aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2019-07-08 16:12:03 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2019-07-08 16:12:03 -0700
commite1928328699a582a540b105e5f4c160832a7fdcb (patch)
treef36bb303b8648189d7b5a7feb27e58fe9fe3b9f0 /Documentation
parentMerge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip (diff)
parentlocking/lockdep: increase size of counters for lockdep statistics (diff)
downloadlinux-dev-e1928328699a582a540b105e5f4c160832a7fdcb.tar.xz
linux-dev-e1928328699a582a540b105e5f4c160832a7fdcb.zip
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar: "The main changes in this cycle are: - rwsem scalability improvements, phase #2, by Waiman Long, which are rather impressive: "On a 2-socket 40-core 80-thread Skylake system with 40 reader and writer locking threads, the min/mean/max locking operations done in a 5-second testing window before the patchset were: 40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810 40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255 After the patchset, they became: 40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741 40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098" There's a lot of changes to the locking implementation that makes it similar to qrwlock, including owner handoff for more fair locking. Another microbenchmark shows how across the spectrum the improvements are: "With a locking microbenchmark running on 5.1 based kernel, the total locking rates (in kops/s) on a 2-socket Skylake system with equal numbers of readers and writers (mixed) before and after this patchset were: # of Threads Before Patch After Patch ------------ ------------ ----------- 2 2,618 4,193 4 1,202 3,726 8 802 3,622 16 729 3,359 32 319 2,826 64 102 2,744" The changes are extensive and the patch-set has been through several iterations addressing various locking workloads. There might be more regressions, but unless they are pathological I believe we want to use this new implementation as the baseline going forward. - jump-label optimizations by Daniel Bristot de Oliveira: the primary motivation was to remove IPI disturbance of isolated RT-workload CPUs, which resulted in the implementation of batched jump-label updates. Beyond the improvement of the real-time characteristics kernel, in one test this patchset improved static key update overhead from 57 msecs to just 1.4 msecs - which is a nice speedup as well. - atomic64_t cross-arch type cleanups by Mark Rutland: over the last ~10 years of atomic64_t existence the various types used by the APIs only had to be self-consistent within each architecture - which means they became wildly inconsistent across architectures. Mark puts and end to this by reworking all the atomic64 implementations to use 's64' as the base type for atomic64_t, and to ensure that this type is consistently used for parameters and return values in the API, avoiding further problems in this area. - A large set of small improvements to lockdep by Yuyang Du: type cleanups, output cleanups, function return type and othr cleanups all around the place. - A set of percpu ops cleanups and fixes by Peter Zijlstra. - Misc other changes - please see the Git log for more details" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits) locking/lockdep: increase size of counters for lockdep statistics locking/atomics: Use sed(1) instead of non-standard head(1) option locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING x86/jump_label: Make tp_vec_nr static x86/percpu: Optimize raw_cpu_xchg() x86/percpu, sched/fair: Avoid local_clock() x86/percpu, x86/irq: Relax {set,get}_irq_regs() x86/percpu: Relax smp_processor_id() x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}() locking/rwsem: Guard against making count negative locking/rwsem: Adaptive disabling of reader optimistic spinning locking/rwsem: Enable time-based spinning on reader-owned rwsem locking/rwsem: Make rwsem->owner an atomic_long_t locking/rwsem: Enable readers spinning on writer locking/rwsem: Clarify usage of owner's nonspinaable bit locking/rwsem: Wake up almost all readers in wait queue locking/rwsem: More optimal RT task handling of null owner locking/rwsem: Always release wait_lock before waking up tasks locking/rwsem: Implement lock handoff to prevent lock starvation locking/rwsem: Make rwsem_spin_on_owner() return owner state ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/atomic_t.txt9
-rw-r--r--Documentation/locking/lockdep-design.txt112
2 files changed, 91 insertions, 30 deletions
diff --git a/Documentation/atomic_t.txt b/Documentation/atomic_t.txt
index b3afe69d03a1..0ab747e0d5ac 100644
--- a/Documentation/atomic_t.txt
+++ b/Documentation/atomic_t.txt
@@ -81,9 +81,11 @@ Non-RMW ops:
The non-RMW ops are (typically) regular LOADs and STOREs and are canonically
implemented using READ_ONCE(), WRITE_ONCE(), smp_load_acquire() and
-smp_store_release() respectively.
+smp_store_release() respectively. Therefore, if you find yourself only using
+the Non-RMW operations of atomic_t, you do not in fact need atomic_t at all
+and are doing it wrong.
-The one detail to this is that atomic_set{}() should be observable to the RMW
+A subtle detail of atomic_set{}() is that it should be observable to the RMW
ops. That is:
C atomic-set
@@ -200,6 +202,9 @@ These helper barriers exist because architectures have varying implicit
ordering on their SMP atomic primitives. For example our TSO architectures
provide full ordered atomics and these barriers are no-ops.
+NOTE: when the atomic RmW ops are fully ordered, they should also imply a
+compiler barrier.
+
Thus:
atomic_fetch_add();
diff --git a/Documentation/locking/lockdep-design.txt b/Documentation/locking/lockdep-design.txt
index 39fae143c9cb..f189d130e543 100644
--- a/Documentation/locking/lockdep-design.txt
+++ b/Documentation/locking/lockdep-design.txt
@@ -15,34 +15,48 @@ tens of thousands of) instantiations. For example a lock in the inode
struct is one class, while each inode has its own instantiation of that
lock class.
-The validator tracks the 'state' of lock-classes, and it tracks
-dependencies between different lock-classes. The validator maintains a
-rolling proof that the state and the dependencies are correct.
-
-Unlike an lock instantiation, the lock-class itself never goes away: when
-a lock-class is used for the first time after bootup it gets registered,
-and all subsequent uses of that lock-class will be attached to this
-lock-class.
+The validator tracks the 'usage state' of lock-classes, and it tracks
+the dependencies between different lock-classes. Lock usage indicates
+how a lock is used with regard to its IRQ contexts, while lock
+dependency can be understood as lock order, where L1 -> L2 suggests that
+a task is attempting to acquire L2 while holding L1. From lockdep's
+perspective, the two locks (L1 and L2) are not necessarily related; that
+dependency just means the order ever happened. The validator maintains a
+continuing effort to prove lock usages and dependencies are correct or
+the validator will shoot a splat if incorrect.
+
+A lock-class's behavior is constructed by its instances collectively:
+when the first instance of a lock-class is used after bootup the class
+gets registered, then all (subsequent) instances will be mapped to the
+class and hence their usages and dependecies will contribute to those of
+the class. A lock-class does not go away when a lock instance does, but
+it can be removed if the memory space of the lock class (static or
+dynamic) is reclaimed, this happens for example when a module is
+unloaded or a workqueue is destroyed.
State
-----
-The validator tracks lock-class usage history into 4 * nSTATEs + 1 separate
-state bits:
+The validator tracks lock-class usage history and divides the usage into
+(4 usages * n STATEs + 1) categories:
+where the 4 usages can be:
- 'ever held in STATE context'
- 'ever held as readlock in STATE context'
- 'ever held with STATE enabled'
- 'ever held as readlock with STATE enabled'
-Where STATE can be either one of (kernel/locking/lockdep_states.h)
- - hardirq
- - softirq
+where the n STATEs are coded in kernel/locking/lockdep_states.h and as of
+now they include:
+- hardirq
+- softirq
+where the last 1 category is:
- 'ever used' [ == !unused ]
-When locking rules are violated, these state bits are presented in the
-locking error messages, inside curlies. A contrived example:
+When locking rules are violated, these usage bits are presented in the
+locking error messages, inside curlies, with a total of 2 * n STATEs bits.
+A contrived example:
modprobe/2287 is trying to acquire lock:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
@@ -51,28 +65,67 @@ locking error messages, inside curlies. A contrived example:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
-The bit position indicates STATE, STATE-read, for each of the states listed
-above, and the character displayed in each indicates:
+For a given lock, the bit positions from left to right indicate the usage
+of the lock and readlock (if exists), for each of the n STATEs listed
+above respectively, and the character displayed at each bit position
+indicates:
'.' acquired while irqs disabled and not in irq context
'-' acquired in irq context
'+' acquired with irqs enabled
'?' acquired in irq context with irqs enabled.
-Unused mutexes cannot be part of the cause of an error.
+The bits are illustrated with an example:
+
+ (&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
+ ||||
+ ||| \-> softirq disabled and not in softirq context
+ || \--> acquired in softirq context
+ | \---> hardirq disabled and not in hardirq context
+ \----> acquired in hardirq context
+
+
+For a given STATE, whether the lock is ever acquired in that STATE
+context and whether that STATE is enabled yields four possible cases as
+shown in the table below. The bit character is able to indicate which
+exact case is for the lock as of the reporting time.
+
+ -------------------------------------------
+ | | irq enabled | irq disabled |
+ |-------------------------------------------|
+ | ever in irq | ? | - |
+ |-------------------------------------------|
+ | never in irq | + | . |
+ -------------------------------------------
+
+The character '-' suggests irq is disabled because if otherwise the
+charactor '?' would have been shown instead. Similar deduction can be
+applied for '+' too.
+
+Unused locks (e.g., mutexes) cannot be part of the cause of an error.
Single-lock state rules:
------------------------
+A lock is irq-safe means it was ever used in an irq context, while a lock
+is irq-unsafe means it was ever acquired with irq enabled.
+
A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The
-following states are exclusive, and only one of them is allowed to be
-set for any lock-class:
+following states must be exclusive: only one of them is allowed to be set
+for any lock-class based on its usage:
+
+ <hardirq-safe> or <hardirq-unsafe>
+ <softirq-safe> or <softirq-unsafe>
- <hardirq-safe> and <hardirq-unsafe>
- <softirq-safe> and <softirq-unsafe>
+This is because if a lock can be used in irq context (irq-safe) then it
+cannot be ever acquired with irq enabled (irq-unsafe). Otherwise, a
+deadlock may happen. For example, in the scenario that after this lock
+was acquired but before released, if the context is interrupted this
+lock will be attempted to acquire twice, which creates a deadlock,
+referred to as lock recursion deadlock.
-The validator detects and reports lock usage that violate these
+The validator detects and reports lock usage that violates these
single-lock state rules.
Multi-lock dependency rules:
@@ -81,15 +134,18 @@ Multi-lock dependency rules:
The same lock-class must not be acquired twice, because this could lead
to lock recursion deadlocks.
-Furthermore, two locks may not be taken in different order:
+Furthermore, two locks can not be taken in inverse order:
<L1> -> <L2>
<L2> -> <L1>
-because this could lead to lock inversion deadlocks. (The validator
-finds such dependencies in arbitrary complexity, i.e. there can be any
-other locking sequence between the acquire-lock operations, the
-validator will still track all dependencies between locks.)
+because this could lead to a deadlock - referred to as lock inversion
+deadlock - as attempts to acquire the two locks form a circle which
+could lead to the two contexts waiting for each other permanently. The
+validator will find such dependency circle in arbitrary complexity,
+i.e., there can be any other locking sequence between the acquire-lock
+operations; the validator will still find whether these locks can be
+acquired in a circular fashion.
Furthermore, the following usage based lock dependencies are not allowed
between any two lock-classes: