1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
#include "ProcessUtilities.h"
#include <vector>
#include <windows.h>
class MutexGrabber
{
public:
MutexGrabber(HANDLE ahMutex)
: hMutex(ahMutex)
{
WaitForSingleObject(hMutex,INFINITE);
}
~MutexGrabber()
{
ReleaseMutex(hMutex);
}
private:
HANDLE hMutex;
};
class ProcessInfo
{
public:
ProcessInfo()
: AccessMutex(NULL), SignalEvent(NULL), StdOutputFileHandle(NULL), StdErrorFileHandle(NULL), Process(NULL),
ProcessFinished(false)
{
}
~ProcessInfo()
{
CloseHandle(AccessMutex);
CloseHandle(SignalEvent);
CloseHandle(StdOutputFileHandle);
CloseHandle(StdErrorFileHandle);
CloseHandle(Process);
}
HANDLE AccessMutex;
HANDLE SignalEvent;
HANDLE StdOutputFileHandle;
HANDLE StdErrorFileHandle;
HANDLE Process;
bool ProcessFinished;
ProcessController* Master;
std::string OutputBuffer;
std::string ErrorBuffer;
void monitorStdOutput();
void monitorStdError();
};
void ProcessInfo::monitorStdOutput()
{
while (true)
{
char Buffer[1025];
DWORD ActuallyRead;
if (!ReadFile(StdOutputFileHandle,Buffer,1024,&ActuallyRead,NULL))
break;
MutexGrabber Lock(AccessMutex);
OutputBuffer += std::string(Buffer,ActuallyRead);
if (OutputBuffer.length())
SetEvent(SignalEvent);
}
MutexGrabber Lock(AccessMutex);
CloseHandle(StdOutputFileHandle);
StdOutputFileHandle = NULL;
SetEvent(SignalEvent);
}
void ProcessInfo::monitorStdError()
{
while (true)
{
char Buffer[1025];
DWORD ActuallyRead;
if (!ReadFile(StdErrorFileHandle,Buffer,1024,&ActuallyRead,NULL))
break;
MutexGrabber Lock(AccessMutex);
ErrorBuffer += std::string(Buffer,ActuallyRead);
if (ErrorBuffer.length())
SetEvent(SignalEvent);
}
MutexGrabber Lock(AccessMutex);
CloseHandle(StdErrorFileHandle);
StdErrorFileHandle = NULL;
SetEvent(SignalEvent);
}
DWORD WINAPI MonitorStdOutput(LPVOID lpvThreadParam)
{
ProcessInfo* PI = static_cast<ProcessInfo*>(lpvThreadParam);
PI->monitorStdOutput();
return 0;
}
DWORD WINAPI MonitorStdError(LPVOID lpvThreadParam)
{
ProcessInfo* PI = static_cast<ProcessInfo*>(lpvThreadParam);
PI->monitorStdError();
return 0;
}
std::vector<ProcessInfo*> Processes;
bool launchProcess(ProcessController* theController,
const std::string& Executable, const std::vector<std::string>& Args)
{
/* std::cout << Executable;
for (unsigned int i=0; i<Args.size(); ++i)
std::cout << " " << Args[i];
std::cout << std::endl; */
SECURITY_ATTRIBUTES saAttr;
// Set the bInheritHandle flag so pipe handles are inherited.
saAttr.nLength = sizeof(SECURITY_ATTRIBUTES);
saAttr.bInheritHandle = TRUE;
saAttr.lpSecurityDescriptor = NULL;
HANDLE StdOutRd, StdOutWr;
// Create a pipe for the child process's STDOUT.
if ( !CreatePipe(&StdOutRd, &StdOutWr, &saAttr, 0) )
{
std::cerr << "Can't pipe" << std::endl;
return false;
}
// Ensure the read handle to the pipe for STDOUT is not inherited.
if ( ! SetHandleInformation(StdOutRd, HANDLE_FLAG_INHERIT, 0) )
{
std::cerr << "Can't handle handle" << std::endl;
return false;
}
HANDLE StdErrRd, StdErrWr;
// Create a pipe for the child process's STDErr.
if ( !CreatePipe(&StdErrRd, &StdErrWr, &saAttr, 0) )
{
std::cerr << "Can't pipe" << std::endl;
return false;
}
// Ensure the read handle to the pipe for STDErr is not inherited.
if ( ! SetHandleInformation(StdErrRd, HANDLE_FLAG_INHERIT, 0) )
{
std::cerr << "Can't handle handle" << std::endl;
return false;
}
TCHAR szProcName[10241];
int x = MultiByteToWideChar(CP_ACP,0,Executable.c_str(),Executable.length(),szProcName,10240);
szProcName[x] = 0;
std::string CommandLine("\""+Executable+"\"");
for (unsigned int i=0; i<Args.size(); ++i)
{
CommandLine += " ";
CommandLine += Args[i];
}
TCHAR szCmdline[10241];
x = MultiByteToWideChar(CP_ACP,0,CommandLine.c_str(),CommandLine.length(),szCmdline,10240);
szCmdline[x] = 0;
PROCESS_INFORMATION piProcInfo;
STARTUPINFO siStartInfo;
BOOL bSuccess = FALSE;
// Set up members of the PROCESS_INFORMATION structure.
ZeroMemory( &piProcInfo, sizeof(PROCESS_INFORMATION) );
// Set up members of the STARTUPINFO structure.
// This structure specifies the STDIN and STDOUT handles
// for redirection.
ZeroMemory( &siStartInfo, sizeof(STARTUPINFO) );
siStartInfo.cb = sizeof(STARTUPINFO);
siStartInfo.hStdError = StdErrWr;
siStartInfo.hStdOutput = StdOutWr;
siStartInfo.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
siStartInfo.dwFlags |= STARTF_USESTDHANDLES;
// Create the child process.
bSuccess = CreateProcess(szProcName,
szCmdline, // command line
NULL, // process security attributes
NULL, // primary thread security attributes
TRUE, // handles are inherited
0, // creation flags
NULL, // use parent's environment
NULL, // use parent's current directory
&siStartInfo, // STARTUPINFO pointer
&piProcInfo); // receives PROCESS_INFORMATION
// If an error occurs, exit the application.
if ( ! bSuccess )
{
std::cerr << "Can't execute" << std::endl;
return false;
}
else
{
// Close handles to the child process' primary thread.
CloseHandle(piProcInfo.hThread);
}
if (!CloseHandle(StdOutWr))
{
std::cerr << "Can't closure" << std::endl;
}
if (!CloseHandle(StdErrWr))
{
std::cerr << "Can't closure" << std::endl;
}
ProcessInfo* PI = new ProcessInfo();
PI->Process = piProcInfo.hProcess;
PI->StdOutputFileHandle = StdOutRd;
PI->StdErrorFileHandle = StdErrRd;
PI->Master = theController;
PI->AccessMutex = CreateMutex(NULL,false,NULL);
if (!PI->AccessMutex)
{
std::cerr << "Can't mutex" << std::endl;
return false;
}
PI->SignalEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
if (!PI->SignalEvent)
{
std::cerr << "Can't organize event" << std::endl;
return false;
}
HANDLE StdOutputThread = CreateThread(NULL,0,MonitorStdOutput,PI,0,NULL);
if (!StdOutputThread)
{
std::cerr << "Can't thread a needle" << std::endl;
return false;
}
CloseHandle(StdOutputThread);
HANDLE StdErrorThread = CreateThread(NULL,0,MonitorStdError,PI,0,NULL);
if (!StdOutputThread)
{
std::cerr << "Can't thread a needle" << std::endl;
return false;
}
CloseHandle(StdErrorThread);
Processes.push_back(PI);
//
return true;
}
unsigned int waitForProcessEvent()
{
if (!Processes.size()) return 0;
// TODO wait for some process shit to happen
std::vector<HANDLE> ReadSignals;
for (unsigned int i=0; i<Processes.size(); ++i)
ReadSignals.push_back(Processes[i]->SignalEvent);
for (unsigned int i=0; i<Processes.size(); ++i)
if (!Processes[i]->ProcessFinished)
ReadSignals.push_back(Processes[i]->Process);
DWORD Res = WaitForMultipleObjects(
ReadSignals.size(),
&ReadSignals[0],
false,
3000);
if (Res == WAIT_TIMEOUT)
{
std::cout << "Waiting..." << std::endl;
return Processes.size();
}
else if (Res == WAIT_FAILED)
{
std::cout << "WaitForMultipleObjects failed" << std::endl;
return Processes.size();
}
Res -= WAIT_OBJECT_0;
bool ProcessFinished = false;
if (Res >= Processes.size())
{
Res -= Processes.size();
for (unsigned int i=0; i<Processes.size(); ++i)
{
if (!Processes[i]->ProcessFinished)
{
if (Res == 0)
{
ProcessFinished = true;
Res = i;
break;
}
else
--Res;
}
}
}
ProcessInfo* PI = Processes[Res];
std::string Output,Error;
bool BrokenPipe = false;
{
MutexGrabber Lock(PI->AccessMutex);
if (ProcessFinished)
PI->ProcessFinished = true;
Output = PI->OutputBuffer;
PI->OutputBuffer.clear();
Error = PI->ErrorBuffer;
PI->ErrorBuffer.clear();
BrokenPipe = (PI->StdOutputFileHandle == NULL) && (PI->StdErrorFileHandle == NULL) && PI->ProcessFinished;
}
if (Output.length())
PI->Master->standardOutput(Output);
if (Error.length())
PI->Master->standardError(Error);
if (BrokenPipe)
{
DWORD ExitCode = 10;
GetExitCodeProcess(PI->Process,&ExitCode);
PI->Master->finished(ExitCode);
PI->Master->signalFinish(ExitCode);
if (ExitCode)
PI->Master->failed();
// std::cout << "exit code=" << ExitCode << std::endl;
delete PI;
Processes.erase(Processes.begin()+Res);
}
return Processes.size();
}
bool isShellRedirective(const std::string& S)
{
return (S=="|") || (S=="<") || (S==">");
}
bool shellLaunchProcess(ProcessController* theController,
const std::string& Executable, const std::vector<std::string>& Args)
{
unsigned int i=0;
for (i=0; i<Args.size(); ++i)
if (isShellRedirective(Args[i]))
break;
if (i==Args.size())
return launchProcess(theController, Executable, Args);
std::string ShellCommand(Executable);
for (unsigned int i=0; i<Args.size(); ++i)
{
ShellCommand += " ";
ShellCommand += Args[i];
}
std::vector<std::string> NewArgs;
NewArgs.push_back("/c");
NewArgs.push_back(ShellCommand);
return launchProcess(theController, "cmd.exe", NewArgs);
}
|