aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/md/bcache/super.c
diff options
context:
space:
mode:
authorColy Li <colyli@suse.de>2018-03-18 17:36:16 -0700
committerJens Axboe <axboe@kernel.dk>2018-03-18 20:15:20 -0600
commit3fd47bfe55b00d5ac7b0a44c9301c07be39b1082 (patch)
tree32270c555e9f87fc2b4da0e7596ddbb0264d644e /drivers/md/bcache/super.c
parentbcache: quit dc->writeback_thread when BCACHE_DEV_DETACHING is set (diff)
downloadlinux-dev-3fd47bfe55b00d5ac7b0a44c9301c07be39b1082.tar.xz
linux-dev-3fd47bfe55b00d5ac7b0a44c9301c07be39b1082.zip
bcache: stop dc->writeback_rate_update properly
struct delayed_work writeback_rate_update in struct cache_dev is a delayed worker to call function update_writeback_rate() in period (the interval is defined by dc->writeback_rate_update_seconds). When a metadate I/O error happens on cache device, bcache error handling routine bch_cache_set_error() will call bch_cache_set_unregister() to retire whole cache set. On the unregister code path, this delayed work is stopped by calling cancel_delayed_work_sync(&dc->writeback_rate_update). dc->writeback_rate_update is a special delayed work from others in bcache. In its routine update_writeback_rate(), this delayed work is re-armed itself. That means when cancel_delayed_work_sync() returns, this delayed work can still be executed after several seconds defined by dc->writeback_rate_update_seconds. The problem is, after cancel_delayed_work_sync() returns, the cache set unregister code path will continue and release memory of struct cache set. Then the delayed work is scheduled to run, __update_writeback_rate() will reference the already released cache_set memory, and trigger a NULL pointer deference fault. This patch introduces two more bcache device flags, - BCACHE_DEV_WB_RUNNING bit set: bcache device is in writeback mode and running, it is OK for dc->writeback_rate_update to re-arm itself. bit clear:bcache device is trying to stop dc->writeback_rate_update, this delayed work should not re-arm itself and quit. - BCACHE_DEV_RATE_DW_RUNNING bit set: routine update_writeback_rate() is executing. bit clear: routine update_writeback_rate() quits. This patch also adds a function cancel_writeback_rate_update_dwork() to wait for dc->writeback_rate_update quits before cancel it by calling cancel_delayed_work_sync(). In order to avoid a deadlock by unexpected quit dc->writeback_rate_update, after time_out seconds this function will give up and continue to call cancel_delayed_work_sync(). And here I explain how this patch stops self re-armed delayed work properly with the above stuffs. update_writeback_rate() sets BCACHE_DEV_RATE_DW_RUNNING at its beginning and clears BCACHE_DEV_RATE_DW_RUNNING at its end. Before calling cancel_writeback_rate_update_dwork() clear flag BCACHE_DEV_WB_RUNNING. Before calling cancel_delayed_work_sync() wait utill flag BCACHE_DEV_RATE_DW_RUNNING is clear. So when calling cancel_delayed_work_sync(), dc->writeback_rate_update must be already re- armed, or quite by seeing BCACHE_DEV_WB_RUNNING cleared. In both cases delayed work routine update_writeback_rate() won't be executed after cancel_delayed_work_sync() returns. Inside update_writeback_rate() before calling schedule_delayed_work(), flag BCACHE_DEV_WB_RUNNING is checked before. If this flag is cleared, it means someone is about to stop the delayed work. Because flag BCACHE_DEV_RATE_DW_RUNNING is set already and cancel_delayed_work_sync() has to wait for this flag to be cleared, we don't need to worry about race condition here. If update_writeback_rate() is scheduled to run after checking BCACHE_DEV_RATE_DW_RUNNING and before calling cancel_delayed_work_sync() in cancel_writeback_rate_update_dwork(), it is also safe. Because at this moment BCACHE_DEV_WB_RUNNING is cleared with memory barrier. As I mentioned previously, update_writeback_rate() will see BCACHE_DEV_WB_RUNNING is clear and quit immediately. Because there are more dependences inside update_writeback_rate() to struct cache_set memory, dc->writeback_rate_update is not a simple self re-arm delayed work. After trying many different methods (e.g. hold dc->count, or use locks), this is the only way I can find which works to properly stop dc->writeback_rate_update delayed work. Changelog: v3: change values of BCACHE_DEV_WB_RUNNING and BCACHE_DEV_RATE_DW_RUNNING to bit index, for test_bit(). v2: Try to fix the race issue which is pointed out by Junhui. v1: The initial version for review Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Junhui Tang <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'drivers/md/bcache/super.c')
-rw-r--r--drivers/md/bcache/super.c38
1 files changed, 34 insertions, 4 deletions
diff --git a/drivers/md/bcache/super.c b/drivers/md/bcache/super.c
index 020be4f1cd8b..e5be599338c5 100644
--- a/drivers/md/bcache/super.c
+++ b/drivers/md/bcache/super.c
@@ -899,6 +899,31 @@ void bch_cached_dev_run(struct cached_dev *dc)
pr_debug("error creating sysfs link");
}
+/*
+ * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
+ * work dc->writeback_rate_update is running. Wait until the routine
+ * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
+ * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
+ * seconds, give up waiting here and continue to cancel it too.
+ */
+static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
+{
+ int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
+
+ do {
+ if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
+ &dc->disk.flags))
+ break;
+ time_out--;
+ schedule_timeout_interruptible(1);
+ } while (time_out > 0);
+
+ if (time_out == 0)
+ pr_warn("give up waiting for dc->writeback_write_update to quit");
+
+ cancel_delayed_work_sync(&dc->writeback_rate_update);
+}
+
static void cached_dev_detach_finish(struct work_struct *w)
{
struct cached_dev *dc = container_of(w, struct cached_dev, detach);
@@ -911,7 +936,9 @@ static void cached_dev_detach_finish(struct work_struct *w)
mutex_lock(&bch_register_lock);
- cancel_delayed_work_sync(&dc->writeback_rate_update);
+ if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
+ cancel_writeback_rate_update_dwork(dc);
+
if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
kthread_stop(dc->writeback_thread);
dc->writeback_thread = NULL;
@@ -954,6 +981,7 @@ void bch_cached_dev_detach(struct cached_dev *dc)
closure_get(&dc->disk.cl);
bch_writeback_queue(dc);
+
cached_dev_put(dc);
}
@@ -1081,14 +1109,16 @@ static void cached_dev_free(struct closure *cl)
{
struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
- cancel_delayed_work_sync(&dc->writeback_rate_update);
+ mutex_lock(&bch_register_lock);
+
+ if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
+ cancel_writeback_rate_update_dwork(dc);
+
if (!IS_ERR_OR_NULL(dc->writeback_thread))
kthread_stop(dc->writeback_thread);
if (dc->writeback_write_wq)
destroy_workqueue(dc->writeback_write_wq);
- mutex_lock(&bch_register_lock);
-
if (atomic_read(&dc->running))
bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
bcache_device_free(&dc->disk);