//===-- NativeRegisterContextLinux_arm64.cpp --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #if defined(__arm64__) || defined(__aarch64__) #include "NativeRegisterContextLinux_arm.h" #include "NativeRegisterContextLinux_arm64.h" #include "lldb/Host/common/NativeProcessProtocol.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Status.h" #include "Plugins/Process/Linux/NativeProcessLinux.h" #include "Plugins/Process/Linux/Procfs.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h" // System includes - They have to be included after framework includes because // they define some macros which collide with variable names in other modules #include // NT_PRSTATUS and NT_FPREGSET definition #include // user_hwdebug_state definition #include #define REG_CONTEXT_SIZE (GetGPRSize() + GetFPRSize()) using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_linux; // ARM64 general purpose registers. static const uint32_t g_gpr_regnums_arm64[] = { gpr_x0_arm64, gpr_x1_arm64, gpr_x2_arm64, gpr_x3_arm64, gpr_x4_arm64, gpr_x5_arm64, gpr_x6_arm64, gpr_x7_arm64, gpr_x8_arm64, gpr_x9_arm64, gpr_x10_arm64, gpr_x11_arm64, gpr_x12_arm64, gpr_x13_arm64, gpr_x14_arm64, gpr_x15_arm64, gpr_x16_arm64, gpr_x17_arm64, gpr_x18_arm64, gpr_x19_arm64, gpr_x20_arm64, gpr_x21_arm64, gpr_x22_arm64, gpr_x23_arm64, gpr_x24_arm64, gpr_x25_arm64, gpr_x26_arm64, gpr_x27_arm64, gpr_x28_arm64, gpr_fp_arm64, gpr_lr_arm64, gpr_sp_arm64, gpr_pc_arm64, gpr_cpsr_arm64, gpr_w0_arm64, gpr_w1_arm64, gpr_w2_arm64, gpr_w3_arm64, gpr_w4_arm64, gpr_w5_arm64, gpr_w6_arm64, gpr_w7_arm64, gpr_w8_arm64, gpr_w9_arm64, gpr_w10_arm64, gpr_w11_arm64, gpr_w12_arm64, gpr_w13_arm64, gpr_w14_arm64, gpr_w15_arm64, gpr_w16_arm64, gpr_w17_arm64, gpr_w18_arm64, gpr_w19_arm64, gpr_w20_arm64, gpr_w21_arm64, gpr_w22_arm64, gpr_w23_arm64, gpr_w24_arm64, gpr_w25_arm64, gpr_w26_arm64, gpr_w27_arm64, gpr_w28_arm64, LLDB_INVALID_REGNUM // register sets need to end with this flag }; static_assert(((sizeof g_gpr_regnums_arm64 / sizeof g_gpr_regnums_arm64[0]) - 1) == k_num_gpr_registers_arm64, "g_gpr_regnums_arm64 has wrong number of register infos"); // ARM64 floating point registers. static const uint32_t g_fpu_regnums_arm64[] = { fpu_v0_arm64, fpu_v1_arm64, fpu_v2_arm64, fpu_v3_arm64, fpu_v4_arm64, fpu_v5_arm64, fpu_v6_arm64, fpu_v7_arm64, fpu_v8_arm64, fpu_v9_arm64, fpu_v10_arm64, fpu_v11_arm64, fpu_v12_arm64, fpu_v13_arm64, fpu_v14_arm64, fpu_v15_arm64, fpu_v16_arm64, fpu_v17_arm64, fpu_v18_arm64, fpu_v19_arm64, fpu_v20_arm64, fpu_v21_arm64, fpu_v22_arm64, fpu_v23_arm64, fpu_v24_arm64, fpu_v25_arm64, fpu_v26_arm64, fpu_v27_arm64, fpu_v28_arm64, fpu_v29_arm64, fpu_v30_arm64, fpu_v31_arm64, fpu_s0_arm64, fpu_s1_arm64, fpu_s2_arm64, fpu_s3_arm64, fpu_s4_arm64, fpu_s5_arm64, fpu_s6_arm64, fpu_s7_arm64, fpu_s8_arm64, fpu_s9_arm64, fpu_s10_arm64, fpu_s11_arm64, fpu_s12_arm64, fpu_s13_arm64, fpu_s14_arm64, fpu_s15_arm64, fpu_s16_arm64, fpu_s17_arm64, fpu_s18_arm64, fpu_s19_arm64, fpu_s20_arm64, fpu_s21_arm64, fpu_s22_arm64, fpu_s23_arm64, fpu_s24_arm64, fpu_s25_arm64, fpu_s26_arm64, fpu_s27_arm64, fpu_s28_arm64, fpu_s29_arm64, fpu_s30_arm64, fpu_s31_arm64, fpu_d0_arm64, fpu_d1_arm64, fpu_d2_arm64, fpu_d3_arm64, fpu_d4_arm64, fpu_d5_arm64, fpu_d6_arm64, fpu_d7_arm64, fpu_d8_arm64, fpu_d9_arm64, fpu_d10_arm64, fpu_d11_arm64, fpu_d12_arm64, fpu_d13_arm64, fpu_d14_arm64, fpu_d15_arm64, fpu_d16_arm64, fpu_d17_arm64, fpu_d18_arm64, fpu_d19_arm64, fpu_d20_arm64, fpu_d21_arm64, fpu_d22_arm64, fpu_d23_arm64, fpu_d24_arm64, fpu_d25_arm64, fpu_d26_arm64, fpu_d27_arm64, fpu_d28_arm64, fpu_d29_arm64, fpu_d30_arm64, fpu_d31_arm64, fpu_fpsr_arm64, fpu_fpcr_arm64, LLDB_INVALID_REGNUM // register sets need to end with this flag }; static_assert(((sizeof g_fpu_regnums_arm64 / sizeof g_fpu_regnums_arm64[0]) - 1) == k_num_fpr_registers_arm64, "g_fpu_regnums_arm64 has wrong number of register infos"); namespace { // Number of register sets provided by this context. enum { k_num_register_sets = 2 }; } // Register sets for ARM64. static const RegisterSet g_reg_sets_arm64[k_num_register_sets] = { {"General Purpose Registers", "gpr", k_num_gpr_registers_arm64, g_gpr_regnums_arm64}, {"Floating Point Registers", "fpu", k_num_fpr_registers_arm64, g_fpu_regnums_arm64}}; std::unique_ptr NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( const ArchSpec &target_arch, NativeThreadProtocol &native_thread) { switch (target_arch.GetMachine()) { case llvm::Triple::arm: return std::make_unique(target_arch, native_thread); case llvm::Triple::aarch64: return std::make_unique(target_arch, native_thread); default: llvm_unreachable("have no register context for architecture"); } } NativeRegisterContextLinux_arm64::NativeRegisterContextLinux_arm64( const ArchSpec &target_arch, NativeThreadProtocol &native_thread) : NativeRegisterContextLinux(native_thread, new RegisterInfoPOSIX_arm64(target_arch)) { switch (target_arch.GetMachine()) { case llvm::Triple::aarch64: m_reg_info.num_registers = k_num_registers_arm64; m_reg_info.num_gpr_registers = k_num_gpr_registers_arm64; m_reg_info.num_fpr_registers = k_num_fpr_registers_arm64; m_reg_info.last_gpr = k_last_gpr_arm64; m_reg_info.first_fpr = k_first_fpr_arm64; m_reg_info.last_fpr = k_last_fpr_arm64; m_reg_info.first_fpr_v = fpu_v0_arm64; m_reg_info.last_fpr_v = fpu_v31_arm64; m_reg_info.gpr_flags = gpr_cpsr_arm64; break; default: llvm_unreachable("Unhandled target architecture."); break; } ::memset(&m_fpr, 0, sizeof(m_fpr)); ::memset(&m_gpr_arm64, 0, sizeof(m_gpr_arm64)); ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); // 16 is just a maximum value, query hardware for actual watchpoint count m_max_hwp_supported = 16; m_max_hbp_supported = 16; m_refresh_hwdebug_info = true; m_gpr_is_valid = false; m_fpu_is_valid = false; } uint32_t NativeRegisterContextLinux_arm64::GetRegisterSetCount() const { return k_num_register_sets; } const RegisterSet * NativeRegisterContextLinux_arm64::GetRegisterSet(uint32_t set_index) const { if (set_index < k_num_register_sets) return &g_reg_sets_arm64[set_index]; return nullptr; } uint32_t NativeRegisterContextLinux_arm64::GetUserRegisterCount() const { uint32_t count = 0; for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) count += g_reg_sets_arm64[set_index].num_registers; return count; } Status NativeRegisterContextLinux_arm64::ReadRegister(const RegisterInfo *reg_info, RegisterValue ®_value) { Status error; if (!reg_info) { error.SetErrorString("reg_info NULL"); return error; } const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; if (reg == LLDB_INVALID_REGNUM) return Status("no lldb regnum for %s", reg_info && reg_info->name ? reg_info->name : ""); uint8_t *src; uint32_t offset; if (IsGPR(reg)) { if (!m_gpr_is_valid) { error = ReadGPR(); if (error.Fail()) return error; } offset = reg_info->byte_offset; assert(offset < GetGPRSize()); src = (uint8_t *)GetGPRBuffer() + offset; } else if (IsFPR(reg)) { if (!m_fpu_is_valid) { error = ReadFPR(); if (error.Fail()) return error; } offset = CalculateFprOffset(reg_info); assert(offset < GetFPRSize()); src = (uint8_t *)GetFPRBuffer() + offset; } else return Status("failed - register wasn't recognized to be a GPR or an FPR, " "write strategy unknown"); reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size, eByteOrderLittle, error); return error; } Status NativeRegisterContextLinux_arm64::WriteRegister( const RegisterInfo *reg_info, const RegisterValue ®_value) { Status error; if (!reg_info) return Status("reg_info NULL"); const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; if (reg == LLDB_INVALID_REGNUM) return Status("no lldb regnum for %s", reg_info && reg_info->name ? reg_info->name : ""); uint8_t *dst; uint32_t offset; if (IsGPR(reg)) { if (!m_gpr_is_valid) { error = ReadGPR(); if (error.Fail()) return error; } offset = reg_info->byte_offset; assert(offset < GetGPRSize()); dst = (uint8_t *)GetGPRBuffer() + offset; ::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size); return WriteGPR(); } else if (IsFPR(reg)) { if (!m_fpu_is_valid) { error = ReadFPR(); if (error.Fail()) return error; } offset = CalculateFprOffset(reg_info); assert(offset < GetFPRSize()); dst = (uint8_t *)GetFPRBuffer() + offset; ::memcpy(dst, reg_value.GetBytes(), reg_info->byte_size); return WriteFPR(); } return error; } Status NativeRegisterContextLinux_arm64::ReadAllRegisterValues( lldb::DataBufferSP &data_sp) { Status error; data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); if (!m_gpr_is_valid) { error = ReadGPR(); if (error.Fail()) return error; } if (!m_fpu_is_valid) { error = ReadFPR(); if (error.Fail()) return error; } uint8_t *dst = data_sp->GetBytes(); ::memcpy(dst, GetGPRBuffer(), GetGPRSize()); dst += GetGPRSize(); ::memcpy(dst, GetFPRBuffer(), GetFPRSize()); return error; } Status NativeRegisterContextLinux_arm64::WriteAllRegisterValues( const lldb::DataBufferSP &data_sp) { Status error; if (!data_sp) { error.SetErrorStringWithFormat( "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", __FUNCTION__); return error; } if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { error.SetErrorStringWithFormat( "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " "data size, expected %" PRIu64 ", actual %" PRIu64, __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize()); return error; } uint8_t *src = data_sp->GetBytes(); if (src == nullptr) { error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " "DataBuffer::GetBytes() returned a null " "pointer", __FUNCTION__); return error; } ::memcpy(GetGPRBuffer(), src, GetRegisterInfoInterface().GetGPRSize()); error = WriteGPR(); if (error.Fail()) return error; src += GetRegisterInfoInterface().GetGPRSize(); ::memcpy(GetFPRBuffer(), src, GetFPRSize()); error = WriteFPR(); if (error.Fail()) return error; return error; } bool NativeRegisterContextLinux_arm64::IsGPR(unsigned reg) const { return reg <= m_reg_info.last_gpr; // GPR's come first. } bool NativeRegisterContextLinux_arm64::IsFPR(unsigned reg) const { return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr); } uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareBreakpoints() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); Status error; // Read hardware breakpoint and watchpoint information. error = ReadHardwareDebugInfo(); if (error.Fail()) return 0; return m_max_hbp_supported; } uint32_t NativeRegisterContextLinux_arm64::SetHardwareBreakpoint(lldb::addr_t addr, size_t size) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return LLDB_INVALID_INDEX32; uint32_t control_value = 0, bp_index = 0; // Check if size has a valid hardware breakpoint length. if (size != 4) return LLDB_INVALID_INDEX32; // Invalid size for a AArch64 hardware // breakpoint // Check 4-byte alignment for hardware breakpoint target address. if (addr & 0x03) return LLDB_INVALID_INDEX32; // Invalid address, should be 4-byte aligned. // Setup control value control_value = 0; control_value |= ((1 << size) - 1) << 5; control_value |= (2 << 1) | 1; // Iterate over stored breakpoints and find a free bp_index bp_index = LLDB_INVALID_INDEX32; for (uint32_t i = 0; i < m_max_hbp_supported; i++) { if ((m_hbr_regs[i].control & 1) == 0) { bp_index = i; // Mark last free slot } else if (m_hbr_regs[i].address == addr) { return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. } } if (bp_index == LLDB_INVALID_INDEX32) return LLDB_INVALID_INDEX32; // Update breakpoint in local cache m_hbr_regs[bp_index].real_addr = addr; m_hbr_regs[bp_index].address = addr; m_hbr_regs[bp_index].control = control_value; // PTRACE call to set corresponding hardware breakpoint register. error = WriteHardwareDebugRegs(eDREGTypeBREAK); if (error.Fail()) { m_hbr_regs[bp_index].address = 0; m_hbr_regs[bp_index].control &= ~1; return LLDB_INVALID_INDEX32; } return bp_index; } bool NativeRegisterContextLinux_arm64::ClearHardwareBreakpoint( uint32_t hw_idx) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOG(log, "hw_idx: {0}", hw_idx); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return false; if (hw_idx >= m_max_hbp_supported) return false; // Create a backup we can revert to in case of failure. lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; uint32_t tempControl = m_hbr_regs[hw_idx].control; m_hbr_regs[hw_idx].control &= ~1; m_hbr_regs[hw_idx].address = 0; // PTRACE call to clear corresponding hardware breakpoint register. error = WriteHardwareDebugRegs(eDREGTypeBREAK); if (error.Fail()) { m_hbr_regs[hw_idx].control = tempControl; m_hbr_regs[hw_idx].address = tempAddr; return false; } return true; } Status NativeRegisterContextLinux_arm64::GetHardwareBreakHitIndex( uint32_t &bp_index, lldb::addr_t trap_addr) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); lldb::addr_t break_addr; for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { break_addr = m_hbr_regs[bp_index].address; if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { m_hbr_regs[bp_index].hit_addr = trap_addr; return Status(); } } bp_index = LLDB_INVALID_INDEX32; return Status(); } Status NativeRegisterContextLinux_arm64::ClearAllHardwareBreakpoints() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); Status error; // Read hardware breakpoint and watchpoint information. error = ReadHardwareDebugInfo(); if (error.Fail()) return error; lldb::addr_t tempAddr = 0; uint32_t tempControl = 0; for (uint32_t i = 0; i < m_max_hbp_supported; i++) { if (m_hbr_regs[i].control & 0x01) { // Create a backup we can revert to in case of failure. tempAddr = m_hbr_regs[i].address; tempControl = m_hbr_regs[i].control; // Clear watchpoints in local cache m_hbr_regs[i].control &= ~1; m_hbr_regs[i].address = 0; // Ptrace call to update hardware debug registers error = WriteHardwareDebugRegs(eDREGTypeBREAK); if (error.Fail()) { m_hbr_regs[i].control = tempControl; m_hbr_regs[i].address = tempAddr; return error; } } } return Status(); } uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareWatchpoints() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return 0; LLDB_LOG(log, "{0}", m_max_hwp_supported); return m_max_hwp_supported; } uint32_t NativeRegisterContextLinux_arm64::SetHardwareWatchpoint( lldb::addr_t addr, size_t size, uint32_t watch_flags) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, watch_flags); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return LLDB_INVALID_INDEX32; uint32_t control_value = 0, wp_index = 0; lldb::addr_t real_addr = addr; // Check if we are setting watchpoint other than read/write/access Also // update watchpoint flag to match AArch64 write-read bit configuration. switch (watch_flags) { case 1: watch_flags = 2; break; case 2: watch_flags = 1; break; case 3: break; default: return LLDB_INVALID_INDEX32; } // Check if size has a valid hardware watchpoint length. if (size != 1 && size != 2 && size != 4 && size != 8) return LLDB_INVALID_INDEX32; // Check 8-byte alignment for hardware watchpoint target address. Below is a // hack to recalculate address and size in order to make sure we can watch // non 8-byte alligned addresses as well. if (addr & 0x07) { uint8_t watch_mask = (addr & 0x07) + size; if (watch_mask > 0x08) return LLDB_INVALID_INDEX32; else if (watch_mask <= 0x02) size = 2; else if (watch_mask <= 0x04) size = 4; else size = 8; addr = addr & (~0x07); } // Setup control value control_value = watch_flags << 3; control_value |= ((1 << size) - 1) << 5; control_value |= (2 << 1) | 1; // Iterate over stored watchpoints and find a free wp_index wp_index = LLDB_INVALID_INDEX32; for (uint32_t i = 0; i < m_max_hwp_supported; i++) { if ((m_hwp_regs[i].control & 1) == 0) { wp_index = i; // Mark last free slot } else if (m_hwp_regs[i].address == addr) { return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. } } if (wp_index == LLDB_INVALID_INDEX32) return LLDB_INVALID_INDEX32; // Update watchpoint in local cache m_hwp_regs[wp_index].real_addr = real_addr; m_hwp_regs[wp_index].address = addr; m_hwp_regs[wp_index].control = control_value; // PTRACE call to set corresponding watchpoint register. error = WriteHardwareDebugRegs(eDREGTypeWATCH); if (error.Fail()) { m_hwp_regs[wp_index].address = 0; m_hwp_regs[wp_index].control &= ~1; return LLDB_INVALID_INDEX32; } return wp_index; } bool NativeRegisterContextLinux_arm64::ClearHardwareWatchpoint( uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return false; if (wp_index >= m_max_hwp_supported) return false; // Create a backup we can revert to in case of failure. lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; uint32_t tempControl = m_hwp_regs[wp_index].control; // Update watchpoint in local cache m_hwp_regs[wp_index].control &= ~1; m_hwp_regs[wp_index].address = 0; // Ptrace call to update hardware debug registers error = WriteHardwareDebugRegs(eDREGTypeWATCH); if (error.Fail()) { m_hwp_regs[wp_index].control = tempControl; m_hwp_regs[wp_index].address = tempAddr; return false; } return true; } Status NativeRegisterContextLinux_arm64::ClearAllHardwareWatchpoints() { // Read hardware breakpoint and watchpoint information. Status error = ReadHardwareDebugInfo(); if (error.Fail()) return error; lldb::addr_t tempAddr = 0; uint32_t tempControl = 0; for (uint32_t i = 0; i < m_max_hwp_supported; i++) { if (m_hwp_regs[i].control & 0x01) { // Create a backup we can revert to in case of failure. tempAddr = m_hwp_regs[i].address; tempControl = m_hwp_regs[i].control; // Clear watchpoints in local cache m_hwp_regs[i].control &= ~1; m_hwp_regs[i].address = 0; // Ptrace call to update hardware debug registers error = WriteHardwareDebugRegs(eDREGTypeWATCH); if (error.Fail()) { m_hwp_regs[i].control = tempControl; m_hwp_regs[i].address = tempAddr; return error; } } } return Status(); } uint32_t NativeRegisterContextLinux_arm64::GetWatchpointSize(uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); switch ((m_hwp_regs[wp_index].control >> 5) & 0xff) { case 0x01: return 1; case 0x03: return 2; case 0x0f: return 4; case 0xff: return 8; default: return 0; } } bool NativeRegisterContextLinux_arm64::WatchpointIsEnabled(uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) return true; else return false; } Status NativeRegisterContextLinux_arm64::GetWatchpointHitIndex( uint32_t &wp_index, lldb::addr_t trap_addr) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); uint32_t watch_size; lldb::addr_t watch_addr; for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { watch_size = GetWatchpointSize(wp_index); watch_addr = m_hwp_regs[wp_index].address; if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && trap_addr < watch_addr + watch_size) { m_hwp_regs[wp_index].hit_addr = trap_addr; return Status(); } } wp_index = LLDB_INVALID_INDEX32; return Status(); } lldb::addr_t NativeRegisterContextLinux_arm64::GetWatchpointAddress(uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); if (wp_index >= m_max_hwp_supported) return LLDB_INVALID_ADDRESS; if (WatchpointIsEnabled(wp_index)) return m_hwp_regs[wp_index].real_addr; else return LLDB_INVALID_ADDRESS; } lldb::addr_t NativeRegisterContextLinux_arm64::GetWatchpointHitAddress(uint32_t wp_index) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); LLDB_LOG(log, "wp_index: {0}", wp_index); if (wp_index >= m_max_hwp_supported) return LLDB_INVALID_ADDRESS; if (WatchpointIsEnabled(wp_index)) return m_hwp_regs[wp_index].hit_addr; else return LLDB_INVALID_ADDRESS; } Status NativeRegisterContextLinux_arm64::ReadHardwareDebugInfo() { if (!m_refresh_hwdebug_info) { return Status(); } ::pid_t tid = m_thread.GetID(); int regset = NT_ARM_HW_WATCH; struct iovec ioVec; struct user_hwdebug_state dreg_state; Status error; ioVec.iov_base = &dreg_state; ioVec.iov_len = sizeof(dreg_state); error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, ®set, &ioVec, ioVec.iov_len); if (error.Fail()) return error; m_max_hwp_supported = dreg_state.dbg_info & 0xff; regset = NT_ARM_HW_BREAK; error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, ®set, &ioVec, ioVec.iov_len); if (error.Fail()) return error; m_max_hbp_supported = dreg_state.dbg_info & 0xff; m_refresh_hwdebug_info = false; return error; } Status NativeRegisterContextLinux_arm64::WriteHardwareDebugRegs(int hwbType) { struct iovec ioVec; struct user_hwdebug_state dreg_state; Status error; memset(&dreg_state, 0, sizeof(dreg_state)); ioVec.iov_base = &dreg_state; if (hwbType == eDREGTypeWATCH) { hwbType = NT_ARM_HW_WATCH; ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) + (sizeof(dreg_state.dbg_regs[0]) * m_max_hwp_supported); for (uint32_t i = 0; i < m_max_hwp_supported; i++) { dreg_state.dbg_regs[i].addr = m_hwp_regs[i].address; dreg_state.dbg_regs[i].ctrl = m_hwp_regs[i].control; } } else { hwbType = NT_ARM_HW_BREAK; ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) + (sizeof(dreg_state.dbg_regs[0]) * m_max_hbp_supported); for (uint32_t i = 0; i < m_max_hbp_supported; i++) { dreg_state.dbg_regs[i].addr = m_hbr_regs[i].address; dreg_state.dbg_regs[i].ctrl = m_hbr_regs[i].control; } } return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(), &hwbType, &ioVec, ioVec.iov_len); } Status NativeRegisterContextLinux_arm64::ReadGPR() { Status error; struct iovec ioVec; ioVec.iov_base = GetGPRBuffer(); ioVec.iov_len = GetGPRSize(); error = ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); if (error.Success()) m_gpr_is_valid = true; return error; } Status NativeRegisterContextLinux_arm64::WriteGPR() { struct iovec ioVec; m_gpr_is_valid = false; ioVec.iov_base = GetGPRBuffer(); ioVec.iov_len = GetGPRSize(); return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); } Status NativeRegisterContextLinux_arm64::ReadFPR() { Status error; struct iovec ioVec; ioVec.iov_base = GetFPRBuffer(); ioVec.iov_len = GetFPRSize(); error = ReadRegisterSet(&ioVec, GetFPRSize(), NT_FPREGSET); if (error.Success()) m_fpu_is_valid = true; return error; } Status NativeRegisterContextLinux_arm64::WriteFPR() { struct iovec ioVec; m_fpu_is_valid = false; ioVec.iov_base = GetFPRBuffer(); ioVec.iov_len = GetFPRSize(); return WriteRegisterSet(&ioVec, GetFPRSize(), NT_FPREGSET); } void NativeRegisterContextLinux_arm64::InvalidateAllRegisters() { m_gpr_is_valid = false; m_fpu_is_valid = false; } uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset( const RegisterInfo *reg_info) const { return reg_info->byte_offset - GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset; } #endif // defined (__arm64__) || defined (__aarch64__)