be removed. But, caution! */
	unsigned int last_unit = skb->len % skb->dev->mtu;
	unsigned int padded_size = (last_unit + MESSAGE_PADDING_MULTIPLE - 1) & ~(MESSAGE_PADDING_MULTIPLE - 1);
	if (padded_size > skb->dev->mtu)
		padded_size = skb->dev->mtu;
	return padded_size - last_unit;
}

static inline void skb_reset(struct sk_buff *skb)
{
	skb_scrub_packet(skb, false);
	memset(&skb->headers_start, 0, offsetof(struct sk_buff, headers_end) - offsetof(struct sk_buff, headers_start));
	skb->queue_mapping = 0;
	skb->nohdr = 0;
	skb->peeked = 0;
	skb->mac_len = 0;
	skb->dev = NULL;
#ifdef CONFIG_NET_SCHED
	skb->tc_index = 0;
	skb_reset_tc(skb);
#endif
	skb->hdr_len = skb_headroom(skb);
	skb_reset_mac_header(skb);
	skb_reset_network_header(skb);
	skb_probe_transport_header(skb, 0);
	skb_reset_inner_headers(skb);
}

static inline bool skb_encrypt(struct sk_buff *skb, struct noise_keypair *keypair, bool have_simd)
{
	struct scatterlist sg[MAX_SKB_FRAGS * 2 + 1];
	struct message_data *header;
	unsigned int padding_len, plaintext_len, trailer_len;
	int num_frags;
	struct sk_buff *trailer;

	/* Store the ds bit in the cb */
	PACKET_CB(skb)->ds = ip_tunnel_ecn_encap(0 /* No outer TOS: no leak. TODO: should we use flowi->tos as outer? */, ip_hdr(skb), skb);

	/* Calculate lengths */
	padding_len = skb_padding(skb);
	trailer_len = padding_len + noise_encrypted_len(0);
	plaintext_len = skb->len + padding_len;

	/* Expand data section to have room for padding and auth tag */
	num_frags = skb_cow_data(skb, trailer_len, &trailer);
	if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
		return false;

	/* Set the padding to zeros, and make sure it and the auth tag are part of the skb */
	memset(skb_tail_pointer(trailer), 0, padding_len);

	/* Expand head section to have room for our header and the network stack's headers. */
	if (unlikely(skb_cow_head(skb, DATA_PACKET_HEAD_ROOM) < 0))
		return false;

	/* We have to remember to add the checksum to the innerpacket, in case the receiver forwards it. */
	if (likely(!skb_checksum_setup(skb, true)))
		skb_checksum_help(skb);

	/* Only after checksumming can we safely add on the padding at the end and the header. */
	header = (struct message_data *)skb_push(skb, sizeof(struct message_data));
	header->header.type = cpu_to_le32(MESSAGE_DATA);
	header->key_idx = keypair->remote_index;
	header->counter = cpu_to_le64(PACKET_CB(skb)->nonce);
	pskb_put(skb, trailer, trailer_len);

	/* Now we can encrypt the scattergather segments */
	sg_init_table(sg, num_frags);
	if (skb_to_sgvec(skb, sg, sizeof(struct message_data), noise_encrypted_len(plaintext_len)) <= 0)
		return false;
	return chacha20poly1305_encrypt_sg(sg, sg, plaintext_len, NULL, 0, PACKET_CB(skb)->nonce, keypair->sending.key, have_simd);
}

static inline bool skb_decrypt(struct sk_buff *skb, struct noise_symmetric_key *key)
{
	struct scatterlist sg[MAX_SKB_FRAGS * 2 + 1];
	struct sk_buff *trailer;
	int num_frags;

	if (unlikely(!key))
		return false;

	if (unlikely(!key->is_valid || time_is_before_eq_jiffies64(key->birthdate + REJECT_AFTER_TIME) || key->counter.receive.counter >= REJECT_AFTER_MESSAGES)) {
		key->is_valid = false;
		return false;
	}

	PACKET_CB(skb)->nonce = le64_to_cpu(((struct message_data *)skb->data)->counter);
	skb_pull(skb, sizeof(struct message_data));
	num_frags = skb_cow_data(skb, 0, &trailer);
	if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
		return false;

	sg_init_table(sg, num_frags);
	if (skb_to_sgvec(skb, sg, 0, skb->len) <= 0)
		return false;

	if (!chacha20poly1305_decrypt_sg(sg, sg, skb->len, NULL, 0, PACKET_CB(skb)->nonce, key->key))
		return false;

	return !pskb_trim(skb, skb->len - noise_encrypted_len(0));
}

static struct kmem_cache *crypt_ctx_cache __read_mostly;

int __init init_crypt_ctx_cache(void)
{
	crypt_ctx_cache = KMEM_CACHE(crypt_ctx, 0);
	if (!crypt_ctx_cache)
		return -ENOMEM;
	return 0;
}

void deinit_crypt_ctx_cache(void)
{
	kmem_cache_destroy(crypt_ctx_cache);
}

static void free_ctx(struct crypt_ctx *ctx)
{
	if (ctx->keypair)
		noise_keypair_put(ctx->keypair);
	peer_put(ctx->peer);
	skb_queue_purge(&ctx->packets);
	kmem_cache_free(crypt_ctx_cache, ctx);
}

static bool populate_sending_ctx(struct crypt_ctx *ctx)
{
	struct noise_symmetric_key *key;
	struct sk_buff *skb;

	rcu_read_lock_bh();
	ctx->keypair = noise_keypair_get(rcu_dereference_bh(ctx->peer->keypairs.current_keypair));
	rcu_read_unlock_bh();
	if (unlikely(!ctx->keypair))
		return false;
	key = &ctx->keypair->sending;
	if (unlikely(!key || !key->is_valid))
		goto out_nokey;
	if (unlikely(time_is_before_eq_jiffies64(key->birthdate + REJECT_AFTER_TIME)))
		goto out_invalid;

	skb_queue_walk(&ctx->packets, skb) {
		PACKET_CB(skb)->nonce = atomic64_inc_return(&key->counter.counter) - 1;
		if (unlikely(PACKET_CB(skb)->nonce >= REJECT_AFTER_MESSAGES))
			goto out_invalid;
	}

	return true;

out_invalid:
	key->is_valid = false;
out_nokey:
	noise_keypair_put(ctx->keypair);
	ctx->keypair = NULL;
	return false;
}

void packet_send_worker(struct work_struct *work)
{
	struct crypt_queue *queue = container_of(work, struct crypt_queue, work);
	struct crypt_ctx *ctx;

	while ((ctx = queue_first_per_peer(queue)) != NULL && atomic_read(&ctx->is_finished)) {
		queue_dequeue(queue);
		packet_create_data_done(&ctx->packets, ctx->peer);
		peer_put(ctx->peer);
		kmem_cache_free(crypt_ctx_cache, ctx);
	}
}

void packet_encrypt_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct multicore_worker, work)->queue;
	struct sk_buff *skb, *tmp;
	struct wireguard_peer *peer;
	bool have_simd = chacha20poly1305_init_simd();

	while ((ctx = queue_dequeue_per_device(queue, true)) != NULL) {
		skb_queue_walk_safe(&ctx->packets, skb, tmp) {
			if (likely(skb_encrypt(skb, ctx->keypair, have_simd))) {
				skb_reset(skb);
			} else {
				__skb_unlink(skb, &ctx->packets);
				dev_kfree_skb(skb);
			}
		}
		/* Dereferencing ctx is unsafe once ctx->is_finished == true, so
		 * we grab an additional reference to peer. */
		peer = peer_rcu_get(ctx->peer);
		atomic_set(&ctx->is_finished, true);
		queue_work_on(choose_cpu(&peer->serial_work_cpu, peer->internal_id), peer->device->packet_crypt_wq, &peer->send_queue.work);
		peer_put(peer);
	}
	chacha20poly1305_deinit_simd(have_simd);
}

void packet_init_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct crypt_queue, work);
	struct wireguard_peer *peer = container_of(queue, struct wireguard_peer, init_queue);
	struct wireguard_device *wg = peer->device;

	spin_lock(&peer->init_queue_lock);
	while ((ctx = queue_first_per_peer(queue)) != NULL) {
		if (unlikely(!populate_sending_ctx(ctx))) {
			packet_queue_handshake_initiation(peer, false);
			break;
		}
		queue_dequeue(queue);
		if (likely(queue_enqueue_per_peer(&peer->send_queue, ctx)))
			queue_enqueue_per_device(&wg->send_queue, ctx, wg->packet_crypt_wq, &wg->send_queue.last_cpu, true);
		else
			free_ctx(ctx);
	}
	spin_unlock(&peer->init_queue_lock);
}

void packet_create_data(struct wireguard_peer *peer, struct sk_buff_head *packets)
{
	struct crypt_ctx *ctx;
	struct sk_buff *skb;
	struct wireguard_device *wg = peer->device;
	bool need_handshake = false;

	ctx = kmem_cache_zalloc(crypt_ctx_cache, GFP_ATOMIC);
	if (unlikely(!ctx)) {
		skb_queue_purge(packets);
		return;
	}
	skb_queue_head_init(&ctx->packets);
	skb_queue_splice_tail(packets, &ctx->packets);
	ctx->peer = peer_rcu_get(peer);

	/* If there are already packets on the init queue, these must go behind
	 * them to maintain the correct order, so we can only take the fast path
	 * when the init queue is empty. */
	if (likely(list_empty(&peer->init_queue.list))) {
		if (likely(populate_sending_ctx(ctx))) {
			if (likely(queue_enqueue_per_peer(&peer->send_queue, ctx)))
				queue_enqueue_per_device(&wg->send_queue, ctx, wg->packet_crypt_wq, &wg->send_queue.last_cpu, true);
			else
				free_ctx(ctx);
			return;
		}
		/* Initialization failed, so we need a new keypair. */
		need_handshake = true;
	}

	/* We orphan the packets if we're waiting on a handshake, so that they
	 * don't block a socket's pool. */
	skb_queue_walk(&ctx->packets, skb)
		skb_orphan(skb);

	/* Packets are kept around in the init queue as long as there is an
	 * ongoing handshake. Throw out the oldest packets instead of the new
	 * ones. If we cannot acquire the lock, packets are being dequeued on
	 * another thread, so race for the open slot. */
	while (unlikely(!queue_enqueue_per_peer(&peer->init_queue, ctx))) {
		if (spin_trylock(&peer->init_queue_lock)) {
			struct crypt_ctx *tmp = queue_dequeue_per_peer(&peer->init_queue);
			if (likely(tmp))
				free_ctx(tmp);
			spin_unlock(&peer->init_queue_lock);
		}
	}
	/* Oops, we added something to the queue while removing the peer. */
	if (unlikely(atomic_read(&peer->is_draining))) {
		packet_purge_init_queue(peer);
		return;
	}
	if (need_handshake)
		packet_queue_handshake_initiation(peer, false);
	/* If we have a valid keypair, but took the slow path because init_queue
	 * had packets on it, init_queue.worker() may have finished
	 * processing the existing packets and returned since we checked if the
	 * init_queue was empty. Run the worker again if this is the only ctx
	 * remaining on the queue. */
	if (unlikely(queue_first_per_peer(&peer->init_queue) == ctx))
		queue_work(peer->device->packet_crypt_wq, &peer->init_queue.work);
}

void packet_receive_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct crypt_queue, work);
	struct sk_buff *skb;

	local_bh_disable();
	while ((ctx = queue_first_per_peer(queue)) != NULL && atomic_read(&ctx->is_finished)) {
		queue_dequeue(queue);
		if (likely((skb = ctx->skb) != NULL)) {
			if (likely(counter_validate(&ctx->keypair->receiving.counter, PACKET_CB(skb)->nonce))) {
				skb_reset(skb);
				packet_consume_data_done(skb, ctx->peer, &ctx->endpoint, noise_received_with_keypair(&ctx->peer->keypairs, ctx->keypair));
			}
			else {
				net_dbg_ratelimited("%s: Packet has invalid nonce %Lu (max %Lu)\n", ctx->peer->device->dev->name, PACKET_CB(ctx->skb)->nonce, ctx->keypair->receiving.counter.receive.counter);
				dev_kfree_skb(skb);
			}
		}
		noise_keypair_put(ctx->keypair);
		peer_put(ctx->peer);
		kmem_cache_free(crypt_ctx_cache, ctx);
	}
	local_bh_enable();
}

void packet_decrypt_worker(struct work_struct *work)
{
	struct crypt_ctx *ctx;
	struct crypt_queue *queue = container_of(work, struct multicore_worker, work)->queue;
	struct wireguard_peer *peer;

	while ((ctx = queue_dequeue_per_device(queue, false)) != NULL) {
		if (unlikely(socket_endpoint_from_skb(&ctx->endpoint, ctx->skb) < 0 || !skb_decrypt(ctx->skb, &ctx->keypair->receiving))) {
			dev_kfree_skb(ctx->skb);
			ctx->skb = NULL;
		}
		/* Dereferencing ctx is unsafe once ctx->is_finished == true, so
		 * we take a reference here first. */
		peer = peer_rcu_get(ctx->peer);
		atomic_set(&ctx->is_finished, true);
		queue_work_on(choose_cpu(&peer->serial_work_cpu, peer->internal_id), peer->device->packet_crypt_wq, &peer->receive_queue.work);
		peer_put(peer);
	}
}

void packet_consume_data(struct sk_buff *skb, struct wireguard_device *wg)
{
	struct crypt_ctx *ctx;
	struct noise_keypair *keypair;
	__le32 idx = ((struct message_data *)skb->data)->key_idx;

	rcu_read_lock_bh();
	keypair = noise_keypair_get((struct noise_keypair *)index_hashtable_lookup(&wg->index_hashtable, INDEX_HASHTABLE_KEYPAIR, idx));
	rcu_read_unlock_bh();
	if (unlikely(!keypair)) {
		dev_kfree_skb(skb);
		return;
	}

	ctx = kmem_cache_zalloc(crypt_ctx_cache, GFP_ATOMIC);
	if (unlikely(!ctx)) {
		peer_put(ctx->keypair->entry.peer);
		noise_keypair_put(keypair);
		dev_kfree_skb(skb);
		return;
	}
	ctx->keypair = keypair;
	ctx->skb = skb;
	/* index_hashtable_lookup() already gets a reference to peer. */
	ctx->peer = ctx->keypair->entry.peer;

	if (likely(queue_enqueue_per_peer(&ctx->peer->receive_queue, ctx)))
		queue_enqueue_per_device(&wg->receive_queue, ctx, wg->packet_crypt_wq, &wg->receive_queue.last_cpu, false);
	else {
		/* TODO: replace this with a call to free_ctx when receiving uses skb_queues as well. */
		noise_keypair_put(ctx->keypair);
		peer_put(ctx->peer);
		dev_kfree_skb(ctx->skb);
		kmem_cache_free(crypt_ctx_cache, ctx);
	}
}

void packet_purge_init_queue(struct wireguard_peer *peer)
{
	struct crypt_ctx *ctx;
	spin_lock(&peer->init_queue_lock);
	while ((ctx = queue_dequeue_per_peer(&peer->init_queue)) != NULL)
		free_ctx(ctx);
	spin_unlock(&peer->init_queue_lock);
}