#!./perl # # Regression tests for the Math::Trig package # # The tests here are quite modest as the Math::Complex tests exercise # these interfaces quite vigorously. # # -- Jarkko Hietaniemi, April 1997 use Test::More tests => 153; use Math::Trig 1.18; use Math::Trig 1.18 qw(:pi Inf); our $vax_float = (pack("d",1) =~ /^[\x80\x10]\x40/); our $has_inf = !$vax_float; my $pip2 = pi / 2; use strict; our($x, $y, $z); my $eps = 1e-11; if ($^O eq 'unicos') { # See lib/Math/Complex.pm and t/lib/complex.t. $eps = 1e-10; } sub near ($$;$) { my $e = defined $_[2] ? $_[2] : $eps; my $d = $_[1] ? abs($_[0]/$_[1] - 1) : abs($_[0]); print "# near? $_[0] $_[1] : $d : $e\n"; $_[1] ? ($d < $e) : abs($_[0]) < $e; } print "# Sanity checks\n"; ok(near(sin(1), 0.841470984807897)); ok(near(cos(1), 0.54030230586814)); ok(near(tan(1), 1.5574077246549)); ok(near(sec(1), 1.85081571768093)); ok(near(csc(1), 1.18839510577812)); ok(near(cot(1), 0.642092615934331)); ok(near(asin(1), 1.5707963267949)); ok(near(acos(1), 0)); ok(near(atan(1), 0.785398163397448)); ok(near(asec(1), 0)); ok(near(acsc(1), 1.5707963267949)); ok(near(acot(1), 0.785398163397448)); ok(near(sinh(1), 1.1752011936438)); ok(near(cosh(1), 1.54308063481524)); ok(near(tanh(1), 0.761594155955765)); ok(near(sech(1), 0.648054273663885)); ok(near(csch(1), 0.850918128239322)); ok(near(coth(1), 1.31303528549933)); ok(near(asinh(1), 0.881373587019543)); ok(near(acosh(1), 0)); ok(near(atanh(0.9), 1.47221948958322)); # atanh(1.0) would be an error. ok(near(asech(0.9), 0.467145308103262)); ok(near(acsch(2), 0.481211825059603)); ok(near(acoth(2), 0.549306144334055)); print "# Basics\n"; $x = 0.9; ok(near(tan($x), sin($x) / cos($x))); ok(near(sinh(2), 3.62686040784702)); ok(near(acsch(0.1), 2.99822295029797)); $x = asin(2); is(ref $x, 'Math::Complex'); # avoid using Math::Complex here $x =~ /^([^-]+)(-[^i]+)i$/; ($y, $z) = ($1, $2); ok(near($y, 1.5707963267949)); ok(near($z, -1.31695789692482)); ok(near(deg2rad(90), pi/2)); ok(near(rad2deg(pi), 180)); use Math::Trig ':radial'; { my ($r,$t,$z) = cartesian_to_cylindrical(1,1,1); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($z, 1)); ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 1)); ($r,$t,$z) = cartesian_to_cylindrical(1,1,0); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($z, 0)); ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 0)); } { my ($r,$t,$f) = cartesian_to_spherical(1,1,1); ok(near($r, sqrt(3))); ok(near($t, deg2rad(45))); ok(near($f, atan2(sqrt(2), 1))); ($x,$y,$z) = spherical_to_cartesian($r, $t, $f); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 1)); ($r,$t,$f) = cartesian_to_spherical(1,1,0); ok(near($r, sqrt(2))); ok(near($t, deg2rad(45))); ok(near($f, deg2rad(90))); ($x,$y,$z) = spherical_to_cartesian($r, $t, $f); ok(near($x, 1)); ok(near($y, 1)); ok(near($z, 0)); } { my ($r,$t,$z) = cylindrical_to_spherical(spherical_to_cylindrical(1,1,1)); ok(near($r, 1)); ok(near($t, 1)); ok(near($z, 1)); ($r,$t,$z) = spherical_to_cylindrical(cylindrical_to_spherical(1,1,1)); ok(near($r, 1)); ok(near($t, 1)); ok(near($z, 1)); } { use Math::Trig 'great_circle_distance'; ok(near(great_circle_distance(0, 0, 0, pi/2), pi/2)); ok(near(great_circle_distance(0, 0, pi, pi), pi)); # London to Tokyo. my @L = (deg2rad(-0.5), deg2rad(90 - 51.3)); my @T = (deg2rad(139.8), deg2rad(90 - 35.7)); my $km = great_circle_distance(@L, @T, 6378); ok(near($km, 9605.26637021388)); } { my $R2D = 57.295779513082320876798154814169; sub frac { $_[0] - int($_[0]) } my $lotta_radians = deg2rad(1E+20, 1); ok(near($lotta_radians, 1E+20/$R2D)); my $negat_degrees = rad2deg(-1E20, 1); ok(near($negat_degrees, -1E+20*$R2D)); my $posit_degrees = rad2deg(-10000, 1); ok(near($posit_degrees, -10000*$R2D)); } { use Math::Trig 'great_circle_direction'; ok(near(great_circle_direction(0, 0, 0, pi/2), pi)); # Retired test: Relies on atan2(0, 0), which is not portable. # ok(near(great_circle_direction(0, 0, pi, pi), -pi()/2)); my @London = (deg2rad( -0.167), deg2rad(90 - 51.3)); my @Tokyo = (deg2rad( 139.5), deg2rad(90 - 35.7)); my @Berlin = (deg2rad ( 13.417), deg2rad(90 - 52.533)); my @Paris = (deg2rad ( 2.333), deg2rad(90 - 48.867)); ok(near(rad2deg(great_circle_direction(@London, @Tokyo)), 31.791945393073)); ok(near(rad2deg(great_circle_direction(@Tokyo, @London)), 336.069766430326)); ok(near(rad2deg(great_circle_direction(@Berlin, @Paris)), 246.800348034667)); ok(near(rad2deg(great_circle_direction(@Paris, @Berlin)), 58.2079877553156)); use Math::Trig 'great_circle_bearing'; ok(near(rad2deg(great_circle_bearing(@Paris, @Berlin)), 58.2079877553156)); use Math::Trig 'great_circle_waypoint'; use Math::Trig 'great_circle_midpoint'; my ($lon, $lat); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.0); ok(near($lon, $London[0])); ok(near($lat, $London[1])); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 1.0); ok(near($lon, $Tokyo[0])); ok(near($lat, $Tokyo[1])); ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.5); ok(near($lon, 1.55609593577679)); # 89.16 E ok(near($lat, 0.36783532946162)); # 68.93 N ($lon, $lat) = great_circle_midpoint(@London, @Tokyo); ok(near($lon, 1.55609593577679)); # 89.16 E ok(near($lat, 0.367835329461615)); # 68.93 N ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.25); ok(near($lon, 0.516073562850837)); # 29.57 E ok(near($lat, 0.400231313403387)); # 67.07 N ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.75); ok(near($lon, 2.17494903805952)); # 124.62 E ok(near($lat, 0.617809294053591)); # 54.60 N use Math::Trig 'great_circle_destination'; my $dir1 = great_circle_direction(@London, @Tokyo); my $dst1 = great_circle_distance(@London, @Tokyo); ($lon, $lat) = great_circle_destination(@London, $dir1, $dst1); ok(near($lon, $Tokyo[0])); ok(near($lat, $pip2 - $Tokyo[1])); my $dir2 = great_circle_direction(@Tokyo, @London); my $dst2 = great_circle_distance(@Tokyo, @London); ($lon, $lat) = great_circle_destination(@Tokyo, $dir2, $dst2); ok(near($lon, $London[0])); ok(near($lat, $pip2 - $London[1])); my $dir3 = (great_circle_destination(@London, $dir1, $dst1))[2]; ok(near($dir3, 2.69379263839118)); # about 154.343 deg my $dir4 = (great_circle_destination(@Tokyo, $dir2, $dst2))[2]; ok(near($dir4, 3.6993902625701)); # about 211.959 deg ok(near($dst1, $dst2)); } SKIP: { # With netbsd-vax (or any vax) there is neither Inf, nor 1e40. skip("different float range", 42) if $vax_float; skip("no inf", 42) unless $has_inf; print "# Infinity\n"; my $BigDouble = eval '1e40'; # E.g. netbsd-alpha core dumps on Inf arith without this. local $SIG{FPE} = sub { }; ok(Inf() > $BigDouble); # This passes in netbsd-alpha. ok(Inf() + $BigDouble > $BigDouble); # This coredumps in netbsd-alpha. ok(Inf() + $BigDouble == Inf()); ok(Inf() - $BigDouble > $BigDouble); ok(Inf() - $BigDouble == Inf()); ok(Inf() * $BigDouble > $BigDouble); ok(Inf() * $BigDouble == Inf()); ok(Inf() / $BigDouble > $BigDouble); ok(Inf() / $BigDouble == Inf()); ok(-Inf() < -$BigDouble); ok(-Inf() + $BigDouble < $BigDouble); ok(-Inf() + $BigDouble == -Inf()); ok(-Inf() - $BigDouble < -$BigDouble); ok(-Inf() - $BigDouble == -Inf()); ok(-Inf() * $BigDouble < -$BigDouble); ok(-Inf() * $BigDouble == -Inf()); ok(-Inf() / $BigDouble < -$BigDouble); ok(-Inf() / $BigDouble == -Inf()); print "# sinh/sech/cosh/csch/tanh/coth unto infinity\n"; ok(near(sinh(100), eval '1.3441e+43', 1e-3)); ok(near(sech(100), eval '7.4402e-44', 1e-3)); ok(near(cosh(100), eval '1.3441e+43', 1e-3)); ok(near(csch(100), eval '7.4402e-44', 1e-3)); ok(near(tanh(100), 1)); ok(near(coth(100), 1)); ok(near(sinh(-100), eval '-1.3441e+43', 1e-3)); ok(near(sech(-100), eval ' 7.4402e-44', 1e-3)); ok(near(cosh(-100), eval ' 1.3441e+43', 1e-3)); ok(near(csch(-100), eval '-7.4402e-44', 1e-3)); ok(near(tanh(-100), -1)); ok(near(coth(-100), -1)); cmp_ok(sinh(1e5), '==', Inf()); cmp_ok(sech(1e5), '==', 0); cmp_ok(cosh(1e5), '==', Inf()); cmp_ok(csch(1e5), '==', 0); cmp_ok(tanh(1e5), '==', 1); cmp_ok(coth(1e5), '==', 1); cmp_ok(sinh(-1e5), '==', -Inf()); cmp_ok(sech(-1e5), '==', 0); cmp_ok(cosh(-1e5), '==', Inf()); cmp_ok(csch(-1e5), '==', 0); cmp_ok(tanh(-1e5), '==', -1); cmp_ok(coth(-1e5), '==', -1); } print "# great_circle_distance with small angles\n"; for my $e (qw(1e-2 1e-3 1e-4 1e-5)) { # Can't assume == 0 because of floating point fuzz, # but let's hope for at least < $e. cmp_ok(great_circle_distance(0, $e, 0, $e), '<', $e); } print "# asin_real, acos_real\n"; is(acos_real(-2.0), pi); is(acos_real(-1.0), pi); is(acos_real(-0.5), acos(-0.5)); is(acos_real( 0.0), acos( 0.0)); is(acos_real( 0.5), acos( 0.5)); is(acos_real( 1.0), 0); is(acos_real( 2.0), 0); is(asin_real(-2.0), -&pip2); is(asin_real(-1.0), -&pip2); is(asin_real(-0.5), asin(-0.5)); is(asin_real( 0.0), asin( 0.0)); is(asin_real( 0.5), asin( 0.5)); is(asin_real( 1.0), pip2); is(asin_real( 2.0), pip2); # eof