aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2018-12-26 11:46:28 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2018-12-26 11:46:28 -0800
commit42b00f122cfbfed79fc29b0b3610f3abbb1e3864 (patch)
treec110a18c03e9ada45b6f3593843f0a06b36773dc /Documentation
parentMerge tag 'for-linus-4.21-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip (diff)
parentKVM: x86: Add CPUID support for new instruction WBNOINVD (diff)
downloadlinux-dev-42b00f122cfbfed79fc29b0b3610f3abbb1e3864.tar.xz
linux-dev-42b00f122cfbfed79fc29b0b3610f3abbb1e3864.zip
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini: "ARM: - selftests improvements - large PUD support for HugeTLB - single-stepping fixes - improved tracing - various timer and vGIC fixes x86: - Processor Tracing virtualization - STIBP support - some correctness fixes - refactorings and splitting of vmx.c - use the Hyper-V range TLB flush hypercall - reduce order of vcpu struct - WBNOINVD support - do not use -ftrace for __noclone functions - nested guest support for PAUSE filtering on AMD - more Hyper-V enlightenments (direct mode for synthetic timers) PPC: - nested VFIO s390: - bugfixes only this time" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits) KVM: x86: Add CPUID support for new instruction WBNOINVD kvm: selftests: ucall: fix exit mmio address guessing Revert "compiler-gcc: disable -ftracer for __noclone functions" KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range() KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp() KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte() KVM: Make kvm_set_spte_hva() return int KVM: Replace old tlb flush function with new one to flush a specified range. KVM/MMU: Add tlb flush with range helper function KVM/VMX: Add hv tlb range flush support x86/hyper-v: Add HvFlushGuestAddressList hypercall support KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops KVM: x86: Disable Intel PT when VMXON in L1 guest KVM: x86: Set intercept for Intel PT MSRs read/write KVM: x86: Implement Intel PT MSRs read/write emulation ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/virtual/kvm/api.txt136
1 files changed, 132 insertions, 4 deletions
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index cd209f7730af..356156f5c52d 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -305,6 +305,9 @@ the address space for which you want to return the dirty bitmap.
They must be less than the value that KVM_CHECK_EXTENSION returns for
the KVM_CAP_MULTI_ADDRESS_SPACE capability.
+The bits in the dirty bitmap are cleared before the ioctl returns, unless
+KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is enabled. For more information,
+see the description of the capability.
4.9 KVM_SET_MEMORY_ALIAS
@@ -1129,10 +1132,15 @@ documentation when it pops into existence).
4.37 KVM_ENABLE_CAP
-Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
-Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
- mips (only KVM_CAP_ENABLE_CAP), ppc, s390
-Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
+Capability: KVM_CAP_ENABLE_CAP
+Architectures: mips, ppc, s390
+Type: vcpu ioctl
+Parameters: struct kvm_enable_cap (in)
+Returns: 0 on success; -1 on error
+
+Capability: KVM_CAP_ENABLE_CAP_VM
+Architectures: all
+Type: vcpu ioctl
Parameters: struct kvm_enable_cap (in)
Returns: 0 on success; -1 on error
@@ -3753,6 +3761,102 @@ Coalesced pio is based on coalesced mmio. There is little difference
between coalesced mmio and pio except that coalesced pio records accesses
to I/O ports.
+4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl)
+
+Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT
+Architectures: x86
+Type: vm ioctl
+Parameters: struct kvm_dirty_log (in)
+Returns: 0 on success, -1 on error
+
+/* for KVM_CLEAR_DIRTY_LOG */
+struct kvm_clear_dirty_log {
+ __u32 slot;
+ __u32 num_pages;
+ __u64 first_page;
+ union {
+ void __user *dirty_bitmap; /* one bit per page */
+ __u64 padding;
+ };
+};
+
+The ioctl clears the dirty status of pages in a memory slot, according to
+the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap
+field. Bit 0 of the bitmap corresponds to page "first_page" in the
+memory slot, and num_pages is the size in bits of the input bitmap.
+Both first_page and num_pages must be a multiple of 64. For each bit
+that is set in the input bitmap, the corresponding page is marked "clean"
+in KVM's dirty bitmap, and dirty tracking is re-enabled for that page
+(for example via write-protection, or by clearing the dirty bit in
+a page table entry).
+
+If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
+the address space for which you want to return the dirty bitmap.
+They must be less than the value that KVM_CHECK_EXTENSION returns for
+the KVM_CAP_MULTI_ADDRESS_SPACE capability.
+
+This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT
+is enabled; for more information, see the description of the capability.
+However, it can always be used as long as KVM_CHECK_EXTENSION confirms
+that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is present.
+
+4.118 KVM_GET_SUPPORTED_HV_CPUID
+
+Capability: KVM_CAP_HYPERV_CPUID
+Architectures: x86
+Type: vcpu ioctl
+Parameters: struct kvm_cpuid2 (in/out)
+Returns: 0 on success, -1 on error
+
+struct kvm_cpuid2 {
+ __u32 nent;
+ __u32 padding;
+ struct kvm_cpuid_entry2 entries[0];
+};
+
+struct kvm_cpuid_entry2 {
+ __u32 function;
+ __u32 index;
+ __u32 flags;
+ __u32 eax;
+ __u32 ebx;
+ __u32 ecx;
+ __u32 edx;
+ __u32 padding[3];
+};
+
+This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in
+KVM. Userspace can use the information returned by this ioctl to construct
+cpuid information presented to guests consuming Hyper-V enlightenments (e.g.
+Windows or Hyper-V guests).
+
+CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level
+Functional Specification (TLFS). These leaves can't be obtained with
+KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature
+leaves (0x40000000, 0x40000001).
+
+Currently, the following list of CPUID leaves are returned:
+ HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
+ HYPERV_CPUID_INTERFACE
+ HYPERV_CPUID_VERSION
+ HYPERV_CPUID_FEATURES
+ HYPERV_CPUID_ENLIGHTMENT_INFO
+ HYPERV_CPUID_IMPLEMENT_LIMITS
+ HYPERV_CPUID_NESTED_FEATURES
+
+HYPERV_CPUID_NESTED_FEATURES leaf is only exposed when Enlightened VMCS was
+enabled on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS).
+
+Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
+with the 'nent' field indicating the number of entries in the variable-size
+array 'entries'. If the number of entries is too low to describe all Hyper-V
+feature leaves, an error (E2BIG) is returned. If the number is more or equal
+to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the
+number of valid entries in the 'entries' array, which is then filled.
+
+'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved,
+userspace should not expect to get any particular value there.
+
5. The kvm_run structure
------------------------
@@ -4647,6 +4751,30 @@ and injected exceptions.
* For the new DR6 bits, note that bit 16 is set iff the #DB exception
will clear DR6.RTM.
+7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT
+
+Architectures: all
+Parameters: args[0] whether feature should be enabled or not
+
+With this capability enabled, KVM_GET_DIRTY_LOG will not automatically
+clear and write-protect all pages that are returned as dirty.
+Rather, userspace will have to do this operation separately using
+KVM_CLEAR_DIRTY_LOG.
+
+At the cost of a slightly more complicated operation, this provides better
+scalability and responsiveness for two reasons. First,
+KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather
+than requiring to sync a full memslot; this ensures that KVM does not
+take spinlocks for an extended period of time. Second, in some cases a
+large amount of time can pass between a call to KVM_GET_DIRTY_LOG and
+userspace actually using the data in the page. Pages can be modified
+during this time, which is inefficint for both the guest and userspace:
+the guest will incur a higher penalty due to write protection faults,
+while userspace can see false reports of dirty pages. Manual reprotection
+helps reducing this time, improving guest performance and reducing the
+number of dirty log false positives.
+
+
8. Other capabilities.
----------------------