use super::constants::*;
use super::handshake;
use super::router;
use super::timers::{Events, Timers};
use super::{Peer, PeerInner};
use super::tun;
use super::tun::Reader as TunReader;
use super::udp;
use super::udp::Reader as UDPReader;
use super::udp::Writer as UDPWriter;
use super::Endpoint;
use hjul::Runner;
use std::fmt;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
use std::sync::Arc;
use std::thread;
use std::time::{Duration, Instant};
// TODO: avoid
use std::sync::Condvar;
use std::sync::Mutex as StdMutex;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use log::debug;
use rand::rngs::OsRng;
use rand::Rng;
use spin::{Mutex, RwLock};
use byteorder::{ByteOrder, LittleEndian};
use crossbeam_channel::{bounded, Sender};
use x25519_dalek::{PublicKey, StaticSecret};
const SIZE_HANDSHAKE_QUEUE: usize = 128;
const THRESHOLD_UNDER_LOAD: usize = SIZE_HANDSHAKE_QUEUE / 4;
const DURATION_UNDER_LOAD: Duration = Duration::from_millis(10_000);
#[derive(Clone)]
pub struct WaitHandle(Arc<(StdMutex<usize>, Condvar)>);
impl WaitHandle {
pub fn wait(&self) {
let (lock, cvar) = &*self.0;
let mut nread = lock.lock().unwrap();
while *nread > 0 {
nread = cvar.wait(nread).unwrap();
}
}
fn new() -> Self {
Self(Arc::new((StdMutex::new(0), Condvar::new())))
}
fn decrease(&self) {
let (lock, cvar) = &*self.0;
let mut nread = lock.lock().unwrap();
assert!(*nread > 0);
*nread -= 1;
cvar.notify_all();
}
fn increase(&self) {
let (lock, _) = &*self.0;
let mut nread = lock.lock().unwrap();
*nread += 1;
}
}
pub struct WireguardInner<T: tun::Tun, B: udp::UDP> {
// identifier (for logging)
id: u32,
// device enabled
enabled: RwLock<bool>,
// enables waiting for all readers to finish
tun_readers: WaitHandle,
// current MTU
mtu: AtomicUsize,
// outbound writer
send: RwLock<Option<B::Writer>>,
// identity and configuration map
peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,
// cryptokey router
router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,
// handshake related state
handshake: RwLock<handshake::Device>,
under_load: AtomicBool,
pending: AtomicUsize, // num of pending handshake packets in queue
queue: Mutex<Sender<HandshakeJob<B::Endpoint>>>,
}
impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
/* Queue a handshake request for the parallel workers
* (if one does not already exist)
*
* The function is ratelimited.
*/
pub fn packet_send_handshake_initiation(&self) {
// the function is rate limited
{
let mut lhs = self.last_handshake_sent.lock();
if lhs.elapsed() < REKEY_TIMEOUT {
return;
}
*lhs = Instant::now();
}
// create a new handshake job for the peer
if !self.handshake_queued.swap(true, Ordering::SeqCst) {
self.wg.pending.fetch_add(1, Ordering::SeqCst);
self.queue.lock().send(HandshakeJob::New(self.pk)).unwrap();
}
}
}
pub enum HandshakeJob<E> {
Message(Vec<u8>, E),
New(PublicKey),
}
impl<T: tun::Tun, B: udp::UDP> fmt::Display for WireguardInner<T, B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "wireguard({:x})", self.id)
}
}
impl<T: tun::Tun, B: udp::UDP> Deref for Wireguard<T, B> {
type Target = Arc<WireguardInner<T, B>>;
fn deref(&self) -> &Self::Target {
&self.state
}
}
pub struct Wireguard<T: tun::Tun, B: udp::UDP> {
runner: Runner,
state: Arc<WireguardInner<T, B>>,
}
/* Returns the padded length of a message:
*
* # Arguments
*
* - `size` : Size of unpadded message
* - `mtu` : Maximum transmission unit of the device
*
* # Returns
*
* The padded length (always less than or equal to the MTU)
*/
#[inline(always)]
const fn padding(size: usize, mtu: usize) -> usize {
#[inline(always)]
const fn min(a: usize, b: usize) -> usize {
let m = (a < b) as usize;
a * m + (1 - m) * b
}
let pad = MESSAGE_PADDING_MULTIPLE;
min(mtu, size + (pad - size % pad) % pad)
}
impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
/// Brings the WireGuard device down.
/// Usually called when the associated interface is brought down.
///
/// This stops any further action/timer on any peer
/// and prevents transmission of further messages,
/// however the device retrains its state.
///
/// The instance will continue to consume and discard messages
/// on both ends of the device.
pub fn down(&self) {
// ensure exclusive access (to avoid race with "up" call)
let mut enabled = self.enabled.write();
// check if already down
if *enabled == false {
return;
}
// set mtu
self.state.mtu.store(0, Ordering::Relaxed);
// avoid tranmission from router
self.router.down();
// set all peers down (stops timers)
for peer in self.peers.write().values() {
peer.down();
}
*enabled = false;
}
/// Brings the WireGuard device up.
/// Usually called when the associated interface is brought up.
pub fn up(&self, mtu: usize) {
// ensure exclusive access (to avoid race with "up" call)
let mut enabled = self.enabled.write();
// set mtu
self.state.mtu.store(mtu, Ordering::Relaxed);
// check if already up
if *enabled {
return;
}
// enable tranmission from router
self.router.up();
// set all peers up (restarts timers)
for peer in self.peers.write().values() {
peer.up();
}
*enabled = true;
}
pub fn clear_peers(&self) {
self.state.peers.write().clear();
}
pub fn remove_peer(&self, pk: &PublicKey) {
self.state.peers.write().remove(pk.as_bytes());
}
pub fn lookup_peer(&self, pk: &PublicKey) -> Option<Peer<T, B>> {
self.state
.peers
.read()
.get(pk.as_bytes())
.map(|p| p.clone())
}
pub fn list_peers(&self) -> Vec<Peer<T, B>> {
let peers = self.state.peers.read();
let mut list = Vec::with_capacity(peers.len());
for (k, v) in peers.iter() {
debug_assert!(k == v.pk.as_bytes());
list.push(v.clone());
}
list
}
pub fn set_key(&self, sk: Option<StaticSecret>) {
self.handshake.write().set_sk(sk);
}
pub fn get_sk(&self) -> Option<StaticSecret> {
self.handshake
.read()
.get_sk()
.map(|sk| StaticSecret::from(sk.to_bytes()))
}
pub fn set_psk(&self, pk: PublicKey, psk: [u8; 32]) -> bool {
self.state.handshake.write().set_psk(pk, psk).is_ok()
}
pub fn get_psk(&self, pk: &PublicKey) -> Option<[u8; 32]> {
self.state.handshake.read().get_psk(pk).ok()
}
pub fn add_peer(&self, pk: PublicKey) -> bool {
if self.state.peers.read().contains_key(pk.as_bytes()) {
return false;
}
let mut rng = OsRng::new().unwrap();
let state = Arc::new(PeerInner {
id: rng.gen(),
pk,
wg: self.state.clone(),
walltime_last_handshake: Mutex::new(None),
last_handshake_sent: Mutex::new(Instant::now() - TIME_HORIZON),
handshake_queued: AtomicBool::new(false),
queue: Mutex::new(self.state.queue.lock().clone()),
rx_bytes: AtomicU64::new(0),
tx_bytes: AtomicU64::new(0),
timers: RwLock::new(Timers::dummy(&self.runner)),
});
// create a router peer
let router = Arc::new(self.state.router.new_peer(state.clone()));
// form WireGuard peer
let peer = Peer { router, state };
// finally, add the peer to the wireguard device
let mut peers = self.state.peers.write();
match peers.entry(*pk.as_bytes()) {
Entry::Occupied(_) => false,
Entry::Vacant(vacancy) => {
// check that the public key does not cause conflict with the private key of the device
let ok_pk = self.state.handshake.write().add(pk).is_ok();
if !ok_pk {
return false;
}
// prevent up/down while inserting
let enabled = self.enabled.read();
/* The need for dummy timers arises from the chicken-egg
* problem of the timer callbacks being able to set timers themselves.
*
* This is in fact the only place where the write lock is ever taken.
* TODO: Consider the ease of using atomic pointers instead.
*/
*peer.timers.write() = Timers::new(&self.runner, *enabled, peer.clone());
// insert into peer map (takes ownership and ensures that the peer is not dropped)
vacancy.insert(peer);
true
}
}
}
/// Begin consuming messages from the reader.
/// Multiple readers can be added to support multi-queue and individual Ipv6/Ipv4 sockets interfaces
///
/// Any previous reader thread is stopped by closing the previous reader,
/// which unblocks the thread and causes an error on reader.read
pub fn add_udp_reader(&self, reader: B::Reader) {
let wg = self.state.clone();
thread::spawn(move || {
let mut last_under_load =
Instant::now() - DURATION_UNDER_LOAD - Duration::from_millis(1000);
loop {
// create vector big enough for any message given current MTU
let mtu = wg.mtu.load(Ordering::Relaxed);
let size = mtu + handshake::MAX_HANDSHAKE_MSG_SIZE;
let mut msg: Vec<u8> = Vec::with_capacity(size);
msg.resize(size, 0);
// read UDP packet into vector
let (size, src) = match reader.read(&mut msg) {
Err(e) => {
debug!("Bind reader closed with {}", e);
return;
}
Ok(v) => v,
};
msg.truncate(size);
// TODO: start device down
if mtu == 0 {
continue;
}
// message type de-multiplexer
if msg.len() < std::mem::size_of::<u32>() {
continue;
}
match LittleEndian::read_u32(&msg[..]) {
handshake::TYPE_COOKIE_REPLY
| handshake::TYPE_INITIATION
| handshake::TYPE_RESPONSE => {
debug!("{} : reader, received handshake message", wg);
// add one to pending
let pending = wg.pending.fetch_add(1, Ordering::SeqCst);
// update under_load flag
if pending > THRESHOLD_UNDER_LOAD {
debug!("{} : reader, set under load (pending = {})", wg, pending);
last_under_load = Instant::now();
wg.under_load.store(true, Ordering::SeqCst);
} else if last_under_load.elapsed() > DURATION_UNDER_LOAD {
debug!("{} : reader, clear under load", wg);
wg.under_load.store(false, Ordering::SeqCst);
}
// add to handshake queue
wg.queue
.lock()
.send(HandshakeJob::Message(msg, src))
.unwrap();
}
router::TYPE_TRANSPORT => {
debug!("{} : reader, received transport message", wg);
// transport message
let _ = wg.router.recv(src, msg).map_err(|e| {
debug!("Failed to handle incoming transport message: {}", e);
});
}
_ => (),
}
}
});
}
pub fn set_writer(&self, writer: B::Writer) {
// TODO: Consider unifying these and avoid Clone requirement on writer
*self.state.send.write() = Some(writer.clone());
self.state.router.set_outbound_writer(writer);
}
pub fn add_tun_reader(&self, reader: T::Reader) {
fn worker<T: tun::Tun, B: udp::UDP>(wg: &Arc<WireguardInner<T, B>>, reader: T::Reader) {
loop {
// create vector big enough for any transport message (based on MTU)
let mtu = wg.mtu.load(Ordering::Relaxed);
let size = mtu + router::SIZE_MESSAGE_PREFIX + 1;
let mut msg: Vec<u8> = Vec::with_capacity(size + router::CAPACITY_MESSAGE_POSTFIX);
msg.resize(size, 0);
// read a new IP packet
let payload = match reader.read(&mut msg[..], router::SIZE_MESSAGE_PREFIX) {
Ok(payload) => payload,
Err(e) => {
debug!("TUN worker, failed to read from tun device: {}", e);
break;
}
};
debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);
// TODO: start device down
if mtu == 0 {
continue;
}
// truncate padding
let padded = padding(payload, mtu);
log::trace!(
"TUN worker, payload length = {}, padded length = {}",
payload,
padded
);
msg.truncate(router::SIZE_MESSAGE_PREFIX + padded);
debug_assert!(padded <= mtu);
debug_assert_eq!(
if padded < mtu {
(msg.len() - router::SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
} else {
0
},
0
);
// crypt-key route
let e = wg.router.send(msg);
debug!("TUN worker, router returned {:?}", e);
}
}
// start a thread for every reader
let wg = self.state.clone();
// increment reader count
wg.tun_readers.increase();
// start worker
thread::spawn(move || {
worker(&wg, reader);
wg.tun_readers.decrease();
});
}
pub fn wait(&self) -> WaitHandle {
self.state.tun_readers.clone()
}
pub fn new(writer: T::Writer) -> Wireguard<T, B> {
// create device state
let mut rng = OsRng::new().unwrap();
// handshake queue
let (tx, rx): (Sender<HandshakeJob<B::Endpoint>>, _) = bounded(SIZE_HANDSHAKE_QUEUE);
let wg = Arc::new(WireguardInner {
enabled: RwLock::new(false),
tun_readers: WaitHandle::new(),
id: rng.gen(),
mtu: AtomicUsize::new(0),
peers: RwLock::new(HashMap::new()),
send: RwLock::new(None),
router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
pending: AtomicUsize::new(0),
handshake: RwLock::new(handshake::Device::new()),
under_load: AtomicBool::new(false),
queue: Mutex::new(tx),
});
// start handshake workers
for _ in 0..num_cpus::get() {
let wg = wg.clone();
let rx = rx.clone();
thread::spawn(move || {
debug!("{} : handshake worker, started", wg);
// prepare OsRng instance for this thread
let mut rng = OsRng::new().expect("Unable to obtain a CSPRNG");
// process elements from the handshake queue
for job in rx {
// decrement pending
wg.pending.fetch_sub(1, Ordering::SeqCst);
let device = wg.handshake.read();
match job {
HandshakeJob::Message(msg, src) => {
// feed message to handshake device
let src_validate = (&src).into_address(); // TODO avoid
// process message
match device.process(
&mut rng,
&msg[..],
if wg.under_load.load(Ordering::Relaxed) {
debug!("{} : handshake worker, under load", wg);
Some(&src_validate)
} else {
None
},
) {
Ok((pk, resp, keypair)) => {
// send response (might be cookie reply or handshake response)
let mut resp_len: u64 = 0;
if let Some(msg) = resp {
resp_len = msg.len() as u64;
let send: &Option<B::Writer> = &*wg.send.read();
if let Some(writer) = send.as_ref() {
debug!(
"{} : handshake worker, send response ({} bytes)",
wg, resp_len
);
let _ = writer.write(&msg[..], &src).map_err(|e| {
debug!(
"{} : handshake worker, failed to send response, error = {}",
wg,
e
)
});
}
}
// update peer state
if let Some(pk) = pk {
// authenticated handshake packet received
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
// add to rx_bytes and tx_bytes
let req_len = msg.len() as u64;
peer.rx_bytes.fetch_add(req_len, Ordering::Relaxed);
peer.tx_bytes.fetch_add(resp_len, Ordering::Relaxed);
// update endpoint
peer.router.set_endpoint(src);
if resp_len > 0 {
// update timers after sending handshake response
debug!("{} : handshake worker, handshake response sent", wg);
peer.state.sent_handshake_response();
} else {
// update timers after receiving handshake response
debug!("{} : handshake worker, handshake response was received", wg);
peer.state.timers_handshake_complete();
}
// add any new keypair to peer
keypair.map(|kp| {
debug!(
"{} : handshake worker, new keypair for {}",
wg, peer
);
// this means that a handshake response was processed or sent
peer.timers_session_derieved();
// free any unused ids
for id in peer.router.add_keypair(kp) {
device.release(id);
}
});
}
}
}
Err(e) => debug!("{} : handshake worker, error = {:?}", wg, e),
}
}
HandshakeJob::New(pk) => {
if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
debug!(
"{} : handshake worker, new handshake requested for {}",
wg, peer
);
let _ = device.begin(&mut rng, &peer.pk).map(|msg| {
let _ = peer.router.send(&msg[..]).map_err(|e| {
debug!("{} : handshake worker, failed to send handshake initiation, error = {}", wg, e)
});
peer.state.sent_handshake_initiation();
});
peer.handshake_queued.store(false, Ordering::SeqCst);
}
}
}
}
});
}
Wireguard {
state: wg,
runner: Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY),
}
}
}