summaryrefslogtreecommitdiffstats
path: root/src/wireguard/timers.rs
blob: 8f8a2448c7fa8eca21a5ba8f31ad9211cbe2014b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
use std::marker::PhantomData;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::Arc;
use std::time::{Duration, Instant, SystemTime};

use hjul::{Runner, Timer};
use log::debug;

use super::constants::*;
use super::router::{message_data_len, Callbacks};
use super::types::KeyPair;
use super::{tun, udp};
use super::{Peer, PeerInner};

pub struct Timers {
    // only updated during configuration
    enabled: bool,
    keepalive_interval: u64,

    handshake_attempts: AtomicUsize,
    sent_lastminute_handshake: AtomicBool,
    need_another_keepalive: AtomicBool,

    retransmit_handshake: Timer,
    send_keepalive: Timer,
    send_persistent_keepalive: Timer,
    zero_key_material: Timer,
    new_handshake: Timer,
}

impl Timers {
    #[inline(always)]
    fn need_another_keepalive(&self) -> bool {
        self.need_another_keepalive.swap(false, Ordering::SeqCst)
    }
}

impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
    pub fn get_keepalive_interval(&self) -> u64 {
        self.timers().keepalive_interval
    }

    pub fn stop_timers(&self) {
        // take a write lock preventing simultaneous timer events or "start_timers" call
        let mut timers = self.timers_mut();

        // set flag to prevent future timer events
        if !timers.enabled {
            return;
        }
        timers.enabled = false;

        // stop all pending timers
        timers.retransmit_handshake.stop();
        timers.send_keepalive.stop();
        timers.send_persistent_keepalive.stop();
        timers.zero_key_material.stop();
        timers.new_handshake.stop();

        // reset all timer state
        timers.handshake_attempts.store(0, Ordering::SeqCst);
        timers
            .sent_lastminute_handshake
            .store(false, Ordering::SeqCst);
        timers.need_another_keepalive.store(false, Ordering::SeqCst);
    }

    pub fn start_timers(&self) {
        // take a write lock preventing simultaneous "stop_timers" call
        let mut timers = self.timers_mut();

        // set flag to reenable timer events
        if timers.enabled {
            return;
        }
        timers.enabled = true;

        // start send_persistent_keepalive
        if timers.keepalive_interval > 0 {
            timers
                .send_persistent_keepalive
                .start(Duration::from_secs(timers.keepalive_interval));
        }
    }

    /* should be called after an authenticated data packet is sent */
    pub fn timers_data_sent(&self) {
        let timers = self.timers();
        if timers.enabled {
            timers
                .new_handshake
                .start(KEEPALIVE_TIMEOUT + REKEY_TIMEOUT);
        }
    }

    /* should be called after an authenticated data packet is received */
    pub fn timers_data_received(&self) {
        let timers = self.timers();
        if timers.enabled && !timers.send_keepalive.start(KEEPALIVE_TIMEOUT) {
            timers.need_another_keepalive.store(true, Ordering::SeqCst)
        }
    }

    /* Should be called after any type of authenticated packet is sent, whether:
     * - keepalive
     * - data
     * - handshake
     */
    pub fn timers_any_authenticated_packet_sent(&self) {
        let timers = self.timers();
        if timers.enabled {
            timers.send_keepalive.stop()
        }
    }

    /* Should be called after any type of authenticated packet is received, whether:
     * - keepalive
     * - data
     * - handshake
     */
    pub fn timers_any_authenticated_packet_received(&self) {
        let timers = self.timers();
        if timers.enabled {
            timers.new_handshake.stop();
        }
    }

    /* Should be called after a handshake initiation message is sent. */
    pub fn timers_handshake_initiated(&self) {
        let timers = self.timers();
        if timers.enabled {
            timers.send_keepalive.stop();
            timers.retransmit_handshake.reset(REKEY_TIMEOUT);
        }
    }

    /* Should be called after a handshake response message is received and processed
     * or when getting key confirmation via the first data message.
     */
    pub fn timers_handshake_complete(&self) {
        let timers = self.timers();
        if timers.enabled {
            timers.retransmit_handshake.stop();
            timers.handshake_attempts.store(0, Ordering::SeqCst);
            timers
                .sent_lastminute_handshake
                .store(false, Ordering::SeqCst);
            *self.walltime_last_handshake.lock() = Some(SystemTime::now());
        }
    }

    /* Should be called after an ephemeral key is created, which is before sending a
     * handshake response or after receiving a handshake response.
     */
    pub fn timers_session_derived(&self) {
        let timers = self.timers();
        if timers.enabled {
            timers.zero_key_material.reset(REJECT_AFTER_TIME * 3);
        }
    }

    /* Should be called before a packet with authentication, whether
     * keepalive, data, or handshake is sent, or after one is received.
     */
    pub fn timers_any_authenticated_packet_traversal(&self) {
        let timers = self.timers();
        if timers.enabled && timers.keepalive_interval > 0 {
            // push persistent_keepalive into the future
            timers
                .send_persistent_keepalive
                .reset(Duration::from_secs(timers.keepalive_interval));
        }
    }

    fn timers_set_retransmit_handshake(&self) {
        let timers = self.timers();
        if timers.enabled {
            timers.retransmit_handshake.reset(REKEY_TIMEOUT);
        }
    }

    /* Called after a handshake worker sends a handshake initiation to the peer
     */
    pub fn sent_handshake_initiation(&self) {
        *self.last_handshake_sent.lock() = Instant::now();
        self.timers_handshake_initiated();
        self.timers_set_retransmit_handshake();
        self.timers_any_authenticated_packet_traversal();
        self.timers_any_authenticated_packet_sent();
    }

    pub fn sent_handshake_response(&self) {
        *self.last_handshake_sent.lock() = Instant::now();
        self.timers_any_authenticated_packet_traversal();
        self.timers_any_authenticated_packet_sent();
    }

    pub fn set_persistent_keepalive_interval(&self, secs: u64) {
        let mut timers = self.timers_mut();

        // update the stored keepalive_interval
        timers.keepalive_interval = secs;

        // stop the keepalive timer with the old interval
        timers.send_persistent_keepalive.stop();

        // restart the persistent_keepalive timer with the new interval
        if secs > 0 && timers.enabled {
            timers
                .send_persistent_keepalive
                .start(Duration::from_secs(secs));
        }
    }

    fn packet_send_queued_handshake_initiation(&self, is_retry: bool) {
        if !is_retry {
            self.timers().handshake_attempts.store(0, Ordering::SeqCst);
        }
        self.packet_send_handshake_initiation();
    }
}

impl Timers {
    pub fn new<T, B>(runner: &Runner, running: bool, peer: Peer<T, B>) -> Timers
    where
        T: tun::Tun,
        B: udp::UDP,
    {
        // create a timer instance for the provided peer
        Timers {
            enabled: running,
            keepalive_interval: 0, // disabled
            need_another_keepalive: AtomicBool::new(false),
            sent_lastminute_handshake: AtomicBool::new(false),
            handshake_attempts: AtomicUsize::new(0),
            retransmit_handshake: {
                let peer = peer.clone();
                runner.timer(move || {
                    // ignore if timers are disabled
                    let timers = peer.timers();
                    if !timers.enabled {
                        return;
                    }

                    // check if handshake attempts remaining
                    let attempts = peer
                        .timers()
                        .handshake_attempts
                        .fetch_add(1, Ordering::SeqCst);
                    if attempts > MAX_TIMER_HANDSHAKES {
                        debug!(
                            "Handshake for peer {} did not complete after {} attempts, giving up",
                            peer,
                            attempts + 1
                        );
                        timers.send_keepalive.stop();
                        timers.zero_key_material.start(REJECT_AFTER_TIME * 3);
                        peer.router.purge_staged_packets();
                    } else {
                        debug!(
                            "Handshake for {} did not complete after {} seconds, retrying (try {})",
                            peer,
                            REKEY_TIMEOUT.as_secs(),
                            attempts
                        );
                        timers.retransmit_handshake.reset(REKEY_TIMEOUT);
                        peer.router.clear_src();
                        peer.packet_send_queued_handshake_initiation(true);
                    }
                })
            },
            send_keepalive: {
                let peer = peer.clone();
                runner.timer(move || {
                    // ignore if timers are disabled
                    let timers = peer.timers();
                    if !timers.enabled {
                        return;
                    }

                    peer.router.send_keepalive();
                    if timers.need_another_keepalive() {
                        timers.send_keepalive.start(KEEPALIVE_TIMEOUT);
                    }
                })
            },
            new_handshake: {
                let peer = peer.clone();
                runner.timer(move || {
                    debug!(
                        "Retrying handshake with {} because we stopped hearing back after {} seconds",
                        peer,
                        (KEEPALIVE_TIMEOUT + REKEY_TIMEOUT).as_secs()
                    );
                    peer.router.clear_src();
                    peer.packet_send_queued_handshake_initiation(false);
                })
            },
            zero_key_material: {
                let peer = peer.clone();
                runner.timer(move || {
                    peer.router.zero_keys();
                })
            },
            send_persistent_keepalive: {
                let peer = peer.clone();
                runner.timer(move || {
                    let timers = peer.timers();
                    if timers.enabled && timers.keepalive_interval > 0 {
                        peer.router.send_keepalive();
                        timers.send_keepalive.stop();
                        timers
                            .send_persistent_keepalive
                            .start(Duration::from_secs(timers.keepalive_interval));
                    }
                })
            },
        }
    }

    pub fn dummy(runner: &Runner) -> Timers {
        Timers {
            enabled: false,
            keepalive_interval: 0,
            need_another_keepalive: AtomicBool::new(false),
            sent_lastminute_handshake: AtomicBool::new(false),
            handshake_attempts: AtomicUsize::new(0),
            retransmit_handshake: runner.timer(|| {}),
            new_handshake: runner.timer(|| {}),
            send_keepalive: runner.timer(|| {}),
            send_persistent_keepalive: runner.timer(|| {}),
            zero_key_material: runner.timer(|| {}),
        }
    }
}

/* Instance of the router callbacks */

pub struct Events<T, B>(PhantomData<(T, B)>);

impl<T: tun::Tun, B: udp::UDP> Callbacks for Events<T, B> {
    type Opaque = Arc<PeerInner<T, B>>;

    /* Called after the router encrypts a transport message destined for the peer.
     * This method is called, even if the encrypted payload is empty (keepalive)
     */
    #[inline(always)]
    fn send(peer: &Self::Opaque, size: usize, sent: bool, keypair: &Arc<KeyPair>, counter: u64) {
        // update timers and stats

        peer.timers_any_authenticated_packet_traversal();
        peer.timers_any_authenticated_packet_sent();
        peer.tx_bytes.fetch_add(size as u64, Ordering::Relaxed);
        if size > message_data_len(0) && sent {
            peer.timers_data_sent();
        }

        // keep_key_fresh

        fn keep_key_fresh(keypair: &Arc<KeyPair>, counter: u64) -> bool {
            counter > REKEY_AFTER_MESSAGES
                || (keypair.initiator && Instant::now() - keypair.birth > REKEY_AFTER_TIME)
        }

        if keep_key_fresh(keypair, counter) {
            peer.packet_send_queued_handshake_initiation(false);
        }
    }

    /* Called after the router successfully decrypts a transport message from a peer.
     * This method is called, even if the decrypted packet is:
     *
     * - A keepalive
     * - A malformed IP packet
     * - Fails to cryptkey route
     */
    #[inline(always)]
    fn recv(peer: &Self::Opaque, size: usize, sent: bool, keypair: &Arc<KeyPair>) {
        // update timers and stats

        peer.timers_any_authenticated_packet_traversal();
        peer.timers_any_authenticated_packet_received();
        peer.rx_bytes.fetch_add(size as u64, Ordering::Relaxed);
        if size > 0 && sent {
            peer.timers_data_received();
        }

        // keep_key_fresh

        #[inline(always)]
        fn keep_key_fresh(keypair: &Arc<KeyPair>) -> bool {
            Instant::now() - keypair.birth > REJECT_AFTER_TIME - KEEPALIVE_TIMEOUT - REKEY_TIMEOUT
        }

        if keep_key_fresh(keypair)
            && !peer
                .timers()
                .sent_lastminute_handshake
                .swap(true, Ordering::Acquire)
        {
            peer.packet_send_queued_handshake_initiation(false);
        }
    }

    /* Called every time the router detects that a key is required,
     * but no valid key-material is available for the particular peer.
     *
     * The message is called continuously
     * (e.g. for every packet that must be encrypted, until a key becomes available)
     */
    #[inline(always)]
    fn need_key(peer: &Self::Opaque) {
        peer.packet_send_queued_handshake_initiation(false);
    }

    #[inline(always)]
    fn key_confirmed(peer: &Self::Opaque) {
        peer.timers_handshake_complete();
    }
}