summaryrefslogtreecommitdiffstats
path: root/src/wireguard/wireguard.rs
blob: bf550ef695e2e8c8ee24091b627449a4103212d1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
use super::constants::*;
use super::handshake;
use super::peer::{Peer, PeerInner};
use super::router;
use super::timers::{Events, Timers};

use super::queue::ParallelQueue;
use super::workers::HandshakeJob;

use super::tun::Tun;
use super::udp::UDP;

use super::workers::{handshake_worker, tun_worker, udp_worker};

use std::fmt;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
use std::sync::Arc;
use std::sync::Condvar;
use std::sync::Mutex as StdMutex;
use std::thread;
use std::time::Instant;

use std::collections::hash_map::Entry;
use std::collections::HashMap;

use hjul::Runner;
use rand::rngs::OsRng;
use rand::Rng;
use spin::{Mutex, RwLock};

use x25519_dalek::{PublicKey, StaticSecret};

pub struct WireguardInner<T: Tun, B: UDP> {
    // identifier (for logging)
    pub id: u32,

    // timer wheel
    pub runner: Mutex<Runner>,

    // device enabled
    pub enabled: RwLock<bool>,

    // number of tun readers
    pub tun_readers: WaitCounter,

    // current MTU
    pub mtu: AtomicUsize,

    // outbound writer
    pub send: RwLock<Option<B::Writer>>,

    // identity and configuration map
    pub peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,

    // cryptokey router
    pub router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,

    // handshake related state
    pub handshake: RwLock<handshake::Device>,
    pub last_under_load: Mutex<Instant>,
    pub pending: AtomicUsize, // number of pending handshake packets in queue
    pub queue: ParallelQueue<HandshakeJob<B::Endpoint>>,
}

pub struct WireGuard<T: Tun, B: UDP> {
    inner: Arc<WireguardInner<T, B>>,
}

pub struct WaitCounter(StdMutex<usize>, Condvar);

impl<T: Tun, B: UDP> fmt::Display for WireGuard<T, B> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "wireguard({:x})", self.id)
    }
}

impl<T: Tun, B: UDP> Deref for WireGuard<T, B> {
    type Target = WireguardInner<T, B>;
    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl<T: Tun, B: UDP> Clone for WireGuard<T, B> {
    fn clone(&self) -> Self {
        WireGuard {
            inner: self.inner.clone(),
        }
    }
}

impl WaitCounter {
    pub fn wait(&self) {
        let mut nread = self.0.lock().unwrap();
        while *nread > 0 {
            nread = self.1.wait(nread).unwrap();
        }
    }

    fn new() -> Self {
        Self(StdMutex::new(0), Condvar::new())
    }

    fn decrease(&self) {
        let mut nread = self.0.lock().unwrap();
        assert!(*nread > 0);
        *nread -= 1;
        if *nread == 0 {
            self.1.notify_all();
        }
    }

    fn increase(&self) {
        *self.0.lock().unwrap() += 1;
    }
}

impl<T: Tun, B: UDP> WireGuard<T, B> {
    /// Brings the WireGuard device down.
    /// Usually called when the associated interface is brought down.
    ///
    /// This stops any further action/timer on any peer
    /// and prevents transmission of further messages,
    /// however the device retrains its state.
    ///
    /// The instance will continue to consume and discard messages
    /// on both ends of the device.
    pub fn down(&self) {
        // ensure exclusive access (to avoid race with "up" call)
        let mut enabled = self.enabled.write();

        // check if already down
        if *enabled == false {
            return;
        }

        // set mtu
        self.mtu.store(0, Ordering::Relaxed);

        // avoid tranmission from router
        self.router.down();

        // set all peers down (stops timers)
        for peer in self.peers.write().values() {
            peer.down();
        }

        *enabled = false;
    }

    /// Brings the WireGuard device up.
    /// Usually called when the associated interface is brought up.
    pub fn up(&self, mtu: usize) {
        // ensure exclusive access (to avoid race with "up" call)
        let mut enabled = self.enabled.write();

        // set mtu
        self.mtu.store(mtu, Ordering::Relaxed);

        // check if already up
        if *enabled {
            return;
        }

        // enable tranmission from router
        self.router.up();

        // set all peers up (restarts timers)
        for peer in self.peers.write().values() {
            peer.up();
        }

        *enabled = true;
    }

    pub fn clear_peers(&self) {
        self.peers.write().clear();
    }

    pub fn remove_peer(&self, pk: &PublicKey) {
        if self.handshake.write().remove(pk).is_ok() {
            self.peers.write().remove(pk.as_bytes());
        }
    }

    pub fn lookup_peer(&self, pk: &PublicKey) -> Option<Peer<T, B>> {
        self.peers.read().get(pk.as_bytes()).map(|p| p.clone())
    }

    pub fn list_peers(&self) -> Vec<Peer<T, B>> {
        let peers = self.peers.read();
        let mut list = Vec::with_capacity(peers.len());
        for (k, v) in peers.iter() {
            debug_assert!(k == v.pk.as_bytes());
            list.push(v.clone());
        }
        list
    }

    pub fn set_key(&self, sk: Option<StaticSecret>) {
        let mut handshake = self.handshake.write();
        handshake.set_sk(sk);
        self.router.clear_sending_keys();
        // handshake lock is released and new handshakes can be initated
    }

    pub fn get_sk(&self) -> Option<StaticSecret> {
        self.handshake
            .read()
            .get_sk()
            .map(|sk| StaticSecret::from(sk.to_bytes()))
    }

    pub fn set_psk(&self, pk: PublicKey, psk: [u8; 32]) -> bool {
        self.handshake.write().set_psk(pk, psk).is_ok()
    }
    pub fn get_psk(&self, pk: &PublicKey) -> Option<[u8; 32]> {
        self.handshake.read().get_psk(pk).ok()
    }

    pub fn add_peer(&self, pk: PublicKey) -> bool {
        if self.peers.read().contains_key(pk.as_bytes()) {
            return false;
        }

        let mut rng = OsRng::new().unwrap();
        let state = Arc::new(PeerInner {
            id: rng.gen(),
            pk,
            wg: self.clone(),
            walltime_last_handshake: Mutex::new(None),
            last_handshake_sent: Mutex::new(Instant::now() - TIME_HORIZON),
            handshake_queued: AtomicBool::new(false),
            rx_bytes: AtomicU64::new(0),
            tx_bytes: AtomicU64::new(0),
            timers: RwLock::new(Timers::dummy(&*self.runner.lock())),
        });

        // create a router peer
        let router = Arc::new(self.router.new_peer(state.clone()));

        // form WireGuard peer
        let peer = Peer { router, state };

        // finally, add the peer to the wireguard device
        let mut peers = self.peers.write();
        match peers.entry(*pk.as_bytes()) {
            Entry::Occupied(_) => false,
            Entry::Vacant(vacancy) => {
                // check that the public key does not cause conflict with the private key of the device
                let ok_pk = self.handshake.write().add(pk).is_ok();
                if !ok_pk {
                    return false;
                }

                // prevent up/down while inserting
                let enabled = self.enabled.read();

                /* The need for dummy timers arises from the chicken-egg
                 * problem of the timer callbacks being able to set timers themselves.
                 *
                 * This is in fact the only place where the write lock is ever taken.
                 * TODO: Consider the ease of using atomic pointers instead.
                 */
                *peer.timers.write() = Timers::new(&*self.runner.lock(), *enabled, peer.clone());

                // insert into peer map (takes ownership and ensures that the peer is not dropped)
                vacancy.insert(peer);
                true
            }
        }
    }

    /// Begin consuming messages from the reader.
    /// Multiple readers can be added to support multi-queue and individual Ipv6/Ipv4 sockets interfaces
    ///
    /// Any previous reader thread is stopped by closing the previous reader,
    /// which unblocks the thread and causes an error on reader.read
    pub fn add_udp_reader(&self, reader: B::Reader) {
        let wg = self.clone();
        thread::spawn(move || {
            udp_worker(&wg, reader);
        });
    }

    pub fn set_writer(&self, writer: B::Writer) {
        // TODO: Consider unifying these and avoid Clone requirement on writer
        *self.send.write() = Some(writer.clone());
        self.router.set_outbound_writer(writer);
    }

    pub fn add_tun_reader(&self, reader: T::Reader) {
        let wg = self.clone();

        // increment reader count
        wg.tun_readers.increase();

        // start worker
        thread::spawn(move || {
            tun_worker(&wg, reader);
            wg.tun_readers.decrease();
        });
    }

    pub fn wait(&self) {
        self.tun_readers.wait();
    }

    pub fn new(writer: T::Writer) -> WireGuard<T, B> {
        // workers equal to number of physical cores
        let cpus = num_cpus::get();

        // create device state
        let mut rng = OsRng::new().unwrap();

        // create handshake queue
        let (tx, mut rxs) = ParallelQueue::new(cpus, 128);

        // create arc to state
        let wg = WireGuard {
            inner: Arc::new(WireguardInner {
                enabled: RwLock::new(false),
                tun_readers: WaitCounter::new(),
                id: rng.gen(),
                mtu: AtomicUsize::new(0),
                peers: RwLock::new(HashMap::new()),
                last_under_load: Mutex::new(Instant::now() - TIME_HORIZON),
                send: RwLock::new(None),
                router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
                pending: AtomicUsize::new(0),
                handshake: RwLock::new(handshake::Device::new()),
                runner: Mutex::new(Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY)),
                queue: tx,
            }),
        };

        // start handshake workers
        while let Some(rx) = rxs.pop() {
            let wg = wg.clone();
            thread::spawn(move || handshake_worker(&wg, rx));
        }

        wg
    }
}