//===-- combined_test.cpp ---------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "tests/scudo_unit_test.h" #include "allocator_config.h" #include "combined.h" #include #include #include #include static std::mutex Mutex; static std::condition_variable Cv; static bool Ready = false; static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc; static void disableDebuggerdMaybe() { #if SCUDO_ANDROID // Disable the debuggerd signal handler on Android, without this we can end // up spending a significant amount of time creating tombstones. signal(SIGSEGV, SIG_DFL); #endif } template bool isTaggedAllocation(AllocatorT *Allocator, scudo::uptr Size, scudo::uptr Alignment) { if (!Allocator->useMemoryTagging() || !scudo::systemDetectsMemoryTagFaultsTestOnly()) return false; const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG; if (Alignment < MinAlignment) Alignment = MinAlignment; const scudo::uptr NeededSize = scudo::roundUpTo(Size, MinAlignment) + ((Alignment > MinAlignment) ? Alignment : scudo::Chunk::getHeaderSize()); return AllocatorT::PrimaryT::canAllocate(NeededSize); } template void checkMemoryTaggingMaybe(AllocatorT *Allocator, void *P, scudo::uptr Size, scudo::uptr Alignment) { if (!isTaggedAllocation(Allocator, Size, Alignment)) return; Size = scudo::roundUpTo(Size, scudo::archMemoryTagGranuleSize()); EXPECT_DEATH( { disableDebuggerdMaybe(); reinterpret_cast(P)[-1] = 0xaa; }, ""); EXPECT_DEATH( { disableDebuggerdMaybe(); reinterpret_cast(P)[Size] = 0xaa; }, ""); } template static void testAllocator() { using AllocatorT = scudo::Allocator; auto Deleter = [](AllocatorT *A) { A->unmapTestOnly(); delete A; }; std::unique_ptr Allocator(new AllocatorT, Deleter); Allocator->reset(); EXPECT_FALSE(Allocator->isOwned(&Mutex)); EXPECT_FALSE(Allocator->isOwned(&Allocator)); scudo::u64 StackVariable = 0x42424242U; EXPECT_FALSE(Allocator->isOwned(&StackVariable)); EXPECT_EQ(StackVariable, 0x42424242U); constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U); // This allocates and deallocates a bunch of chunks, with a wide range of // sizes and alignments, with a focus on sizes that could trigger weird // behaviors (plus or minus a small delta of a power of two for example). for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) { const scudo::uptr Align = 1U << AlignLog; for (scudo::sptr Delta = -32; Delta <= 32; Delta++) { if (static_cast(1U << SizeLog) + Delta <= 0) continue; const scudo::uptr Size = (1U << SizeLog) + Delta; void *P = Allocator->allocate(Size, Origin, Align); EXPECT_NE(P, nullptr); EXPECT_TRUE(Allocator->isOwned(P)); EXPECT_TRUE(scudo::isAligned(reinterpret_cast(P), Align)); EXPECT_LE(Size, Allocator->getUsableSize(P)); memset(P, 0xaa, Size); checkMemoryTaggingMaybe(Allocator.get(), P, Size, Align); Allocator->deallocate(P, Origin, Size); } } } Allocator->releaseToOS(); // Ensure that specifying ZeroContents returns a zero'd out block. for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) { const scudo::uptr Size = (1U << SizeLog) + Delta * 128U; void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true); EXPECT_NE(P, nullptr); for (scudo::uptr I = 0; I < Size; I++) ASSERT_EQ((reinterpret_cast(P))[I], 0); memset(P, 0xaa, Size); Allocator->deallocate(P, Origin, Size); } } Allocator->releaseToOS(); // Ensure that specifying ZeroContents returns a zero'd out block. Allocator->setFillContents(scudo::ZeroFill); for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) { const scudo::uptr Size = (1U << SizeLog) + Delta * 128U; void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false); EXPECT_NE(P, nullptr); for (scudo::uptr I = 0; I < Size; I++) ASSERT_EQ((reinterpret_cast(P))[I], 0); memset(P, 0xaa, Size); Allocator->deallocate(P, Origin, Size); } } Allocator->releaseToOS(); // Ensure that specifying PatternOrZeroFill returns a pattern-filled block in // the primary allocator, and either pattern or zero filled block in the // secondary. Allocator->setFillContents(scudo::PatternOrZeroFill); for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) { const scudo::uptr Size = (1U << SizeLog) + Delta * 128U; void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false); EXPECT_NE(P, nullptr); for (scudo::uptr I = 0; I < Size; I++) { unsigned char V = (reinterpret_cast(P))[I]; if (AllocatorT::PrimaryT::canAllocate(Size)) ASSERT_EQ(V, scudo::PatternFillByte); else ASSERT_TRUE(V == scudo::PatternFillByte || V == 0); } memset(P, 0xaa, Size); Allocator->deallocate(P, Origin, Size); } } Allocator->releaseToOS(); // Verify that a chunk will end up being reused, at some point. const scudo::uptr NeedleSize = 1024U; void *NeedleP = Allocator->allocate(NeedleSize, Origin); Allocator->deallocate(NeedleP, Origin); bool Found = false; for (scudo::uptr I = 0; I < 1024U && !Found; I++) { void *P = Allocator->allocate(NeedleSize, Origin); if (Allocator->untagPointerMaybe(P) == Allocator->untagPointerMaybe(NeedleP)) Found = true; Allocator->deallocate(P, Origin); } EXPECT_TRUE(Found); constexpr scudo::uptr MaxSize = Config::Primary::SizeClassMap::MaxSize; // Reallocate a large chunk all the way down to a byte, verifying that we // preserve the data in the process. scudo::uptr Size = MaxSize * 2; const scudo::uptr DataSize = 2048U; void *P = Allocator->allocate(Size, Origin); const char Marker = 0xab; memset(P, Marker, scudo::Min(Size, DataSize)); while (Size > 1U) { Size /= 2U; void *NewP = Allocator->reallocate(P, Size); EXPECT_NE(NewP, nullptr); for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++) EXPECT_EQ((reinterpret_cast(NewP))[J], Marker); P = NewP; } Allocator->deallocate(P, Origin); // Check that reallocating a chunk to a slightly smaller or larger size // returns the same chunk. This requires that all the sizes we iterate on use // the same block size, but that should be the case for MaxSize - 64 with our // default class size maps. constexpr scudo::uptr ReallocSize = MaxSize - 64; P = Allocator->allocate(ReallocSize, Origin); memset(P, Marker, ReallocSize); for (scudo::sptr Delta = -32; Delta < 32; Delta += 8) { const scudo::uptr NewSize = ReallocSize + Delta; void *NewP = Allocator->reallocate(P, NewSize); EXPECT_EQ(NewP, P); for (scudo::uptr I = 0; I < ReallocSize - 32; I++) EXPECT_EQ((reinterpret_cast(NewP))[I], Marker); checkMemoryTaggingMaybe(Allocator.get(), NewP, NewSize, 0); } Allocator->deallocate(P, Origin); // Allocates a bunch of chunks, then iterate over all the chunks, ensuring // they are the ones we allocated. This requires the allocator to not have any // other allocated chunk at this point (eg: won't work with the Quarantine). if (!UseQuarantine) { std::vector V; for (scudo::uptr I = 0; I < 64U; I++) V.push_back(Allocator->allocate(rand() % (MaxSize / 2U), Origin)); Allocator->disable(); Allocator->iterateOverChunks( 0U, static_cast(SCUDO_MMAP_RANGE_SIZE - 1), [](uintptr_t Base, size_t Size, void *Arg) { std::vector *V = reinterpret_cast *>(Arg); void *P = reinterpret_cast(Base); EXPECT_NE(std::find(V->begin(), V->end(), P), V->end()); }, reinterpret_cast(&V)); Allocator->enable(); while (!V.empty()) { Allocator->deallocate(V.back(), Origin); V.pop_back(); } } Allocator->releaseToOS(); if (Allocator->useMemoryTagging() && scudo::systemDetectsMemoryTagFaultsTestOnly()) { // Check that use-after-free is detected. for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) { const scudo::uptr Size = 1U << SizeLog; if (!isTaggedAllocation(Allocator.get(), Size, 1)) continue; // UAF detection is probabilistic, so we repeat the test up to 256 times // if necessary. With 15 possible tags this means a 1 in 15^256 chance of // a false positive. EXPECT_DEATH( { disableDebuggerdMaybe(); for (unsigned I = 0; I != 256; ++I) { void *P = Allocator->allocate(Size, Origin); Allocator->deallocate(P, Origin); reinterpret_cast(P)[0] = 0xaa; } }, ""); EXPECT_DEATH( { disableDebuggerdMaybe(); for (unsigned I = 0; I != 256; ++I) { void *P = Allocator->allocate(Size, Origin); Allocator->deallocate(P, Origin); reinterpret_cast(P)[Size - 1] = 0xaa; } }, ""); } // Check that disabling memory tagging works correctly. void *P = Allocator->allocate(2048, Origin); EXPECT_DEATH(reinterpret_cast(P)[2048] = 0xaa, ""); scudo::disableMemoryTagChecksTestOnly(); Allocator->disableMemoryTagging(); reinterpret_cast(P)[2048] = 0xaa; Allocator->deallocate(P, Origin); P = Allocator->allocate(2048, Origin); EXPECT_EQ(Allocator->untagPointerMaybe(P), P); reinterpret_cast(P)[2048] = 0xaa; Allocator->deallocate(P, Origin); Allocator->releaseToOS(); // Disabling memory tag checks may interfere with subsequent tests. // Re-enable them now. scudo::enableMemoryTagChecksTestOnly(); } scudo::uptr BufferSize = 8192; std::vector Buffer(BufferSize); scudo::uptr ActualSize = Allocator->getStats(Buffer.data(), BufferSize); while (ActualSize > BufferSize) { BufferSize = ActualSize + 1024; Buffer.resize(BufferSize); ActualSize = Allocator->getStats(Buffer.data(), BufferSize); } std::string Stats(Buffer.begin(), Buffer.end()); // Basic checks on the contents of the statistics output, which also allows us // to verify that we got it all. EXPECT_NE(Stats.find("Stats: SizeClassAllocator"), std::string::npos); EXPECT_NE(Stats.find("Stats: MapAllocator"), std::string::npos); EXPECT_NE(Stats.find("Stats: Quarantine"), std::string::npos); } // Test that multiple instantiations of the allocator have not messed up the // process's signal handlers (GWP-ASan used to do this). void testSEGV() { const scudo::uptr Size = 4 * scudo::getPageSizeCached(); scudo::MapPlatformData Data = {}; void *P = scudo::map(nullptr, Size, "testSEGV", MAP_NOACCESS, &Data); EXPECT_NE(P, nullptr); EXPECT_DEATH(memset(P, 0xaa, Size), ""); scudo::unmap(P, Size, UNMAP_ALL, &Data); } TEST(ScudoCombinedTest, BasicCombined) { UseQuarantine = false; testAllocator(); #if SCUDO_FUCHSIA testAllocator(); #else testAllocator(); UseQuarantine = true; testAllocator(); testSEGV(); #endif } template static void stressAllocator(AllocatorT *A) { { std::unique_lock Lock(Mutex); while (!Ready) Cv.wait(Lock); } std::vector> V; for (scudo::uptr I = 0; I < 256U; I++) { const scudo::uptr Size = std::rand() % 4096U; void *P = A->allocate(Size, Origin); // A region could have ran out of memory, resulting in a null P. if (P) V.push_back(std::make_pair(P, Size)); } while (!V.empty()) { auto Pair = V.back(); A->deallocate(Pair.first, Origin, Pair.second); V.pop_back(); } } template static void testAllocatorThreaded() { using AllocatorT = scudo::Allocator; auto Deleter = [](AllocatorT *A) { A->unmapTestOnly(); delete A; }; std::unique_ptr Allocator(new AllocatorT, Deleter); Allocator->reset(); std::thread Threads[32]; for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++) Threads[I] = std::thread(stressAllocator, Allocator.get()); { std::unique_lock Lock(Mutex); Ready = true; Cv.notify_all(); } for (auto &T : Threads) T.join(); Allocator->releaseToOS(); } TEST(ScudoCombinedTest, ThreadedCombined) { UseQuarantine = false; testAllocatorThreaded(); #if SCUDO_FUCHSIA testAllocatorThreaded(); #else testAllocatorThreaded(); UseQuarantine = true; testAllocatorThreaded(); #endif } struct DeathSizeClassConfig { static const scudo::uptr NumBits = 1; static const scudo::uptr MinSizeLog = 10; static const scudo::uptr MidSizeLog = 10; static const scudo::uptr MaxSizeLog = 13; static const scudo::u32 MaxNumCachedHint = 4; static const scudo::uptr MaxBytesCachedLog = 12; }; static const scudo::uptr DeathRegionSizeLog = 20U; struct DeathConfig { // Tiny allocator, its Primary only serves chunks of four sizes. using DeathSizeClassMap = scudo::FixedSizeClassMap; typedef scudo::SizeClassAllocator64 Primary; typedef scudo::MapAllocator Secondary; template using TSDRegistryT = scudo::TSDRegistrySharedT; }; TEST(ScudoCombinedTest, DeathCombined) { using AllocatorT = scudo::Allocator; auto Deleter = [](AllocatorT *A) { A->unmapTestOnly(); delete A; }; std::unique_ptr Allocator(new AllocatorT, Deleter); Allocator->reset(); const scudo::uptr Size = 1000U; void *P = Allocator->allocate(Size, Origin); EXPECT_NE(P, nullptr); // Invalid sized deallocation. EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), ""); // Misaligned pointer. Potentially unused if EXPECT_DEATH isn't available. UNUSED void *MisalignedP = reinterpret_cast(reinterpret_cast(P) | 1U); EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), ""); EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), ""); // Header corruption. scudo::u64 *H = reinterpret_cast(scudo::Chunk::getAtomicHeader(P)); *H ^= 0x42U; EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), ""); *H ^= 0x420042U; EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), ""); *H ^= 0x420000U; // Invalid chunk state. Allocator->deallocate(P, Origin, Size); EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), ""); EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), ""); EXPECT_DEATH(Allocator->getUsableSize(P), ""); } // Ensure that releaseToOS can be called prior to any other allocator // operation without issue. TEST(ScudoCombinedTest, ReleaseToOS) { using AllocatorT = scudo::Allocator; auto Deleter = [](AllocatorT *A) { A->unmapTestOnly(); delete A; }; std::unique_ptr Allocator(new AllocatorT, Deleter); Allocator->reset(); Allocator->releaseToOS(); } // Verify that when a region gets full, the allocator will still manage to // fulfill the allocation through a larger size class. TEST(ScudoCombinedTest, FullRegion) { using AllocatorT = scudo::Allocator; auto Deleter = [](AllocatorT *A) { A->unmapTestOnly(); delete A; }; std::unique_ptr Allocator(new AllocatorT, Deleter); Allocator->reset(); std::vector V; scudo::uptr FailedAllocationsCount = 0; for (scudo::uptr ClassId = 1U; ClassId <= DeathConfig::DeathSizeClassMap::LargestClassId; ClassId++) { const scudo::uptr Size = DeathConfig::DeathSizeClassMap::getSizeByClassId(ClassId); // Allocate enough to fill all of the regions above this one. const scudo::uptr MaxNumberOfChunks = ((1U << DeathRegionSizeLog) / Size) * (DeathConfig::DeathSizeClassMap::LargestClassId - ClassId + 1); void *P; for (scudo::uptr I = 0; I <= MaxNumberOfChunks; I++) { P = Allocator->allocate(Size - 64U, Origin); if (!P) FailedAllocationsCount++; else V.push_back(P); } while (!V.empty()) { Allocator->deallocate(V.back(), Origin); V.pop_back(); } } EXPECT_EQ(FailedAllocationsCount, 0U); }