summaryrefslogtreecommitdiffstats
path: root/src/wireguard/handshake/device.rs
blob: 85c2e45aa9032e1ca07590538420d00a412120a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
use spin::RwLock;
use std::collections::HashMap;
use std::net::SocketAddr;
use std::sync::Mutex;
use zerocopy::AsBytes;

use byteorder::{ByteOrder, LittleEndian};

use rand::prelude::*;

use x25519_dalek::PublicKey;
use x25519_dalek::StaticSecret;

use super::macs;
use super::messages::{CookieReply, Initiation, Response};
use super::messages::{TYPE_COOKIE_REPLY, TYPE_INITIATION, TYPE_RESPONSE};
use super::noise;
use super::peer::Peer;
use super::ratelimiter::RateLimiter;
use super::types::*;

const MAX_PEER_PER_DEVICE: usize = 1 << 20;

pub struct KeyState {
    pub sk: StaticSecret,  // static secret key
    pub pk: PublicKey,     // static public key
    macs: macs::Validator, // validator for the mac fields
}

pub struct Device {
    keyst: Option<KeyState>,                // secret/public key
    pk_map: HashMap<[u8; 32], Peer>,        // public key  -> peer state
    id_map: RwLock<HashMap<u32, [u8; 32]>>, // receiver ids -> public key
    limiter: Mutex<RateLimiter>,
}

/* A mutable reference to the device needs to be held during configuration.
 * Wrapping the device in a RwLock enables peer config after "configuration time"
 */
impl Device {
    /// Initialize a new handshake state machine
    pub fn new() -> Device {
        Device {
            keyst: None,
            pk_map: HashMap::new(),
            id_map: RwLock::new(HashMap::new()),
            limiter: Mutex::new(RateLimiter::new()),
        }
    }

    fn update_ss(&self, peer: &mut Peer) -> Option<PublicKey> {
        if let Some(key) = self.keyst.as_ref() {
            if *peer.pk.as_bytes() == *key.pk.as_bytes() {
                return Some(peer.pk);
            }
            peer.ss = *key.sk.diffie_hellman(&peer.pk).as_bytes();
        } else {
            peer.ss = [0u8; 32];
        };
        None
    }

    /// Update the secret key of the device
    ///
    /// # Arguments
    ///
    /// * `sk` - x25519 scalar representing the local private key
    pub fn set_sk(&mut self, sk: Option<StaticSecret>) -> Option<PublicKey> {
        // update secret and public key
        self.keyst = sk.map(|sk| {
            let pk = PublicKey::from(&sk);
            let macs = macs::Validator::new(pk);
            KeyState { pk, sk, macs }
        });

        // recalculate / erase the shared secrets for every peer
        let mut ids = vec![];
        let mut same = None;
        for mut peer in self.pk_map.values_mut() {
            // clear any existing handshake state
            peer.reset_state().map(|id| ids.push(id));

            // update precomputed shared secret
            if let Some(key) = self.keyst.as_ref() {
                peer.ss = *key.sk.diffie_hellman(&peer.pk).as_bytes();
                if *peer.pk.as_bytes() == *key.pk.as_bytes() {
                    same = Some(peer.pk)
                }
            } else {
                peer.ss = [0u8; 32];
            };
        }

        // release ids from aborted handshakes
        for id in ids {
            self.release(id)
        }

        // if we found a peer matching the device public key, remove it.
        same.map(|pk| {
            self.pk_map.remove(pk.as_bytes());
            pk
        })
    }

    /// Return the secret key of the device
    ///
    /// # Returns
    ///
    /// A secret key (x25519 scalar)
    pub fn get_sk(&self) -> Option<&StaticSecret> {
        self.keyst.as_ref().map(|key| &key.sk)
    }

    /// Add a new public key to the state machine
    /// To remove public keys, you must create a new machine instance
    ///
    /// # Arguments
    ///
    /// * `pk` - The public key to add
    /// * `identifier` - Associated identifier which can be used to distinguish the peers
    pub fn add(&mut self, pk: PublicKey) -> Result<(), ConfigError> {
        // ensure less than 2^20 peers
        if self.pk_map.len() > MAX_PEER_PER_DEVICE {
            return Err(ConfigError::new("Too many peers for device"));
        }

        // create peer and precompute static secret
        let mut peer = Peer::new(
            pk,
            self.keyst
                .as_ref()
                .map(|key| *key.sk.diffie_hellman(&pk).as_bytes())
                .unwrap_or([0u8; 32]),
        );

        // add peer to device
        match self.update_ss(&mut peer) {
            Some(_) => Err(ConfigError::new("Public key of peer matches the device")),
            None => {
                self.pk_map.insert(*pk.as_bytes(), peer);
                Ok(())
            }
        }
    }

    /// Remove a peer by public key
    /// To remove public keys, you must create a new machine instance
    ///
    /// # Arguments
    ///
    /// * `pk` - The public key of the peer to remove
    ///
    /// # Returns
    ///
    /// The call might fail if the public key is not found
    pub fn remove(&mut self, pk: PublicKey) -> Result<(), ConfigError> {
        // take write-lock on receive id table
        let mut id_map = self.id_map.write();

        // remove the peer
        self.pk_map
            .remove(pk.as_bytes())
            .ok_or(ConfigError::new("Public key not in device"))?;

        // pruge the id map (linear scan)
        id_map.retain(|_, v| v != pk.as_bytes());
        Ok(())
    }

    /// Add a psk to the peer
    ///
    /// # Arguments
    ///
    /// * `pk` - The public key of the peer
    /// * `psk` - The psk to set / unset
    ///
    /// # Returns
    ///
    /// The call might fail if the public key is not found
    pub fn set_psk(&mut self, pk: PublicKey, psk: Option<Psk>) -> Result<(), ConfigError> {
        match self.pk_map.get_mut(pk.as_bytes()) {
            Some(mut peer) => {
                peer.psk = match psk {
                    Some(v) => v,
                    None => [0u8; 32],
                };
                Ok(())
            }
            _ => Err(ConfigError::new("No such public key")),
        }
    }

    /// Return the psk for the peer
    ///
    /// # Arguments
    ///
    /// * `pk` - The public key of the peer
    ///
    /// # Returns
    ///
    /// A 32 byte array holding the PSK
    ///
    /// The call might fail if the public key is not found
    pub fn get_psk(&self, pk: PublicKey) -> Result<Psk, ConfigError> {
        match self.pk_map.get(pk.as_bytes()) {
            Some(peer) => Ok(peer.psk),
            _ => Err(ConfigError::new("No such public key")),
        }
    }

    /// Release an id back to the pool
    ///
    /// # Arguments
    ///
    /// * `id` - The (sender) id to release
    pub fn release(&self, id: u32) {
        let mut m = self.id_map.write();
        debug_assert!(m.contains_key(&id), "Releasing id not allocated");
        m.remove(&id);
    }

    /// Begin a new handshake
    ///
    /// # Arguments
    ///
    /// * `pk` - Public key of peer to initiate handshake for
    pub fn begin<R: RngCore + CryptoRng>(
        &self,
        rng: &mut R,
        pk: &PublicKey,
    ) -> Result<Vec<u8>, HandshakeError> {
        match (self.keyst.as_ref(), self.pk_map.get(pk.as_bytes())) {
            (_, None) => Err(HandshakeError::UnknownPublicKey),
            (None, _) => Err(HandshakeError::UnknownPublicKey),
            (Some(keyst), Some(peer)) => {
                let sender = self.allocate(rng, peer);
                let mut msg = Initiation::default();

                // create noise part of initation
                noise::create_initiation(rng, keyst, peer, sender, &mut msg.noise)?;

                // add macs to initation
                peer.macs
                    .lock()
                    .generate(msg.noise.as_bytes(), &mut msg.macs);

                Ok(msg.as_bytes().to_owned())
            }
        }
    }

    /// Process a handshake message.
    ///
    /// # Arguments
    ///
    /// * `msg` - Byte slice containing the message (untrusted input)
    pub fn process<'a, R: RngCore + CryptoRng, S>(
        &self,
        rng: &mut R,        // rng instance to sample randomness from
        msg: &[u8],         // message buffer
        src: Option<&'a S>, // optional source endpoint, set when "under load"
    ) -> Result<Output, HandshakeError>
    where
        &'a S: Into<&'a SocketAddr>,
    {
        // ensure type read in-range
        if msg.len() < 4 {
            return Err(HandshakeError::InvalidMessageFormat);
        }

        // obtain reference to key state
        // if no key is configured return a noop.
        let keyst = match self.keyst.as_ref() {
            Some(key) => key,
            None => {
                return Ok((None, None, None));
            }
        };

        // de-multiplex the message type field
        match LittleEndian::read_u32(msg) {
            TYPE_INITIATION => {
                // parse message
                let msg = Initiation::parse(msg)?;

                // check mac1 field
                keyst.macs.check_mac1(msg.noise.as_bytes(), &msg.macs)?;

                // address validation & DoS mitigation
                if let Some(src) = src {
                    // obtain ref to socket addr
                    let src = src.into();

                    // check mac2 field
                    if !keyst.macs.check_mac2(msg.noise.as_bytes(), src, &msg.macs) {
                        let mut reply = Default::default();
                        keyst.macs.create_cookie_reply(
                            rng,
                            msg.noise.f_sender.get(),
                            src,
                            &msg.macs,
                            &mut reply,
                        );
                        return Ok((None, Some(reply.as_bytes().to_owned()), None));
                    }

                    // check ratelimiter
                    if !self.limiter.lock().unwrap().allow(&src.ip()) {
                        return Err(HandshakeError::RateLimited);
                    }
                }

                // consume the initiation
                let (peer, st) = noise::consume_initiation(self, keyst, &msg.noise)?;

                // allocate new index for response
                let sender = self.allocate(rng, peer);

                // prepare memory for response, TODO: take slice for zero allocation
                let mut resp = Response::default();

                // create response (release id on error)
                let keys = noise::create_response(rng, peer, sender, st, &mut resp.noise).map_err(
                    |e| {
                        self.release(sender);
                        e
                    },
                )?;

                // add macs to response
                peer.macs
                    .lock()
                    .generate(resp.noise.as_bytes(), &mut resp.macs);

                // return unconfirmed keypair and the response as vector
                Ok((Some(peer.pk), Some(resp.as_bytes().to_owned()), Some(keys)))
            }
            TYPE_RESPONSE => {
                let msg = Response::parse(msg)?;

                // check mac1 field
                keyst.macs.check_mac1(msg.noise.as_bytes(), &msg.macs)?;

                // address validation & DoS mitigation
                if let Some(src) = src {
                    // obtain ref to socket addr
                    let src = src.into();

                    // check mac2 field
                    if !keyst.macs.check_mac2(msg.noise.as_bytes(), src, &msg.macs) {
                        let mut reply = Default::default();
                        keyst.macs.create_cookie_reply(
                            rng,
                            msg.noise.f_sender.get(),
                            src,
                            &msg.macs,
                            &mut reply,
                        );
                        return Ok((None, Some(reply.as_bytes().to_owned()), None));
                    }

                    // check ratelimiter
                    if !self.limiter.lock().unwrap().allow(&src.ip()) {
                        return Err(HandshakeError::RateLimited);
                    }
                }

                // consume inner playload
                noise::consume_response(self, keyst, &msg.noise)
            }
            TYPE_COOKIE_REPLY => {
                let msg = CookieReply::parse(msg)?;

                // lookup peer
                let peer = self.lookup_id(msg.f_receiver.get())?;

                // validate cookie reply
                peer.macs.lock().process(&msg)?;

                // this prompts no new message and
                // DOES NOT cryptographically verify the peer
                Ok((None, None, None))
            }
            _ => Err(HandshakeError::InvalidMessageFormat),
        }
    }

    // Internal function
    //
    // Return the peer associated with the public key
    pub(crate) fn lookup_pk(&self, pk: &PublicKey) -> Result<&Peer, HandshakeError> {
        self.pk_map
            .get(pk.as_bytes())
            .ok_or(HandshakeError::UnknownPublicKey)
    }

    // Internal function
    //
    // Return the peer currently associated with the receiver identifier
    pub(crate) fn lookup_id(&self, id: u32) -> Result<&Peer, HandshakeError> {
        let im = self.id_map.read();
        let pk = im.get(&id).ok_or(HandshakeError::UnknownReceiverId)?;
        match self.pk_map.get(pk) {
            Some(peer) => Ok(peer),
            _ => unreachable!(), // if the id-lookup succeeded, the peer should exist
        }
    }

    // Internal function
    //
    // Allocated a new receiver identifier for the peer
    fn allocate<R: RngCore + CryptoRng>(&self, rng: &mut R, peer: &Peer) -> u32 {
        loop {
            let id = rng.gen();

            // check membership with read lock
            if self.id_map.read().contains_key(&id) {
                continue;
            }

            // take write lock and add index
            let mut m = self.id_map.write();
            if !m.contains_key(&id) {
                m.insert(id, *peer.pk.as_bytes());
                return id;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::super::messages::*;
    use super::*;
    use hex;
    use rand::rngs::OsRng;
    use std::net::SocketAddr;
    use std::thread;
    use std::time::Duration;

    fn setup_devices<R: RngCore + CryptoRng>(
        rng: &mut R,
    ) -> (PublicKey, Device, PublicKey, Device) {
        // generate new keypairs

        let sk1 = StaticSecret::new(rng);
        let pk1 = PublicKey::from(&sk1);

        let sk2 = StaticSecret::new(rng);
        let pk2 = PublicKey::from(&sk2);

        // pick random psk

        let mut psk = [0u8; 32];
        rng.fill_bytes(&mut psk[..]);

        // intialize devices on both ends

        let mut dev1 = Device::new();
        let mut dev2 = Device::new();

        dev1.set_sk(Some(sk1));
        dev2.set_sk(Some(sk2));

        dev1.add(pk2).unwrap();
        dev2.add(pk1).unwrap();

        dev1.set_psk(pk2, Some(psk)).unwrap();
        dev2.set_psk(pk1, Some(psk)).unwrap();

        (pk1, dev1, pk2, dev2)
    }

    /* Test longest possible handshake interaction (7 messages):
     *
     * 1. I -> R (initation)
     * 2. I <- R (cookie reply)
     * 3. I -> R (initation)
     * 4. I <- R (response)
     * 5. I -> R (cookie reply)
     * 6. I -> R (initation)
     * 7. I <- R (response)
     */
    #[test]
    fn handshake_under_load() {
        let mut rng = OsRng::new().unwrap();
        let (_pk1, dev1, pk2, dev2) = setup_devices(&mut rng);

        let src1: SocketAddr = "172.16.0.1:8080".parse().unwrap();
        let src2: SocketAddr = "172.16.0.2:7070".parse().unwrap();

        // 1. device-1 : create first initation
        let msg_init = dev1.begin(&mut rng, &pk2).unwrap();

        // 2. device-2 : responds with CookieReply
        let msg_cookie = match dev2.process(&mut rng, &msg_init, Some(&src1)).unwrap() {
            (None, Some(msg), None) => msg,
            _ => panic!("unexpected response"),
        };

        // device-1 : processes CookieReply (no response)
        match dev1.process(&mut rng, &msg_cookie, Some(&src2)).unwrap() {
            (None, None, None) => (),
            _ => panic!("unexpected response"),
        }

        // avoid initation flood
        thread::sleep(Duration::from_millis(20));

        // 3. device-1 : create second initation
        let msg_init = dev1.begin(&mut rng, &pk2).unwrap();

        // 4. device-2 : responds with noise response
        let msg_response = match dev2.process(&mut rng, &msg_init, Some(&src1)).unwrap() {
            (Some(_), Some(msg), Some(kp)) => {
                assert_eq!(kp.initiator, false);
                msg
            }
            _ => panic!("unexpected response"),
        };

        // 5. device-1 : responds with CookieReply
        let msg_cookie = match dev1.process(&mut rng, &msg_response, Some(&src2)).unwrap() {
            (None, Some(msg), None) => msg,
            _ => panic!("unexpected response"),
        };

        // device-2 : processes CookieReply (no response)
        match dev2.process(&mut rng, &msg_cookie, Some(&src1)).unwrap() {
            (None, None, None) => (),
            _ => panic!("unexpected response"),
        }

        // avoid initation flood
        thread::sleep(Duration::from_millis(20));

        // 6. device-1 : create third initation
        let msg_init = dev1.begin(&mut rng, &pk2).unwrap();

        // 7. device-2 : responds with noise response
        let (msg_response, kp1) = match dev2.process(&mut rng, &msg_init, Some(&src1)).unwrap() {
            (Some(_), Some(msg), Some(kp)) => {
                assert_eq!(kp.initiator, false);
                (msg, kp)
            }
            _ => panic!("unexpected response"),
        };

        // device-1 : process noise response
        let kp2 = match dev1.process(&mut rng, &msg_response, Some(&src2)).unwrap() {
            (Some(_), None, Some(kp)) => {
                assert_eq!(kp.initiator, true);
                kp
            }
            _ => panic!("unexpected response"),
        };

        assert_eq!(kp1.send, kp2.recv);
        assert_eq!(kp1.recv, kp2.send);
    }

    #[test]
    fn handshake_no_load() {
        let mut rng = OsRng::new().unwrap();
        let (pk1, mut dev1, pk2, mut dev2) = setup_devices(&mut rng);

        // do a few handshakes (every handshake should succeed)

        for i in 0..10 {
            println!("handshake : {}", i);

            // create initiation

            let msg1 = dev1.begin(&mut rng, &pk2).unwrap();

            println!("msg1 = {} : {} bytes", hex::encode(&msg1[..]), msg1.len());
            println!("msg1 = {:?}", Initiation::parse(&msg1[..]).unwrap());

            // process initiation and create response

            let (_, msg2, ks_r) = dev2.process(&mut rng, &msg1, None).unwrap();

            let ks_r = ks_r.unwrap();
            let msg2 = msg2.unwrap();

            println!("msg2 = {} : {} bytes", hex::encode(&msg2[..]), msg2.len());
            println!("msg2 = {:?}", Response::parse(&msg2[..]).unwrap());

            assert!(!ks_r.initiator, "Responders key-pair is confirmed");

            // process response and obtain confirmed key-pair

            let (_, msg3, ks_i) = dev1.process(&mut rng, &msg2, None).unwrap();
            let ks_i = ks_i.unwrap();

            assert!(msg3.is_none(), "Returned message after response");
            assert!(ks_i.initiator, "Initiators key-pair is not confirmed");

            assert_eq!(ks_i.send, ks_r.recv, "KeyI.send != KeyR.recv");
            assert_eq!(ks_i.recv, ks_r.send, "KeyI.recv != KeyR.send");

            dev1.release(ks_i.send.id);
            dev2.release(ks_r.send.id);

            // to avoid flood detection
            thread::sleep(Duration::from_millis(20));
        }

        dev1.remove(pk2).unwrap();
        dev2.remove(pk1).unwrap();
    }
}