summaryrefslogtreecommitdiffstats
path: root/src/wireguard/router/device.rs
blob: 9bba199d047b9f3415b8b59695d2246f17c76c6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
use std::collections::HashMap;
use std::ops::Deref;
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
use std::thread;
use std::time::Instant;

use log::debug;
use spin::{Mutex, RwLock};
use zerocopy::LayoutVerified;

use super::anti_replay::AntiReplay;
use super::pool::Job;

use super::inbound;
use super::outbound;

use super::messages::{TransportHeader, TYPE_TRANSPORT};
use super::peer::{new_peer, Peer, PeerHandle};
use super::types::{Callbacks, RouterError};
use super::SIZE_MESSAGE_PREFIX;

use super::runq::RunQueue;
use super::route::RoutingTable;

use super::super::{tun, udp, Endpoint, KeyPair};
use super::queue::ParallelQueue;

pub struct DeviceInner<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> {
    // inbound writer (TUN)
    pub inbound: T,

    // outbound writer (Bind)
    pub outbound: RwLock<(bool, Option<B>)>,

    // routing
    pub recv: RwLock<HashMap<u32, Arc<DecryptionState<E, C, T, B>>>>, // receiver id -> decryption state
    pub table: RoutingTable<Peer<E, C, T, B>>,

    // work queues
    pub queue_outbound: ParallelQueue<Job<Peer<E, C, T, B>, outbound::Outbound>>,
    pub queue_inbound: ParallelQueue<Job<Peer<E, C, T, B>, inbound::Inbound<E, C, T, B>>>,

    // run queues
    pub run_inbound: RunQueue<Peer<E, C, T, B>>,
    pub run_outbound: RunQueue<Peer<E, C, T, B>>,
}

pub struct EncryptionState {
    pub keypair: Arc<KeyPair>, // keypair
    pub nonce: u64,            // next available nonce
    pub death: Instant,        // (birth + reject-after-time - keepalive-timeout - rekey-timeout)
}

pub struct DecryptionState<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> {
    pub keypair: Arc<KeyPair>,
    pub confirmed: AtomicBool,
    pub protector: Mutex<AntiReplay>,
    pub peer: Peer<E, C, T, B>,
    pub death: Instant, // time when the key can no longer be used for decryption
}

pub struct Device<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> {
    inner: Arc<DeviceInner<E, C, T, B>>,
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Clone for Device<E, C, T, B> {
    fn clone(&self) -> Self {
        Device {
            inner: self.inner.clone(),
        }
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> PartialEq
    for Device<E, C, T, B>
{
    fn eq(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.inner, &other.inner)
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Eq for Device<E, C, T, B> {}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Deref for Device<E, C, T, B> {
    type Target = DeviceInner<E, C, T, B>;
    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

pub struct DeviceHandle<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> {
    state: Device<E, C, T, B>,            // reference to device state
    handles: Vec<thread::JoinHandle<()>>, // join handles for workers
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Drop
    for DeviceHandle<E, C, T, B>
{
    fn drop(&mut self) {
        debug!("router: dropping device");

        // close worker queues
        self.state.queue_outbound.close();
        self.state.queue_inbound.close();

        // close run queues
        self.state.run_outbound.close();
        self.state.run_inbound.close();

        // join all worker threads
        while match self.handles.pop() {
            Some(handle) => {
                handle.thread().unpark();
                handle.join().unwrap();
                true
            }
            _ => false,
        } {}

        debug!("router: device dropped");
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> DeviceHandle<E, C, T, B> {
    pub fn new(num_workers: usize, tun: T) -> DeviceHandle<E, C, T, B> {
        // allocate shared device state
        let (mut outrx, queue_outbound) = ParallelQueue::new(num_workers);
        let (mut inrx, queue_inbound) = ParallelQueue::new(num_workers);
        let device = Device {
            inner: Arc::new(DeviceInner {
                inbound: tun,
                queue_inbound,
                outbound: RwLock::new((true, None)),
                queue_outbound,
                run_inbound: RunQueue::new(),
                run_outbound: RunQueue::new(),
                recv: RwLock::new(HashMap::new()),
                table: RoutingTable::new(),
            })
        };

        // start worker threads
        let mut threads = Vec::with_capacity(num_workers);

        // inbound/decryption workers
        for _ in 0..num_workers {
            // parallel workers (parallel processing)
            {
                let device = device.clone();
                let rx = inrx.pop().unwrap();
                threads.push(thread::spawn(move || {
                    log::debug!("inbound parallel router worker started");
                    inbound::parallel(device, rx)
                }));
            }

            // sequential workers (in-order processing)
            {
                let device = device.clone();
                threads.push(thread::spawn(move || {
                    log::debug!("inbound sequential router worker started");
                    inbound::sequential(device)
                }));
            }
        }

        // outbound/encryption workers
        for _ in 0..num_workers {
            // parallel workers (parallel processing)
            {
                let device = device.clone();
                let rx = outrx.pop().unwrap();
                threads.push(thread::spawn(move || {
                    log::debug!("outbound parallel router worker started");
                    outbound::parallel(device, rx)
                }));
            }

            // sequential workers (in-order processing)
            {
                let device = device.clone();
                threads.push(thread::spawn(move || {
                    log::debug!("outbound sequential router worker started");
                    outbound::sequential(device)
                }));
            }
        }

        debug_assert_eq!(threads.len(), num_workers * 4);

        // return exported device handle
        DeviceHandle {
            state: device,
            handles: threads,
        }
    }

    /// Brings the router down.
    /// When the router is brought down it:
    /// - Prevents transmission of outbound messages.
    pub fn down(&self) {
        self.state.outbound.write().0 = false;
    }

    /// Brints the router up
    /// When the router is brought up it enables the transmission of outbound messages.
    pub fn up(&self) {
        self.state.outbound.write().0 = true;
    }

    /// A new secret key has been set for the device.
    /// According to WireGuard semantics, this should cause all "sending" keys to be discarded.
    pub fn new_sk(&self) {}

    /// Adds a new peer to the device
    ///
    /// # Returns
    ///
    /// A atomic ref. counted peer (with liftime matching the device)
    pub fn new_peer(&self, opaque: C::Opaque) -> PeerHandle<E, C, T, B> {
        new_peer(self.state.clone(), opaque)
    }

    /// Cryptkey routes and sends a plaintext message (IP packet)
    ///
    /// # Arguments
    ///
    /// - msg: IP packet to crypt-key route
    ///
    pub fn send(&self, msg: Vec<u8>) -> Result<(), RouterError> {
        debug_assert!(msg.len() > SIZE_MESSAGE_PREFIX);
        log::trace!(
            "send, packet = {}",
            hex::encode(&msg[SIZE_MESSAGE_PREFIX..])
        );

        // ignore header prefix (for in-place transport message construction)
        let packet = &msg[SIZE_MESSAGE_PREFIX..];

        // lookup peer based on IP packet destination address
        let peer = self
            .state
            .table
            .get_route(packet)
            .ok_or(RouterError::NoCryptoKeyRoute)?;

        // schedule for encryption and transmission to peer
        if let Some(job) = peer.send_job(msg, true) {
            self.state.queue_outbound.send(job);
        }

        Ok(())
    }

    /// Receive an encrypted transport message
    ///
    /// # Arguments
    ///
    /// - src: Source address of the packet
    /// - msg: Encrypted transport message
    ///
    /// # Returns
    ///
    ///
    pub fn recv(&self, src: E, msg: Vec<u8>) -> Result<(), RouterError> {
        log::trace!("receive, src: {}", src.into_address());

        // parse / cast
        let (header, _) = match LayoutVerified::new_from_prefix(&msg[..]) {
            Some(v) => v,
            None => {
                return Err(RouterError::MalformedTransportMessage);
            }
        };

        let header: LayoutVerified<&[u8], TransportHeader> = header;

        debug_assert!(
            header.f_type.get() == TYPE_TRANSPORT as u32,
            "this should be checked by the message type multiplexer"
        );

        log::trace!(
            "handle transport message: (receiver = {}, counter = {})",
            header.f_receiver,
            header.f_counter
        );

        // lookup peer based on receiver id
        let dec = self.state.recv.read();
        let dec = dec
            .get(&header.f_receiver.get())
            .ok_or(RouterError::UnknownReceiverId)?;

        // schedule for decryption and TUN write
        if let Some(job) = dec.peer.recv_job(src, dec.clone(), msg) {
            log::trace!("schedule decryption of transport message");
            self.state.queue_inbound.send(job);
        }
        Ok(())
    }

    /// Set outbound writer
    ///
    ///
    pub fn set_outbound_writer(&self, new: B) {
        self.state.outbound.write().1 = Some(new);
    }
}