aboutsummaryrefslogtreecommitdiffstats
path: root/src/wireguard/router/peer.rs
blob: d960da096d975f09ab248ffb1956e0d0f984de63 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
use super::super::constants::*;
use super::super::{tun, udp, Endpoint, KeyPair};

use super::anti_replay::AntiReplay;
use super::device::DecryptionState;
use super::device::Device;
use super::device::EncryptionState;

use super::constants::*;
use super::types::{Callbacks, RouterError};
use super::SIZE_MESSAGE_PREFIX;

use super::queue::Queue;
use super::receive::ReceiveJob;
use super::send::SendJob;
use super::worker::JobUnion;

use core::mem;
use core::ops::Deref;
use core::sync::atomic::AtomicBool;

use alloc::sync::Arc;

// TODO: consider no_std alternatives
use std::fmt;
use std::net::{IpAddr, SocketAddr};

use arraydeque::{ArrayDeque, Wrapping};
use log;
use spin::Mutex;

pub struct KeyWheel {
    next: Option<Arc<KeyPair>>,     // next key state (unconfirmed)
    current: Option<Arc<KeyPair>>,  // current key state (used for encryption)
    previous: Option<Arc<KeyPair>>, // old key state (used for decryption)
    retired: Vec<u32>,              // retired ids
}

pub struct PeerInner<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> {
    pub(super) device: Device<E, C, T, B>,
    pub(super) opaque: C::Opaque,
    pub(super) outbound: Queue<SendJob<E, C, T, B>>,
    pub(super) inbound: Queue<ReceiveJob<E, C, T, B>>,
    pub(super) staged_packets: Mutex<ArrayDeque<[Vec<u8>; MAX_QUEUED_PACKETS], Wrapping>>,
    pub(super) keys: Mutex<KeyWheel>,
    pub(super) enc_key: Mutex<Option<EncryptionState>>,
    pub(super) endpoint: Mutex<Option<E>>,
}

/// A Peer dereferences to its opaque type:
/// This allows the router code to take ownership of the opaque type
/// used for callback events, while still enabling the rest of the code to access the opaque type
/// (which might expose other functionality in their scope) from a Peer pointer.
///
/// e.g. it can take ownership of the timer state of a peer.
impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Deref for PeerInner<E, C, T, B> {
    type Target = C::Opaque;

    fn deref(&self) -> &Self::Target {
        &self.opaque
    }
}

/// A Peer represents a reference to the router state associated with a peer
pub struct Peer<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> {
    inner: Arc<PeerInner<E, C, T, B>>,
}

/// A PeerHandle is a specially designated reference to the peer
/// which removes the peer from the device when dropped.
///
/// A PeerHandle cannot be cloned (unlike the wrapped type).
/// A PeerHandle dereferences to a Peer (meaning you can use it like a Peer struct)
pub struct PeerHandle<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> {
    peer: Peer<E, C, T, B>,
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Clone for Peer<E, C, T, B> {
    fn clone(&self) -> Self {
        Peer {
            inner: self.inner.clone(),
        }
    }
}

/* Equality of peers is defined as pointer equality of
 * the atomic reference counted pointer.
 */
impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> PartialEq for Peer<E, C, T, B> {
    fn eq(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.inner, &other.inner)
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Eq for Peer<E, C, T, B> {}

/* A peer is transparently dereferenced to the inner type
 *
 */

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Deref for Peer<E, C, T, B> {
    type Target = PeerInner<E, C, T, B>;
    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Deref
    for PeerHandle<E, C, T, B>
{
    type Target = PeerInner<E, C, T, B>;
    fn deref(&self) -> &Self::Target {
        &self.peer
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> fmt::Display
    for PeerHandle<E, C, T, B>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "PeerHandle(format: TODO)")
    }
}

impl EncryptionState {
    fn new(keypair: &Arc<KeyPair>) -> EncryptionState {
        EncryptionState {
            nonce: 0,
            keypair: keypair.clone(),
        }
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> DecryptionState<E, C, T, B> {
    fn new(peer: Peer<E, C, T, B>, keypair: &Arc<KeyPair>) -> DecryptionState<E, C, T, B> {
        DecryptionState {
            confirmed: AtomicBool::new(keypair.initiator),
            keypair: keypair.clone(),
            protector: spin::Mutex::new(AntiReplay::new()),
            peer,
        }
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Drop for PeerHandle<E, C, T, B> {
    fn drop(&mut self) {
        let peer = &self.peer;

        // remove from cryptkey router

        self.peer.device.table.remove(peer);

        // release ids from the receiver map

        let mut keys = peer.keys.lock();
        let mut release = Vec::with_capacity(3);

        keys.next.as_ref().map(|k| release.push(k.recv.id));
        keys.current.as_ref().map(|k| release.push(k.recv.id));
        keys.previous.as_ref().map(|k| release.push(k.recv.id));

        if release.len() > 0 {
            let mut recv = peer.device.recv.write();
            for id in &release {
                recv.remove(id);
            }
        }

        // null key-material

        keys.next = None;
        keys.current = None;
        keys.previous = None;

        *peer.enc_key.lock() = None;
        *peer.endpoint.lock() = None;

        log::debug!("peer dropped & removed from device");
    }
}

pub fn new_peer<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>>(
    device: Device<E, C, T, B>,
    opaque: C::Opaque,
) -> PeerHandle<E, C, T, B> {
    // allocate peer object
    let peer = {
        let device = device.clone();
        Peer {
            inner: Arc::new(PeerInner {
                opaque,
                device,
                inbound: Queue::new(),
                outbound: Queue::new(),
                enc_key: spin::Mutex::new(None),
                endpoint: spin::Mutex::new(None),
                keys: spin::Mutex::new(KeyWheel {
                    next: None,
                    current: None,
                    previous: None,
                    retired: vec![],
                }),
                staged_packets: spin::Mutex::new(ArrayDeque::new()),
            }),
        }
    };

    PeerHandle { peer }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> PeerInner<E, C, T, B> {
    /// Send a raw message to the peer (used for handshake messages)
    ///
    /// # Arguments
    ///
    /// - `msg`, message body to send to peer
    ///
    /// # Returns
    ///
    /// Unit if packet was sent, or an error indicating why sending failed
    pub fn send_raw(&self, msg: &[u8]) -> Result<(), RouterError> {
        // send to endpoint (if known)
        match self.endpoint.lock().as_mut() {
            Some(endpoint) => {
                let outbound = self.device.outbound.read();
                if outbound.0 {
                    outbound
                        .1
                        .as_ref()
                        .ok_or(RouterError::SendError)
                        .and_then(|w| w.write(msg, endpoint).map_err(|_| RouterError::SendError))
                } else {
                    Ok(())
                }
            }
            None => Err(RouterError::NoEndpoint),
        }
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> Peer<E, C, T, B> {
    /// Encrypt and send a message to the peer
    ///
    /// Arguments:
    ///
    /// - `msg` : A padded vector holding the message (allows in-place construction of the transport header)
    /// - `stage`: Should the message be staged if no key is available
    ///
    pub(super) fn send(&self, msg: Vec<u8>, stage: bool) {
        // check if key available
        let (job, need_key) = {
            let mut enc_key = self.enc_key.lock();
            match enc_key.as_mut() {
                None => {
                    log::debug!("no key encryption key available");
                    if stage {
                        self.staged_packets.lock().push_back(msg);
                    };
                    (None, true)
                }
                Some(mut state) => {
                    // avoid integer overflow in nonce
                    if state.nonce >= REJECT_AFTER_MESSAGES - 1 {
                        log::debug!("encryption key expired");
                        *enc_key = None;
                        if stage {
                            self.staged_packets.lock().push_back(msg);
                        }
                        (None, true)
                    } else {
                        log::debug!("encryption state available, nonce = {}", state.nonce);
                        let job =
                            SendJob::new(msg, state.nonce, state.keypair.clone(), self.clone());
                        if self.outbound.push(job.clone()) {
                            state.nonce += 1;
                            (Some(job), false)
                        } else {
                            (None, false)
                        }
                    }
                }
            }
        };

        if need_key {
            log::debug!("request new key");
            debug_assert!(job.is_none());
            C::need_key(&self.opaque);
        };

        if let Some(job) = job {
            log::debug!("schedule outbound job");
            self.device.work.send(JobUnion::Outbound(job))
        }
    }

    // Transmit all staged packets
    fn send_staged(&self) -> bool {
        log::trace!("peer.send_staged");
        let mut sent = false;
        let mut staged = self.staged_packets.lock();
        loop {
            match staged.pop_front() {
                Some(msg) => {
                    sent = true;
                    self.send(msg, false);
                }
                None => break sent,
            }
        }
    }

    pub(super) fn confirm_key(&self, keypair: &Arc<KeyPair>) {
        log::trace!("peer.confirm_key");
        {
            // take lock and check keypair = keys.next
            let mut keys = self.keys.lock();
            let next = match keys.next.as_ref() {
                Some(next) => next,
                None => {
                    return;
                }
            };
            if !Arc::ptr_eq(&next, keypair) {
                return;
            }

            // allocate new encryption state
            let ekey = Some(EncryptionState::new(&next));

            // rotate key-wheel
            let mut swap = None;
            mem::swap(&mut keys.next, &mut swap);
            mem::swap(&mut keys.current, &mut swap);
            mem::swap(&mut keys.previous, &mut swap);

            // tell the world outside the router that a key was confirmed
            C::key_confirmed(&self.opaque);

            // set new key for encryption
            *self.enc_key.lock() = ekey;
        }

        // start transmission of staged packets
        self.send_staged();
    }
}

impl<E: Endpoint, C: Callbacks, T: tun::Writer, B: udp::Writer<E>> PeerHandle<E, C, T, B> {
    /// Set the endpoint of the peer
    ///
    /// # Arguments
    ///
    /// - `endpoint`, socket address converted to bind endpoint
    ///
    /// # Note
    ///
    /// This API still permits support for the "sticky socket" behavior,
    /// as sockets should be "unsticked" when manually updating the endpoint
    pub fn set_endpoint(&self, endpoint: E) {
        log::trace!("peer.set_endpoint");
        *self.peer.endpoint.lock() = Some(endpoint);
    }

    pub fn opaque(&self) -> &C::Opaque {
        &self.opaque
    }

    /// Returns the current endpoint of the peer (for configuration)
    ///
    /// # Note
    ///
    /// Does not convey potential "sticky socket" information
    pub fn get_endpoint(&self) -> Option<SocketAddr> {
        log::trace!("peer.get_endpoint");
        self.peer.endpoint.lock().as_ref().map(|e| e.into_address())
    }

    /// Zero all key-material related to the peer
    pub fn zero_keys(&self) {
        log::trace!("peer.zero_keys");

        let mut release: Vec<u32> = Vec::with_capacity(3);
        let mut keys = self.peer.keys.lock();

        // update key-wheel

        mem::replace(&mut keys.next, None).map(|k| release.push(k.local_id()));
        mem::replace(&mut keys.current, None).map(|k| release.push(k.local_id()));
        mem::replace(&mut keys.previous, None).map(|k| release.push(k.local_id()));
        keys.retired.extend(&release[..]);

        // update inbound "recv" map
        {
            let mut recv = self.peer.device.recv.write();
            for id in release {
                recv.remove(&id);
            }
        }

        // clear encryption state
        *self.peer.enc_key.lock() = None;
    }

    pub fn down(&self) {
        self.zero_keys();
    }

    pub fn up(&self) {}

    /// Add a new keypair
    ///
    /// # Arguments
    ///
    /// - new: The new confirmed/unconfirmed key pair
    ///
    /// # Returns
    ///
    /// A vector of ids which has been released.
    /// These should be released in the handshake module.
    ///
    /// # Note
    ///
    /// The number of ids to be released can be at most 3,
    /// since the only way to add additional keys to the peer is by using this method
    /// and a peer can have at most 3 keys allocated in the router at any time.
    pub fn add_keypair(&self, new: KeyPair) -> Vec<u32> {
        log::trace!("Router, add_keypair: {:?}", new);

        let initiator = new.initiator;
        let release = {
            let new = Arc::new(new);
            let mut keys = self.peer.keys.lock();
            let mut release = mem::replace(&mut keys.retired, vec![]);

            // update key-wheel
            if new.initiator {
                // start using key for encryption
                *self.peer.enc_key.lock() = Some(EncryptionState::new(&new));

                // move current into previous
                keys.previous = keys.current.as_ref().map(|v| v.clone());
                keys.current = Some(new.clone());
            } else {
                // store the key and await confirmation
                keys.previous = keys.next.as_ref().map(|v| v.clone());
                keys.next = Some(new.clone());
            };

            // update incoming packet id map
            {
                log::trace!("peer.add_keypair: updating inbound id map");
                let mut recv = self.peer.device.recv.write();

                // purge recv map of previous id
                keys.previous.as_ref().map(|k| {
                    recv.remove(&k.local_id());
                    release.push(k.local_id());
                });

                // map new id to decryption state
                debug_assert!(!recv.contains_key(&new.recv.id));
                recv.insert(
                    new.recv.id,
                    Arc::new(DecryptionState::new(self.peer.clone(), &new)),
                );
            }
            release
        };

        // schedule confirmation
        if initiator {
            debug_assert!(self.peer.enc_key.lock().is_some());
            log::trace!("peer.add_keypair: is initiator, must confirm the key");
            // attempt to confirm using staged packets
            if !self.peer.send_staged() {
                // fall back to keepalive packet
                self.send_keepalive();
                log::debug!("peer.add_keypair: keepalive for confirmation",);
            }
            log::trace!("peer.add_keypair: key attempted confirmed");
        }

        debug_assert!(
            release.len() <= 3,
            "since the key-wheel contains at most 3 keys"
        );
        release
    }

    pub fn send_keepalive(&self) {
        log::trace!("peer.send_keepalive");
        self.peer.send(vec![0u8; SIZE_MESSAGE_PREFIX], false)
    }

    /// Map a subnet to the peer
    ///
    /// # Arguments
    ///
    /// - `ip`, the mask of the subnet
    /// - `masklen`, the length of the mask
    ///
    /// # Note
    ///
    /// The `ip` must not have any bits set right of `masklen`.
    /// e.g. `192.168.1.0/24` is valid, while `192.168.1.128/24` is not.
    ///
    /// If an identical value already exists as part of a prior peer,
    /// the allowed IP entry will be removed from that peer and added to this peer.
    pub fn add_allowed_ip(&self, ip: IpAddr, masklen: u32) {
        self.peer
            .device
            .table
            .insert(ip, masklen, self.peer.clone())
    }

    /// List subnets mapped to the peer
    ///
    /// # Returns
    ///
    /// A vector of subnets, represented by as mask/size
    pub fn list_allowed_ips(&self) -> Vec<(IpAddr, u32)> {
        self.peer.device.table.list(&self.peer)
    }

    /// Clear subnets mapped to the peer.
    /// After the call, no subnets will be cryptkey routed to the peer.
    /// Used for the UAPI command "replace_allowed_ips=true"
    pub fn remove_allowed_ips(&self) {
        self.peer.device.table.remove(&self.peer)
    }

    pub fn clear_src(&self) {
        (*self.peer.endpoint.lock()).as_mut().map(|e| e.clear_src());
    }

    pub fn purge_staged_packets(&self) {
        self.peer.staged_packets.lock().clear();
    }
}