summaryrefslogtreecommitdiffstats
path: root/src/wireguard/wireguard.rs
blob: 2cd6ce4426ed2b6c98f434788f1c3a49939016f1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
use super::constants::*;
use super::handshake;
use super::router;
use super::timers::{Events, Timers};
use super::{Peer, PeerInner};

use super::queue::ParallelQueue;
use super::tun;
use super::tun::Reader as TunReader;

use super::udp;
use super::udp::Reader as UDPReader;
use super::udp::Writer as UDPWriter;

use super::Endpoint;

use hjul::Runner;

use std::fmt;
use std::ops::Deref;
use std::sync::atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering};
use std::sync::Arc;
use std::thread;
use std::time::{Duration, Instant};

// TODO: avoid
use std::sync::Condvar;
use std::sync::Mutex as StdMutex;

use std::collections::hash_map::Entry;
use std::collections::HashMap;

use log::debug;
use rand::rngs::OsRng;
use rand::Rng;
use spin::{Mutex, RwLock};

use byteorder::{ByteOrder, LittleEndian};
use x25519_dalek::{PublicKey, StaticSecret};

const SIZE_HANDSHAKE_QUEUE: usize = 128;
const THRESHOLD_UNDER_LOAD: usize = SIZE_HANDSHAKE_QUEUE / 4;
const DURATION_UNDER_LOAD: Duration = Duration::from_millis(10_000);

#[derive(Clone)]
pub struct WaitHandle(Arc<(StdMutex<usize>, Condvar)>);

impl WaitHandle {
    pub fn wait(&self) {
        let (lock, cvar) = &*self.0;
        let mut nread = lock.lock().unwrap();
        while *nread > 0 {
            nread = cvar.wait(nread).unwrap();
        }
    }

    fn new() -> Self {
        Self(Arc::new((StdMutex::new(0), Condvar::new())))
    }

    fn decrease(&self) {
        let (lock, cvar) = &*self.0;
        let mut nread = lock.lock().unwrap();
        assert!(*nread > 0);
        *nread -= 1;
        cvar.notify_all();
    }

    fn increase(&self) {
        let (lock, _) = &*self.0;
        let mut nread = lock.lock().unwrap();
        *nread += 1;
    }
}

pub struct WireguardInner<T: tun::Tun, B: udp::UDP> {
    // identifier (for logging)
    id: u32,

    // device enabled
    enabled: RwLock<bool>,

    // enables waiting for all readers to finish
    tun_readers: WaitHandle,

    // current MTU
    mtu: AtomicUsize,

    // outbound writer
    send: RwLock<Option<B::Writer>>,

    // identity and configuration map
    peers: RwLock<HashMap<[u8; 32], Peer<T, B>>>,

    // cryptokey router
    router: router::Device<B::Endpoint, Events<T, B>, T::Writer, B::Writer>,

    // handshake related state
    handshake: RwLock<handshake::Device>,
    under_load: AtomicBool,
    pending: AtomicUsize, // num of pending handshake packets in queue
    queue: ParallelQueue<HandshakeJob<B::Endpoint>>,
}

impl<T: tun::Tun, B: udp::UDP> PeerInner<T, B> {
    /* Queue a handshake request for the parallel workers
     * (if one does not already exist)
     *
     * The function is ratelimited.
     */
    pub fn packet_send_handshake_initiation(&self) {
        // the function is rate limited

        {
            let mut lhs = self.last_handshake_sent.lock();
            if lhs.elapsed() < REKEY_TIMEOUT {
                return;
            }
            *lhs = Instant::now();
        }

        // create a new handshake job for the peer

        if !self.handshake_queued.swap(true, Ordering::SeqCst) {
            self.wg.pending.fetch_add(1, Ordering::SeqCst);
            self.wg.queue.send(HandshakeJob::New(self.pk));
        }
    }
}

pub enum HandshakeJob<E> {
    Message(Vec<u8>, E),
    New(PublicKey),
}

impl<T: tun::Tun, B: udp::UDP> fmt::Display for WireguardInner<T, B> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "wireguard({:x})", self.id)
    }
}

impl<T: tun::Tun, B: udp::UDP> Deref for Wireguard<T, B> {
    type Target = Arc<WireguardInner<T, B>>;
    fn deref(&self) -> &Self::Target {
        &self.state
    }
}

pub struct Wireguard<T: tun::Tun, B: udp::UDP> {
    runner: Runner,
    state: Arc<WireguardInner<T, B>>,
}

/* Returns the padded length of a message:
 *
 * # Arguments
 *
 * - `size` : Size of unpadded message
 * - `mtu` : Maximum transmission unit of the device
 *
 * # Returns
 *
 * The padded length (always less than or equal to the MTU)
 */
#[inline(always)]
const fn padding(size: usize, mtu: usize) -> usize {
    #[inline(always)]
    const fn min(a: usize, b: usize) -> usize {
        let m = (a < b) as usize;
        a * m + (1 - m) * b
    }
    let pad = MESSAGE_PADDING_MULTIPLE;
    min(mtu, size + (pad - size % pad) % pad)
}

impl<T: tun::Tun, B: udp::UDP> Wireguard<T, B> {
    /// Brings the WireGuard device down.
    /// Usually called when the associated interface is brought down.
    ///
    /// This stops any further action/timer on any peer
    /// and prevents transmission of further messages,
    /// however the device retrains its state.
    ///
    /// The instance will continue to consume and discard messages
    /// on both ends of the device.
    pub fn down(&self) {
        // ensure exclusive access (to avoid race with "up" call)
        let mut enabled = self.enabled.write();

        // check if already down
        if *enabled == false {
            return;
        }

        // set mtu
        self.state.mtu.store(0, Ordering::Relaxed);

        // avoid tranmission from router
        self.router.down();

        // set all peers down (stops timers)
        for peer in self.peers.write().values() {
            peer.down();
        }

        *enabled = false;
    }

    /// Brings the WireGuard device up.
    /// Usually called when the associated interface is brought up.
    pub fn up(&self, mtu: usize) {
        // ensure exclusive access (to avoid race with "up" call)
        let mut enabled = self.enabled.write();

        // set mtu
        self.state.mtu.store(mtu, Ordering::Relaxed);

        // check if already up
        if *enabled {
            return;
        }

        // enable tranmission from router
        self.router.up();

        // set all peers up (restarts timers)
        for peer in self.peers.write().values() {
            peer.up();
        }

        *enabled = true;
    }

    pub fn clear_peers(&self) {
        self.state.peers.write().clear();
    }

    pub fn remove_peer(&self, pk: &PublicKey) {
        self.state.peers.write().remove(pk.as_bytes());
    }

    pub fn lookup_peer(&self, pk: &PublicKey) -> Option<Peer<T, B>> {
        self.state
            .peers
            .read()
            .get(pk.as_bytes())
            .map(|p| p.clone())
    }

    pub fn list_peers(&self) -> Vec<Peer<T, B>> {
        let peers = self.state.peers.read();
        let mut list = Vec::with_capacity(peers.len());
        for (k, v) in peers.iter() {
            debug_assert!(k == v.pk.as_bytes());
            list.push(v.clone());
        }
        list
    }

    pub fn set_key(&self, sk: Option<StaticSecret>) {
        self.handshake.write().set_sk(sk);
    }

    pub fn get_sk(&self) -> Option<StaticSecret> {
        self.handshake
            .read()
            .get_sk()
            .map(|sk| StaticSecret::from(sk.to_bytes()))
    }

    pub fn set_psk(&self, pk: PublicKey, psk: [u8; 32]) -> bool {
        self.state.handshake.write().set_psk(pk, psk).is_ok()
    }
    pub fn get_psk(&self, pk: &PublicKey) -> Option<[u8; 32]> {
        self.state.handshake.read().get_psk(pk).ok()
    }

    pub fn add_peer(&self, pk: PublicKey) -> bool {
        if self.state.peers.read().contains_key(pk.as_bytes()) {
            return false;
        }

        let mut rng = OsRng::new().unwrap();
        let state = Arc::new(PeerInner {
            id: rng.gen(),
            pk,
            wg: self.state.clone(),
            walltime_last_handshake: Mutex::new(None),
            last_handshake_sent: Mutex::new(Instant::now() - TIME_HORIZON),
            handshake_queued: AtomicBool::new(false),
            rx_bytes: AtomicU64::new(0),
            tx_bytes: AtomicU64::new(0),
            timers: RwLock::new(Timers::dummy(&self.runner)),
        });

        // create a router peer
        let router = Arc::new(self.state.router.new_peer(state.clone()));

        // form WireGuard peer
        let peer = Peer { router, state };

        // finally, add the peer to the wireguard device
        let mut peers = self.state.peers.write();
        match peers.entry(*pk.as_bytes()) {
            Entry::Occupied(_) => false,
            Entry::Vacant(vacancy) => {
                // check that the public key does not cause conflict with the private key of the device
                let ok_pk = self.state.handshake.write().add(pk).is_ok();
                if !ok_pk {
                    return false;
                }

                // prevent up/down while inserting
                let enabled = self.enabled.read();

                /* The need for dummy timers arises from the chicken-egg
                 * problem of the timer callbacks being able to set timers themselves.
                 *
                 * This is in fact the only place where the write lock is ever taken.
                 * TODO: Consider the ease of using atomic pointers instead.
                 */
                *peer.timers.write() = Timers::new(&self.runner, *enabled, peer.clone());

                // insert into peer map (takes ownership and ensures that the peer is not dropped)
                vacancy.insert(peer);
                true
            }
        }
    }

    /// Begin consuming messages from the reader.
    /// Multiple readers can be added to support multi-queue and individual Ipv6/Ipv4 sockets interfaces
    ///
    /// Any previous reader thread is stopped by closing the previous reader,
    /// which unblocks the thread and causes an error on reader.read
    pub fn add_udp_reader(&self, reader: B::Reader) {
        let wg = self.state.clone();
        thread::spawn(move || {
            let mut last_under_load =
                Instant::now() - DURATION_UNDER_LOAD - Duration::from_millis(1000);

            loop {
                // create vector big enough for any message given current MTU
                let mtu = wg.mtu.load(Ordering::Relaxed);
                let size = mtu + handshake::MAX_HANDSHAKE_MSG_SIZE;
                let mut msg: Vec<u8> = vec![0; size];

                // read UDP packet into vector
                let (size, src) = match reader.read(&mut msg) {
                    Err(e) => {
                        debug!("Bind reader closed with {}", e);
                        return;
                    }
                    Ok(v) => v,
                };
                msg.truncate(size);

                // TODO: start device down
                if mtu == 0 {
                    continue;
                }

                // message type de-multiplexer
                if msg.len() < std::mem::size_of::<u32>() {
                    continue;
                }
                match LittleEndian::read_u32(&msg[..]) {
                    handshake::TYPE_COOKIE_REPLY
                    | handshake::TYPE_INITIATION
                    | handshake::TYPE_RESPONSE => {
                        debug!("{} : reader, received handshake message", wg);

                        // add one to pending
                        let pending = wg.pending.fetch_add(1, Ordering::SeqCst);

                        // update under_load flag
                        if pending > THRESHOLD_UNDER_LOAD {
                            debug!("{} : reader, set under load (pending = {})", wg, pending);
                            last_under_load = Instant::now();
                            wg.under_load.store(true, Ordering::SeqCst);
                        } else if last_under_load.elapsed() > DURATION_UNDER_LOAD {
                            debug!("{} : reader, clear under load", wg);
                            wg.under_load.store(false, Ordering::SeqCst);
                        }

                        // add to handshake queue
                        wg.queue.send(HandshakeJob::Message(msg, src));
                    }
                    router::TYPE_TRANSPORT => {
                        debug!("{} : reader, received transport message", wg);

                        // transport message
                        let _ = wg.router.recv(src, msg).map_err(|e| {
                            debug!("Failed to handle incoming transport message: {}", e);
                        });
                    }
                    _ => (),
                }
            }
        });
    }

    pub fn set_writer(&self, writer: B::Writer) {
        // TODO: Consider unifying these and avoid Clone requirement on writer
        *self.state.send.write() = Some(writer.clone());
        self.state.router.set_outbound_writer(writer);
    }

    pub fn add_tun_reader(&self, reader: T::Reader) {
        fn worker<T: tun::Tun, B: udp::UDP>(wg: &Arc<WireguardInner<T, B>>, reader: T::Reader) {
            loop {
                // create vector big enough for any transport message (based on MTU)
                let mtu = wg.mtu.load(Ordering::Relaxed);
                let size = mtu + router::SIZE_MESSAGE_PREFIX + 1;
                let mut msg: Vec<u8> = vec![0; size + router::CAPACITY_MESSAGE_POSTFIX];

                // read a new IP packet
                let payload = match reader.read(&mut msg[..], router::SIZE_MESSAGE_PREFIX) {
                    Ok(payload) => payload,
                    Err(e) => {
                        debug!("TUN worker, failed to read from tun device: {}", e);
                        break;
                    }
                };
                debug!("TUN worker, IP packet of {} bytes (MTU = {})", payload, mtu);

                // check if device is down
                if mtu == 0 {
                    continue;
                }

                // truncate padding
                let padded = padding(payload, mtu);
                log::trace!(
                    "TUN worker, payload length = {}, padded length = {}",
                    payload,
                    padded
                );
                msg.truncate(router::SIZE_MESSAGE_PREFIX + padded);
                debug_assert!(padded <= mtu);
                debug_assert_eq!(
                    if padded < mtu {
                        (msg.len() - router::SIZE_MESSAGE_PREFIX) % MESSAGE_PADDING_MULTIPLE
                    } else {
                        0
                    },
                    0
                );

                // crypt-key route
                let e = wg.router.send(msg);
                debug!("TUN worker, router returned {:?}", e);
            }
        }

        // start a thread for every reader
        let wg = self.state.clone();

        // increment reader count
        wg.tun_readers.increase();

        // start worker
        thread::spawn(move || {
            worker(&wg, reader);
            wg.tun_readers.decrease();
        });
    }

    pub fn wait(&self) -> WaitHandle {
        self.state.tun_readers.clone()
    }

    pub fn new(writer: T::Writer) -> Wireguard<T, B> {
        // workers equal to number of physical cores
        let cpus = num_cpus::get();

        // create device state
        let mut rng = OsRng::new().unwrap();

        // handshake queue
        let (tx, mut rxs) = ParallelQueue::new(cpus, 128);
        let wg = Arc::new(WireguardInner {
            enabled: RwLock::new(false),
            tun_readers: WaitHandle::new(),
            id: rng.gen(),
            mtu: AtomicUsize::new(0),
            peers: RwLock::new(HashMap::new()),
            send: RwLock::new(None),
            router: router::Device::new(num_cpus::get(), writer), // router owns the writing half
            pending: AtomicUsize::new(0),
            handshake: RwLock::new(handshake::Device::new()),
            under_load: AtomicBool::new(false),
            queue: tx,
        });

        // start handshake workers
        while let Some(rx) = rxs.pop() {
            let wg = wg.clone();
            thread::spawn(move || {
                debug!("{} : handshake worker, started", wg);

                // prepare OsRng instance for this thread
                let mut rng = OsRng::new().expect("Unable to obtain a CSPRNG");

                // process elements from the handshake queue
                for job in rx {
                    // decrement pending pakcets (under_load)
                    let job: HandshakeJob<B::Endpoint> = job;
                    wg.pending.fetch_sub(1, Ordering::SeqCst);

                    // demultiplex staged handshake jobs and handshake messages
                    match job {
                        HandshakeJob::Message(msg, src) => {
                            // feed message to handshake device
                            let src_validate = (&src).into_address(); // TODO avoid

                            // process message
                            let device = wg.handshake.read();
                            match device.process(
                                &mut rng,
                                &msg[..],
                                if wg.under_load.load(Ordering::Relaxed) {
                                    debug!("{} : handshake worker, under load", wg);
                                    Some(&src_validate)
                                } else {
                                    None
                                },
                            ) {
                                Ok((pk, resp, keypair)) => {
                                    // send response (might be cookie reply or handshake response)
                                    let mut resp_len: u64 = 0;
                                    if let Some(msg) = resp {
                                        resp_len = msg.len() as u64;
                                        let send: &Option<B::Writer> = &*wg.send.read();
                                        if let Some(writer) = send.as_ref() {
                                            debug!(
                                                "{} : handshake worker, send response ({} bytes)",
                                                wg, resp_len
                                            );
                                            let _ = writer.write(&msg[..], &src).map_err(|e| {
                                                debug!(
                                                    "{} : handshake worker, failed to send response, error = {}",
                                                    wg,
                                                    e
                                                )
                                            });
                                        }
                                    }

                                    // update peer state
                                    if let Some(pk) = pk {
                                        // authenticated handshake packet received
                                        if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
                                            // add to rx_bytes and tx_bytes
                                            let req_len = msg.len() as u64;
                                            peer.rx_bytes.fetch_add(req_len, Ordering::Relaxed);
                                            peer.tx_bytes.fetch_add(resp_len, Ordering::Relaxed);

                                            // update endpoint
                                            peer.router.set_endpoint(src);

                                            if resp_len > 0 {
                                                // update timers after sending handshake response
                                                debug!("{} : handshake worker, handshake response sent", wg);
                                                peer.state.sent_handshake_response();
                                            } else {
                                                // update timers after receiving handshake response
                                                debug!("{} : handshake worker, handshake response was received", wg);
                                                peer.state.timers_handshake_complete();
                                            }

                                            // add any new keypair to peer
                                            keypair.map(|kp| {
                                                debug!(
                                                    "{} : handshake worker, new keypair for {}",
                                                    wg, peer
                                                );

                                                // this means that a handshake response was processed or sent
                                                peer.timers_session_derieved();

                                                // free any unused ids
                                                for id in peer.router.add_keypair(kp) {
                                                    device.release(id);
                                                }
                                            });
                                        }
                                    }
                                }
                                Err(e) => debug!("{} : handshake worker, error = {:?}", wg, e),
                            }
                        }
                        HandshakeJob::New(pk) => {
                            if let Some(peer) = wg.peers.read().get(pk.as_bytes()) {
                                debug!(
                                    "{} : handshake worker, new handshake requested for {}",
                                    wg, peer
                                );
                                let device = wg.handshake.read();
                                let _ = device.begin(&mut rng, &peer.pk).map(|msg| {
                                    let _ = peer.router.send(&msg[..]).map_err(|e| {
                                        debug!("{} : handshake worker, failed to send handshake initiation, error = {}", wg, e)
                                    });
                                    peer.state.sent_handshake_initiation();
                                });
                                peer.handshake_queued.store(false, Ordering::SeqCst);
                            }
                        }
                    }
                }
            });
        }

        Wireguard {
            state: wg,
            runner: Runner::new(TIMERS_TICK, TIMERS_SLOTS, TIMERS_CAPACITY),
        }
    }
}