aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/fb/deferred_io.rst
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab+samsung@kernel.org>2019-06-12 14:52:45 -0300
committerJonathan Corbet <corbet@lwn.net>2019-06-14 14:21:11 -0600
commitab42b818954c040fa13639dc031d8541edcecb4b (patch)
treebaf9142b53b039fa58ca66af479156f4886c9cc8 /Documentation/fb/deferred_io.rst
parentdocs: fault-injection: convert docs to ReST and rename to *.rst (diff)
downloadlinux-dev-ab42b818954c040fa13639dc031d8541edcecb4b.tar.xz
linux-dev-ab42b818954c040fa13639dc031d8541edcecb4b.zip
docs: fb: convert docs to ReST and rename to *.rst
The conversion is actually: - add blank lines and identation in order to identify paragraphs; - fix tables markups; - add some lists markups; - mark literal blocks; - adjust title markups. At its new index.rst, let's add a :orphan: while this is not linked to the main index.rst file, in order to avoid build warnings. Also, removed the Maintained by, as requested by Geert. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/fb/deferred_io.rst')
-rw-r--r--Documentation/fb/deferred_io.rst79
1 files changed, 79 insertions, 0 deletions
diff --git a/Documentation/fb/deferred_io.rst b/Documentation/fb/deferred_io.rst
new file mode 100644
index 000000000000..7300cff255a3
--- /dev/null
+++ b/Documentation/fb/deferred_io.rst
@@ -0,0 +1,79 @@
+===========
+Deferred IO
+===========
+
+Deferred IO is a way to delay and repurpose IO. It uses host memory as a
+buffer and the MMU pagefault as a pretrigger for when to perform the device
+IO. The following example may be a useful explanation of how one such setup
+works:
+
+- userspace app like Xfbdev mmaps framebuffer
+- deferred IO and driver sets up fault and page_mkwrite handlers
+- userspace app tries to write to mmaped vaddress
+- we get pagefault and reach fault handler
+- fault handler finds and returns physical page
+- we get page_mkwrite where we add this page to a list
+- schedule a workqueue task to be run after a delay
+- app continues writing to that page with no additional cost. this is
+ the key benefit.
+- the workqueue task comes in and mkcleans the pages on the list, then
+ completes the work associated with updating the framebuffer. this is
+ the real work talking to the device.
+- app tries to write to the address (that has now been mkcleaned)
+- get pagefault and the above sequence occurs again
+
+As can be seen from above, one benefit is roughly to allow bursty framebuffer
+writes to occur at minimum cost. Then after some time when hopefully things
+have gone quiet, we go and really update the framebuffer which would be
+a relatively more expensive operation.
+
+For some types of nonvolatile high latency displays, the desired image is
+the final image rather than the intermediate stages which is why it's okay
+to not update for each write that is occurring.
+
+It may be the case that this is useful in other scenarios as well. Paul Mundt
+has mentioned a case where it is beneficial to use the page count to decide
+whether to coalesce and issue SG DMA or to do memory bursts.
+
+Another one may be if one has a device framebuffer that is in an usual format,
+say diagonally shifting RGB, this may then be a mechanism for you to allow
+apps to pretend to have a normal framebuffer but reswizzle for the device
+framebuffer at vsync time based on the touched pagelist.
+
+How to use it: (for applications)
+---------------------------------
+No changes needed. mmap the framebuffer like normal and just use it.
+
+How to use it: (for fbdev drivers)
+----------------------------------
+The following example may be helpful.
+
+1. Setup your structure. Eg::
+
+ static struct fb_deferred_io hecubafb_defio = {
+ .delay = HZ,
+ .deferred_io = hecubafb_dpy_deferred_io,
+ };
+
+The delay is the minimum delay between when the page_mkwrite trigger occurs
+and when the deferred_io callback is called. The deferred_io callback is
+explained below.
+
+2. Setup your deferred IO callback. Eg::
+
+ static void hecubafb_dpy_deferred_io(struct fb_info *info,
+ struct list_head *pagelist)
+
+The deferred_io callback is where you would perform all your IO to the display
+device. You receive the pagelist which is the list of pages that were written
+to during the delay. You must not modify this list. This callback is called
+from a workqueue.
+
+3. Call init::
+
+ info->fbdefio = &hecubafb_defio;
+ fb_deferred_io_init(info);
+
+4. Call cleanup::
+
+ fb_deferred_io_cleanup(info);