aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide
diff options
context:
space:
mode:
authorPawan Gupta <pawan.kumar.gupta@linux.intel.com>2022-05-19 20:29:11 -0700
committerBorislav Petkov <bp@suse.de>2022-05-21 12:14:52 +0200
commit8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca (patch)
tree55c48e7842f3481622ccd6ffd763974cdb449b06 /Documentation/admin-guide
parentx86/speculation: Add a common function for MD_CLEAR mitigation update (diff)
downloadlinux-dev-8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca.tar.xz
linux-dev-8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca.zip
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst. These vulnerabilities are broadly categorized as: Device Register Partial Write (DRPW): Some endpoint MMIO registers incorrectly handle writes that are smaller than the register size. Instead of aborting the write or only copying the correct subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than specified by the write transaction may be written to the register. On some processors, this may expose stale data from the fill buffers of the core that created the write transaction. Shared Buffers Data Sampling (SBDS): After propagators may have moved data around the uncore and copied stale data into client core fill buffers, processors affected by MFBDS can leak data from the fill buffer. Shared Buffers Data Read (SBDR): It is similar to Shared Buffer Data Sampling (SBDS) except that the data is directly read into the architectural software-visible state. An attacker can use these vulnerabilities to extract data from CPU fill buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill buffers using the VERW instruction before returning to a user or a guest. On CPUs not affected by MDS and TAA, user application cannot sample data from CPU fill buffers using MDS or TAA. A guest with MMIO access can still use DRPW or SBDR to extract data architecturally. Mitigate it with VERW instruction to clear fill buffers before VMENTER for MMIO capable guests. Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control the mitigation. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt36
1 files changed, 36 insertions, 0 deletions
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 3f1cc5e317ed..c4893782055b 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -3105,6 +3105,7 @@
kvm.nx_huge_pages=off [X86]
no_entry_flush [PPC]
no_uaccess_flush [PPC]
+ mmio_stale_data=off [X86]
Exceptions:
This does not have any effect on
@@ -3126,6 +3127,7 @@
Equivalent to: l1tf=flush,nosmt [X86]
mds=full,nosmt [X86]
tsx_async_abort=full,nosmt [X86]
+ mmio_stale_data=full,nosmt [X86]
mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
@@ -3135,6 +3137,40 @@
log everything. Information is printed at KERN_DEBUG
so loglevel=8 may also need to be specified.
+ mmio_stale_data=
+ [X86,INTEL] Control mitigation for the Processor
+ MMIO Stale Data vulnerabilities.
+
+ Processor MMIO Stale Data is a class of
+ vulnerabilities that may expose data after an MMIO
+ operation. Exposed data could originate or end in
+ the same CPU buffers as affected by MDS and TAA.
+ Therefore, similar to MDS and TAA, the mitigation
+ is to clear the affected CPU buffers.
+
+ This parameter controls the mitigation. The
+ options are:
+
+ full - Enable mitigation on vulnerable CPUs
+
+ full,nosmt - Enable mitigation and disable SMT on
+ vulnerable CPUs.
+
+ off - Unconditionally disable mitigation
+
+ On MDS or TAA affected machines,
+ mmio_stale_data=off can be prevented by an active
+ MDS or TAA mitigation as these vulnerabilities are
+ mitigated with the same mechanism so in order to
+ disable this mitigation, you need to specify
+ mds=off and tsx_async_abort=off too.
+
+ Not specifying this option is equivalent to
+ mmio_stale_data=full.
+
+ For details see:
+ Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
+
module.sig_enforce
[KNL] When CONFIG_MODULE_SIG is set, this means that
modules without (valid) signatures will fail to load.