aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/sym53c8xx_2
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/scsi/sym53c8xx_2
downloadlinux-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz
linux-dev-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/scsi/sym53c8xx_2')
-rw-r--r--drivers/scsi/sym53c8xx_2/Makefile4
-rw-r--r--drivers/scsi/sym53c8xx_2/sym53c8xx.h217
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_defs.h792
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_fw.c568
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_fw.h211
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_fw1.h1838
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_fw2.h1927
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_glue.c2196
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_glue.h300
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_hipd.c5865
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_hipd.h1304
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_malloc.c382
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_misc.h192
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_nvram.c771
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_nvram.h214
15 files changed, 16781 insertions, 0 deletions
diff --git a/drivers/scsi/sym53c8xx_2/Makefile b/drivers/scsi/sym53c8xx_2/Makefile
new file mode 100644
index 000000000000..873e8ced8252
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/Makefile
@@ -0,0 +1,4 @@
+# Makefile for the NCR/SYMBIOS/LSI 53C8XX PCI SCSI controllers driver.
+
+sym53c8xx-objs := sym_fw.o sym_glue.o sym_hipd.o sym_malloc.o sym_nvram.o
+obj-$(CONFIG_SCSI_SYM53C8XX_2) := sym53c8xx.o
diff --git a/drivers/scsi/sym53c8xx_2/sym53c8xx.h b/drivers/scsi/sym53c8xx_2/sym53c8xx.h
new file mode 100644
index 000000000000..481103769729
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym53c8xx.h
@@ -0,0 +1,217 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifndef SYM53C8XX_H
+#define SYM53C8XX_H
+
+#include <linux/config.h>
+
+/*
+ * DMA addressing mode.
+ *
+ * 0 : 32 bit addressing for all chips.
+ * 1 : 40 bit addressing when supported by chip.
+ * 2 : 64 bit addressing when supported by chip,
+ * limited to 16 segments of 4 GB -> 64 GB max.
+ */
+#define SYM_CONF_DMA_ADDRESSING_MODE CONFIG_SCSI_SYM53C8XX_DMA_ADDRESSING_MODE
+
+/*
+ * NVRAM support.
+ */
+#if 1
+#define SYM_CONF_NVRAM_SUPPORT (1)
+#endif
+
+/*
+ * These options are not tunable from 'make config'
+ */
+#if 1
+#define SYM_LINUX_PROC_INFO_SUPPORT
+#define SYM_LINUX_USER_COMMAND_SUPPORT
+#define SYM_LINUX_USER_INFO_SUPPORT
+#define SYM_LINUX_DEBUG_CONTROL_SUPPORT
+#endif
+
+/*
+ * Also handle old NCR chips if not (0).
+ */
+#define SYM_CONF_GENERIC_SUPPORT (1)
+
+/*
+ * Allow tags from 2 to 256, default 8
+ */
+#ifndef CONFIG_SCSI_SYM53C8XX_MAX_TAGS
+#define CONFIG_SCSI_SYM53C8XX_MAX_TAGS (8)
+#endif
+
+#if CONFIG_SCSI_SYM53C8XX_MAX_TAGS < 2
+#define SYM_CONF_MAX_TAG (2)
+#elif CONFIG_SCSI_SYM53C8XX_MAX_TAGS > 256
+#define SYM_CONF_MAX_TAG (256)
+#else
+#define SYM_CONF_MAX_TAG CONFIG_SCSI_SYM53C8XX_MAX_TAGS
+#endif
+
+#ifndef CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS
+#define CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS SYM_CONF_MAX_TAG
+#endif
+
+/*
+ * Anyway, we configure the driver for at least 64 tags per LUN. :)
+ */
+#if SYM_CONF_MAX_TAG <= 64
+#define SYM_CONF_MAX_TAG_ORDER (6)
+#elif SYM_CONF_MAX_TAG <= 128
+#define SYM_CONF_MAX_TAG_ORDER (7)
+#else
+#define SYM_CONF_MAX_TAG_ORDER (8)
+#endif
+
+/*
+ * Max number of SG entries.
+ */
+#define SYM_CONF_MAX_SG (96)
+
+/*
+ * Driver setup structure.
+ *
+ * This structure is initialized from linux config options.
+ * It can be overridden at boot-up by the boot command line.
+ */
+struct sym_driver_setup {
+ u_short max_tag;
+ u_char burst_order;
+ u_char scsi_led;
+ u_char scsi_diff;
+ u_char irq_mode;
+ u_char scsi_bus_check;
+ u_char host_id;
+
+ u_char verbose;
+ u_char settle_delay;
+ u_char use_nvram;
+ u_long excludes[8];
+ char tag_ctrl[100];
+};
+
+#define SYM_SETUP_MAX_TAG sym_driver_setup.max_tag
+#define SYM_SETUP_BURST_ORDER sym_driver_setup.burst_order
+#define SYM_SETUP_SCSI_LED sym_driver_setup.scsi_led
+#define SYM_SETUP_SCSI_DIFF sym_driver_setup.scsi_diff
+#define SYM_SETUP_IRQ_MODE sym_driver_setup.irq_mode
+#define SYM_SETUP_SCSI_BUS_CHECK sym_driver_setup.scsi_bus_check
+#define SYM_SETUP_HOST_ID sym_driver_setup.host_id
+#define boot_verbose sym_driver_setup.verbose
+
+/*
+ * Initial setup.
+ *
+ * Can be overriden at startup by a command line.
+ */
+#define SYM_LINUX_DRIVER_SETUP { \
+ .max_tag = CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS, \
+ .burst_order = 7, \
+ .scsi_led = 1, \
+ .scsi_diff = 1, \
+ .irq_mode = 0, \
+ .scsi_bus_check = 1, \
+ .host_id = 7, \
+ .verbose = 0, \
+ .settle_delay = 3, \
+ .use_nvram = 1, \
+}
+
+extern struct sym_driver_setup sym_driver_setup;
+extern unsigned int sym_debug_flags;
+#define DEBUG_FLAGS sym_debug_flags
+
+/*
+ * Max number of targets.
+ * Maximum is 16 and you are advised not to change this value.
+ */
+#ifndef SYM_CONF_MAX_TARGET
+#define SYM_CONF_MAX_TARGET (16)
+#endif
+
+/*
+ * Max number of logical units.
+ * SPI-2 allows up to 64 logical units, but in real life, target
+ * that implements more that 7 logical units are pretty rare.
+ * Anyway, the cost of accepting up to 64 logical unit is low in
+ * this driver, thus going with the maximum is acceptable.
+ */
+#ifndef SYM_CONF_MAX_LUN
+#define SYM_CONF_MAX_LUN (64)
+#endif
+
+/*
+ * Max number of IO control blocks queued to the controller.
+ * Each entry needs 8 bytes and the queues are allocated contiguously.
+ * Since we donnot want to allocate more than a page, the theorical
+ * maximum is PAGE_SIZE/8. For safety, we announce a bit less to the
+ * access method. :)
+ * When not supplied, as it is suggested, the driver compute some
+ * good value for this parameter.
+ */
+/* #define SYM_CONF_MAX_START (PAGE_SIZE/8 - 16) */
+
+/*
+ * Support for Immediate Arbitration.
+ * Not advised.
+ */
+/* #define SYM_CONF_IARB_SUPPORT */
+
+/*
+ * Only relevant if IARB support configured.
+ * - Max number of successive settings of IARB hints.
+ * - Set IARB on arbitration lost.
+ */
+#define SYM_CONF_IARB_MAX 3
+#define SYM_CONF_SET_IARB_ON_ARB_LOST 1
+
+/*
+ * Returning wrong residuals may make problems.
+ * When zero, this define tells the driver to
+ * always return 0 as transfer residual.
+ * Btw, all my testings of residuals have succeeded.
+ */
+#define SYM_SETUP_RESIDUAL_SUPPORT 1
+
+#endif /* SYM53C8XX_H */
diff --git a/drivers/scsi/sym53c8xx_2/sym_defs.h b/drivers/scsi/sym53c8xx_2/sym_defs.h
new file mode 100644
index 000000000000..15bb89195c09
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_defs.h
@@ -0,0 +1,792 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifndef SYM_DEFS_H
+#define SYM_DEFS_H
+
+#define SYM_VERSION "2.2.0"
+#define SYM_DRIVER_NAME "sym-" SYM_VERSION
+
+/*
+ * SYM53C8XX device features descriptor.
+ */
+struct sym_chip {
+ u_short device_id;
+ u_short revision_id;
+ char *name;
+ u_char burst_max; /* log-base-2 of max burst */
+ u_char offset_max;
+ u_char nr_divisor;
+ u_char lp_probe_bit;
+ u_int features;
+#define FE_LED0 (1<<0)
+#define FE_WIDE (1<<1) /* Wide data transfers */
+#define FE_ULTRA (1<<2) /* Ultra speed 20Mtrans/sec */
+#define FE_ULTRA2 (1<<3) /* Ultra 2 - 40 Mtrans/sec */
+#define FE_DBLR (1<<4) /* Clock doubler present */
+#define FE_QUAD (1<<5) /* Clock quadrupler present */
+#define FE_ERL (1<<6) /* Enable read line */
+#define FE_CLSE (1<<7) /* Cache line size enable */
+#define FE_WRIE (1<<8) /* Write & Invalidate enable */
+#define FE_ERMP (1<<9) /* Enable read multiple */
+#define FE_BOF (1<<10) /* Burst opcode fetch */
+#define FE_DFS (1<<11) /* DMA fifo size */
+#define FE_PFEN (1<<12) /* Prefetch enable */
+#define FE_LDSTR (1<<13) /* Load/Store supported */
+#define FE_RAM (1<<14) /* On chip RAM present */
+#define FE_VARCLK (1<<15) /* Clock frequency may vary */
+#define FE_RAM8K (1<<16) /* On chip RAM sized 8Kb */
+#define FE_64BIT (1<<17) /* 64-bit PCI BUS interface */
+#define FE_IO256 (1<<18) /* Requires full 256 bytes in PCI space */
+#define FE_NOPM (1<<19) /* Scripts handles phase mismatch */
+#define FE_LEDC (1<<20) /* Hardware control of LED */
+#define FE_ULTRA3 (1<<21) /* Ultra 3 - 80 Mtrans/sec DT */
+#define FE_66MHZ (1<<22) /* 66MHz PCI support */
+#define FE_CRC (1<<23) /* CRC support */
+#define FE_DIFF (1<<24) /* SCSI HVD support */
+#define FE_DFBC (1<<25) /* Have DFBC register */
+#define FE_LCKFRQ (1<<26) /* Have LCKFRQ */
+#define FE_C10 (1<<27) /* Various C10 core (mis)features */
+#define FE_U3EN (1<<28) /* U3EN bit usable */
+#define FE_DAC (1<<29) /* Support PCI DAC (64 bit addressing) */
+#define FE_ISTAT1 (1<<30) /* Have ISTAT1, MBOX0, MBOX1 registers */
+
+#define FE_CACHE_SET (FE_ERL|FE_CLSE|FE_WRIE|FE_ERMP)
+#define FE_CACHE0_SET (FE_CACHE_SET & ~FE_ERL)
+};
+
+/*
+ * SYM53C8XX IO register data structure.
+ */
+struct sym_reg {
+/*00*/ u8 nc_scntl0; /* full arb., ena parity, par->ATN */
+
+/*01*/ u8 nc_scntl1; /* no reset */
+ #define ISCON 0x10 /* connected to scsi */
+ #define CRST 0x08 /* force reset */
+ #define IARB 0x02 /* immediate arbitration */
+
+/*02*/ u8 nc_scntl2; /* no disconnect expected */
+ #define SDU 0x80 /* cmd: disconnect will raise error */
+ #define CHM 0x40 /* sta: chained mode */
+ #define WSS 0x08 /* sta: wide scsi send [W]*/
+ #define WSR 0x01 /* sta: wide scsi received [W]*/
+
+/*03*/ u8 nc_scntl3; /* cnf system clock dependent */
+ #define EWS 0x08 /* cmd: enable wide scsi [W]*/
+ #define ULTRA 0x80 /* cmd: ULTRA enable */
+ /* bits 0-2, 7 rsvd for C1010 */
+
+/*04*/ u8 nc_scid; /* cnf host adapter scsi address */
+ #define RRE 0x40 /* r/w:e enable response to resel. */
+ #define SRE 0x20 /* r/w:e enable response to select */
+
+/*05*/ u8 nc_sxfer; /* ### Sync speed and count */
+ /* bits 6-7 rsvd for C1010 */
+
+/*06*/ u8 nc_sdid; /* ### Destination-ID */
+
+/*07*/ u8 nc_gpreg; /* ??? IO-Pins */
+
+/*08*/ u8 nc_sfbr; /* ### First byte received */
+
+/*09*/ u8 nc_socl;
+ #define CREQ 0x80 /* r/w: SCSI-REQ */
+ #define CACK 0x40 /* r/w: SCSI-ACK */
+ #define CBSY 0x20 /* r/w: SCSI-BSY */
+ #define CSEL 0x10 /* r/w: SCSI-SEL */
+ #define CATN 0x08 /* r/w: SCSI-ATN */
+ #define CMSG 0x04 /* r/w: SCSI-MSG */
+ #define CC_D 0x02 /* r/w: SCSI-C_D */
+ #define CI_O 0x01 /* r/w: SCSI-I_O */
+
+/*0a*/ u8 nc_ssid;
+
+/*0b*/ u8 nc_sbcl;
+
+/*0c*/ u8 nc_dstat;
+ #define DFE 0x80 /* sta: dma fifo empty */
+ #define MDPE 0x40 /* int: master data parity error */
+ #define BF 0x20 /* int: script: bus fault */
+ #define ABRT 0x10 /* int: script: command aborted */
+ #define SSI 0x08 /* int: script: single step */
+ #define SIR 0x04 /* int: script: interrupt instruct. */
+ #define IID 0x01 /* int: script: illegal instruct. */
+
+/*0d*/ u8 nc_sstat0;
+ #define ILF 0x80 /* sta: data in SIDL register lsb */
+ #define ORF 0x40 /* sta: data in SODR register lsb */
+ #define OLF 0x20 /* sta: data in SODL register lsb */
+ #define AIP 0x10 /* sta: arbitration in progress */
+ #define LOA 0x08 /* sta: arbitration lost */
+ #define WOA 0x04 /* sta: arbitration won */
+ #define IRST 0x02 /* sta: scsi reset signal */
+ #define SDP 0x01 /* sta: scsi parity signal */
+
+/*0e*/ u8 nc_sstat1;
+ #define FF3210 0xf0 /* sta: bytes in the scsi fifo */
+
+/*0f*/ u8 nc_sstat2;
+ #define ILF1 0x80 /* sta: data in SIDL register msb[W]*/
+ #define ORF1 0x40 /* sta: data in SODR register msb[W]*/
+ #define OLF1 0x20 /* sta: data in SODL register msb[W]*/
+ #define DM 0x04 /* sta: DIFFSENS mismatch (895/6 only) */
+ #define LDSC 0x02 /* sta: disconnect & reconnect */
+
+/*10*/ u8 nc_dsa; /* --> Base page */
+/*11*/ u8 nc_dsa1;
+/*12*/ u8 nc_dsa2;
+/*13*/ u8 nc_dsa3;
+
+/*14*/ u8 nc_istat; /* --> Main Command and status */
+ #define CABRT 0x80 /* cmd: abort current operation */
+ #define SRST 0x40 /* mod: reset chip */
+ #define SIGP 0x20 /* r/w: message from host to script */
+ #define SEM 0x10 /* r/w: message between host + script */
+ #define CON 0x08 /* sta: connected to scsi */
+ #define INTF 0x04 /* sta: int on the fly (reset by wr)*/
+ #define SIP 0x02 /* sta: scsi-interrupt */
+ #define DIP 0x01 /* sta: host/script interrupt */
+
+/*15*/ u8 nc_istat1; /* 896 only */
+ #define FLSH 0x04 /* sta: chip is flushing */
+ #define SCRUN 0x02 /* sta: scripts are running */
+ #define SIRQD 0x01 /* r/w: disable INT pin */
+
+/*16*/ u8 nc_mbox0; /* 896 only */
+/*17*/ u8 nc_mbox1; /* 896 only */
+
+/*18*/ u8 nc_ctest0;
+/*19*/ u8 nc_ctest1;
+
+/*1a*/ u8 nc_ctest2;
+ #define CSIGP 0x40
+ /* bits 0-2,7 rsvd for C1010 */
+
+/*1b*/ u8 nc_ctest3;
+ #define FLF 0x08 /* cmd: flush dma fifo */
+ #define CLF 0x04 /* cmd: clear dma fifo */
+ #define FM 0x02 /* mod: fetch pin mode */
+ #define WRIE 0x01 /* mod: write and invalidate enable */
+ /* bits 4-7 rsvd for C1010 */
+
+/*1c*/ u32 nc_temp; /* ### Temporary stack */
+
+/*20*/ u8 nc_dfifo;
+/*21*/ u8 nc_ctest4;
+ #define BDIS 0x80 /* mod: burst disable */
+ #define MPEE 0x08 /* mod: master parity error enable */
+
+/*22*/ u8 nc_ctest5;
+ #define DFS 0x20 /* mod: dma fifo size */
+ /* bits 0-1, 3-7 rsvd for C1010 */
+
+/*23*/ u8 nc_ctest6;
+
+/*24*/ u32 nc_dbc; /* ### Byte count and command */
+/*28*/ u32 nc_dnad; /* ### Next command register */
+/*2c*/ u32 nc_dsp; /* --> Script Pointer */
+/*30*/ u32 nc_dsps; /* --> Script pointer save/opcode#2 */
+
+/*34*/ u8 nc_scratcha; /* Temporary register a */
+/*35*/ u8 nc_scratcha1;
+/*36*/ u8 nc_scratcha2;
+/*37*/ u8 nc_scratcha3;
+
+/*38*/ u8 nc_dmode;
+ #define BL_2 0x80 /* mod: burst length shift value +2 */
+ #define BL_1 0x40 /* mod: burst length shift value +1 */
+ #define ERL 0x08 /* mod: enable read line */
+ #define ERMP 0x04 /* mod: enable read multiple */
+ #define BOF 0x02 /* mod: burst op code fetch */
+
+/*39*/ u8 nc_dien;
+/*3a*/ u8 nc_sbr;
+
+/*3b*/ u8 nc_dcntl; /* --> Script execution control */
+ #define CLSE 0x80 /* mod: cache line size enable */
+ #define PFF 0x40 /* cmd: pre-fetch flush */
+ #define PFEN 0x20 /* mod: pre-fetch enable */
+ #define SSM 0x10 /* mod: single step mode */
+ #define IRQM 0x08 /* mod: irq mode (1 = totem pole !) */
+ #define STD 0x04 /* cmd: start dma mode */
+ #define IRQD 0x02 /* mod: irq disable */
+ #define NOCOM 0x01 /* cmd: protect sfbr while reselect */
+ /* bits 0-1 rsvd for C1010 */
+
+/*3c*/ u32 nc_adder;
+
+/*40*/ u16 nc_sien; /* -->: interrupt enable */
+/*42*/ u16 nc_sist; /* <--: interrupt status */
+ #define SBMC 0x1000/* sta: SCSI Bus Mode Change (895/6 only) */
+ #define STO 0x0400/* sta: timeout (select) */
+ #define GEN 0x0200/* sta: timeout (general) */
+ #define HTH 0x0100/* sta: timeout (handshake) */
+ #define MA 0x80 /* sta: phase mismatch */
+ #define CMP 0x40 /* sta: arbitration complete */
+ #define SEL 0x20 /* sta: selected by another device */
+ #define RSL 0x10 /* sta: reselected by another device*/
+ #define SGE 0x08 /* sta: gross error (over/underflow)*/
+ #define UDC 0x04 /* sta: unexpected disconnect */
+ #define RST 0x02 /* sta: scsi bus reset detected */
+ #define PAR 0x01 /* sta: scsi parity error */
+
+/*44*/ u8 nc_slpar;
+/*45*/ u8 nc_swide;
+/*46*/ u8 nc_macntl;
+/*47*/ u8 nc_gpcntl;
+/*48*/ u8 nc_stime0; /* cmd: timeout for select&handshake*/
+/*49*/ u8 nc_stime1; /* cmd: timeout user defined */
+/*4a*/ u16 nc_respid; /* sta: Reselect-IDs */
+
+/*4c*/ u8 nc_stest0;
+
+/*4d*/ u8 nc_stest1;
+ #define SCLK 0x80 /* Use the PCI clock as SCSI clock */
+ #define DBLEN 0x08 /* clock doubler running */
+ #define DBLSEL 0x04 /* clock doubler selected */
+
+
+/*4e*/ u8 nc_stest2;
+ #define ROF 0x40 /* reset scsi offset (after gross error!) */
+ #define EXT 0x02 /* extended filtering */
+
+/*4f*/ u8 nc_stest3;
+ #define TE 0x80 /* c: tolerAnt enable */
+ #define HSC 0x20 /* c: Halt SCSI Clock */
+ #define CSF 0x02 /* c: clear scsi fifo */
+
+/*50*/ u16 nc_sidl; /* Lowlevel: latched from scsi data */
+/*52*/ u8 nc_stest4;
+ #define SMODE 0xc0 /* SCSI bus mode (895/6 only) */
+ #define SMODE_HVD 0x40 /* High Voltage Differential */
+ #define SMODE_SE 0x80 /* Single Ended */
+ #define SMODE_LVD 0xc0 /* Low Voltage Differential */
+ #define LCKFRQ 0x20 /* Frequency Lock (895/6 only) */
+ /* bits 0-5 rsvd for C1010 */
+
+/*53*/ u8 nc_53_;
+/*54*/ u16 nc_sodl; /* Lowlevel: data out to scsi data */
+/*56*/ u8 nc_ccntl0; /* Chip Control 0 (896) */
+ #define ENPMJ 0x80 /* Enable Phase Mismatch Jump */
+ #define PMJCTL 0x40 /* Phase Mismatch Jump Control */
+ #define ENNDJ 0x20 /* Enable Non Data PM Jump */
+ #define DISFC 0x10 /* Disable Auto FIFO Clear */
+ #define DILS 0x02 /* Disable Internal Load/Store */
+ #define DPR 0x01 /* Disable Pipe Req */
+
+/*57*/ u8 nc_ccntl1; /* Chip Control 1 (896) */
+ #define ZMOD 0x80 /* High Impedance Mode */
+ #define DDAC 0x08 /* Disable Dual Address Cycle */
+ #define XTIMOD 0x04 /* 64-bit Table Ind. Indexing Mode */
+ #define EXTIBMV 0x02 /* Enable 64-bit Table Ind. BMOV */
+ #define EXDBMV 0x01 /* Enable 64-bit Direct BMOV */
+
+/*58*/ u16 nc_sbdl; /* Lowlevel: data from scsi data */
+/*5a*/ u16 nc_5a_;
+
+/*5c*/ u8 nc_scr0; /* Working register B */
+/*5d*/ u8 nc_scr1;
+/*5e*/ u8 nc_scr2;
+/*5f*/ u8 nc_scr3;
+
+/*60*/ u8 nc_scrx[64]; /* Working register C-R */
+/*a0*/ u32 nc_mmrs; /* Memory Move Read Selector */
+/*a4*/ u32 nc_mmws; /* Memory Move Write Selector */
+/*a8*/ u32 nc_sfs; /* Script Fetch Selector */
+/*ac*/ u32 nc_drs; /* DSA Relative Selector */
+/*b0*/ u32 nc_sbms; /* Static Block Move Selector */
+/*b4*/ u32 nc_dbms; /* Dynamic Block Move Selector */
+/*b8*/ u32 nc_dnad64; /* DMA Next Address 64 */
+/*bc*/ u16 nc_scntl4; /* C1010 only */
+ #define U3EN 0x80 /* Enable Ultra 3 */
+ #define AIPCKEN 0x40 /* AIP checking enable */
+ /* Also enable AIP generation on C10-33*/
+ #define XCLKH_DT 0x08 /* Extra clock of data hold on DT edge */
+ #define XCLKH_ST 0x04 /* Extra clock of data hold on ST edge */
+ #define XCLKS_DT 0x02 /* Extra clock of data set on DT edge */
+ #define XCLKS_ST 0x01 /* Extra clock of data set on ST edge */
+/*be*/ u8 nc_aipcntl0; /* AIP Control 0 C1010 only */
+/*bf*/ u8 nc_aipcntl1; /* AIP Control 1 C1010 only */
+ #define DISAIP 0x08 /* Disable AIP generation C10-66 only */
+/*c0*/ u32 nc_pmjad1; /* Phase Mismatch Jump Address 1 */
+/*c4*/ u32 nc_pmjad2; /* Phase Mismatch Jump Address 2 */
+/*c8*/ u8 nc_rbc; /* Remaining Byte Count */
+/*c9*/ u8 nc_rbc1;
+/*ca*/ u8 nc_rbc2;
+/*cb*/ u8 nc_rbc3;
+
+/*cc*/ u8 nc_ua; /* Updated Address */
+/*cd*/ u8 nc_ua1;
+/*ce*/ u8 nc_ua2;
+/*cf*/ u8 nc_ua3;
+/*d0*/ u32 nc_esa; /* Entry Storage Address */
+/*d4*/ u8 nc_ia; /* Instruction Address */
+/*d5*/ u8 nc_ia1;
+/*d6*/ u8 nc_ia2;
+/*d7*/ u8 nc_ia3;
+/*d8*/ u32 nc_sbc; /* SCSI Byte Count (3 bytes only) */
+/*dc*/ u32 nc_csbc; /* Cumulative SCSI Byte Count */
+ /* Following for C1010 only */
+/*e0*/ u16 nc_crcpad; /* CRC Value */
+/*e2*/ u8 nc_crccntl0; /* CRC control register */
+ #define SNDCRC 0x10 /* Send CRC Request */
+/*e3*/ u8 nc_crccntl1; /* CRC control register */
+/*e4*/ u32 nc_crcdata; /* CRC data register */
+/*e8*/ u32 nc_e8_;
+/*ec*/ u32 nc_ec_;
+/*f0*/ u16 nc_dfbc; /* DMA FIFO byte count */
+};
+
+/*-----------------------------------------------------------
+ *
+ * Utility macros for the script.
+ *
+ *-----------------------------------------------------------
+ */
+
+#define REGJ(p,r) (offsetof(struct sym_reg, p ## r))
+#define REG(r) REGJ (nc_, r)
+
+/*-----------------------------------------------------------
+ *
+ * SCSI phases
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_DATA_OUT 0x00000000
+#define SCR_DATA_IN 0x01000000
+#define SCR_COMMAND 0x02000000
+#define SCR_STATUS 0x03000000
+#define SCR_DT_DATA_OUT 0x04000000
+#define SCR_DT_DATA_IN 0x05000000
+#define SCR_MSG_OUT 0x06000000
+#define SCR_MSG_IN 0x07000000
+/* DT phases are illegal for non Ultra3 mode */
+#define SCR_ILG_OUT 0x04000000
+#define SCR_ILG_IN 0x05000000
+
+/*-----------------------------------------------------------
+ *
+ * Data transfer via SCSI.
+ *
+ *-----------------------------------------------------------
+ *
+ * MOVE_ABS (LEN)
+ * <<start address>>
+ *
+ * MOVE_IND (LEN)
+ * <<dnad_offset>>
+ *
+ * MOVE_TBL
+ * <<dnad_offset>>
+ *
+ *-----------------------------------------------------------
+ */
+
+#define OPC_MOVE 0x08000000
+
+#define SCR_MOVE_ABS(l) ((0x00000000 | OPC_MOVE) | (l))
+/* #define SCR_MOVE_IND(l) ((0x20000000 | OPC_MOVE) | (l)) */
+#define SCR_MOVE_TBL (0x10000000 | OPC_MOVE)
+
+#define SCR_CHMOV_ABS(l) ((0x00000000) | (l))
+/* #define SCR_CHMOV_IND(l) ((0x20000000) | (l)) */
+#define SCR_CHMOV_TBL (0x10000000)
+
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+/* We steal the `indirect addressing' flag for target mode MOVE in scripts */
+
+#define OPC_TCHMOVE 0x08000000
+
+#define SCR_TCHMOVE_ABS(l) ((0x20000000 | OPC_TCHMOVE) | (l))
+#define SCR_TCHMOVE_TBL (0x30000000 | OPC_TCHMOVE)
+
+#define SCR_TMOV_ABS(l) ((0x20000000) | (l))
+#define SCR_TMOV_TBL (0x30000000)
+#endif
+
+struct sym_tblmove {
+ u32 size;
+ u32 addr;
+};
+
+/*-----------------------------------------------------------
+ *
+ * Selection
+ *
+ *-----------------------------------------------------------
+ *
+ * SEL_ABS | SCR_ID (0..15) [ | REL_JMP]
+ * <<alternate_address>>
+ *
+ * SEL_TBL | << dnad_offset>> [ | REL_JMP]
+ * <<alternate_address>>
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_SEL_ABS 0x40000000
+#define SCR_SEL_ABS_ATN 0x41000000
+#define SCR_SEL_TBL 0x42000000
+#define SCR_SEL_TBL_ATN 0x43000000
+
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+#define SCR_RESEL_ABS 0x40000000
+#define SCR_RESEL_ABS_ATN 0x41000000
+#define SCR_RESEL_TBL 0x42000000
+#define SCR_RESEL_TBL_ATN 0x43000000
+#endif
+
+struct sym_tblsel {
+ u_char sel_scntl4; /* C1010 only */
+ u_char sel_sxfer;
+ u_char sel_id;
+ u_char sel_scntl3;
+};
+
+#define SCR_JMP_REL 0x04000000
+#define SCR_ID(id) (((u32)(id)) << 16)
+
+/*-----------------------------------------------------------
+ *
+ * Waiting for Disconnect or Reselect
+ *
+ *-----------------------------------------------------------
+ *
+ * WAIT_DISC
+ * dummy: <<alternate_address>>
+ *
+ * WAIT_RESEL
+ * <<alternate_address>>
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_WAIT_DISC 0x48000000
+#define SCR_WAIT_RESEL 0x50000000
+
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+#define SCR_DISCONNECT 0x48000000
+#endif
+
+/*-----------------------------------------------------------
+ *
+ * Bit Set / Reset
+ *
+ *-----------------------------------------------------------
+ *
+ * SET (flags {|.. })
+ *
+ * CLR (flags {|.. })
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_SET(f) (0x58000000 | (f))
+#define SCR_CLR(f) (0x60000000 | (f))
+
+#define SCR_CARRY 0x00000400
+#define SCR_TRG 0x00000200
+#define SCR_ACK 0x00000040
+#define SCR_ATN 0x00000008
+
+
+/*-----------------------------------------------------------
+ *
+ * Memory to memory move
+ *
+ *-----------------------------------------------------------
+ *
+ * COPY (bytecount)
+ * << source_address >>
+ * << destination_address >>
+ *
+ * SCR_COPY sets the NO FLUSH option by default.
+ * SCR_COPY_F does not set this option.
+ *
+ * For chips which do not support this option,
+ * sym_fw_bind_script() will remove this bit.
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_NO_FLUSH 0x01000000
+
+#define SCR_COPY(n) (0xc0000000 | SCR_NO_FLUSH | (n))
+#define SCR_COPY_F(n) (0xc0000000 | (n))
+
+/*-----------------------------------------------------------
+ *
+ * Register move and binary operations
+ *
+ *-----------------------------------------------------------
+ *
+ * SFBR_REG (reg, op, data) reg = SFBR op data
+ * << 0 >>
+ *
+ * REG_SFBR (reg, op, data) SFBR = reg op data
+ * << 0 >>
+ *
+ * REG_REG (reg, op, data) reg = reg op data
+ * << 0 >>
+ *
+ *-----------------------------------------------------------
+ *
+ * On 825A, 875, 895 and 896 chips the content
+ * of SFBR register can be used as data (SCR_SFBR_DATA).
+ * The 896 has additionnal IO registers starting at
+ * offset 0x80. Bit 7 of register offset is stored in
+ * bit 7 of the SCRIPTS instruction first DWORD.
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_REG_OFS(ofs) ((((ofs) & 0x7f) << 16ul) + ((ofs) & 0x80))
+
+#define SCR_SFBR_REG(reg,op,data) \
+ (0x68000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul))
+
+#define SCR_REG_SFBR(reg,op,data) \
+ (0x70000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul))
+
+#define SCR_REG_REG(reg,op,data) \
+ (0x78000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul))
+
+
+#define SCR_LOAD 0x00000000
+#define SCR_SHL 0x01000000
+#define SCR_OR 0x02000000
+#define SCR_XOR 0x03000000
+#define SCR_AND 0x04000000
+#define SCR_SHR 0x05000000
+#define SCR_ADD 0x06000000
+#define SCR_ADDC 0x07000000
+
+#define SCR_SFBR_DATA (0x00800000>>8ul) /* Use SFBR as data */
+
+/*-----------------------------------------------------------
+ *
+ * FROM_REG (reg) SFBR = reg
+ * << 0 >>
+ *
+ * TO_REG (reg) reg = SFBR
+ * << 0 >>
+ *
+ * LOAD_REG (reg, data) reg = <data>
+ * << 0 >>
+ *
+ * LOAD_SFBR(data) SFBR = <data>
+ * << 0 >>
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_FROM_REG(reg) \
+ SCR_REG_SFBR(reg,SCR_OR,0)
+
+#define SCR_TO_REG(reg) \
+ SCR_SFBR_REG(reg,SCR_OR,0)
+
+#define SCR_LOAD_REG(reg,data) \
+ SCR_REG_REG(reg,SCR_LOAD,data)
+
+#define SCR_LOAD_SFBR(data) \
+ (SCR_REG_SFBR (gpreg, SCR_LOAD, data))
+
+/*-----------------------------------------------------------
+ *
+ * LOAD from memory to register.
+ * STORE from register to memory.
+ *
+ * Only supported by 810A, 860, 825A, 875, 895 and 896.
+ *
+ *-----------------------------------------------------------
+ *
+ * LOAD_ABS (LEN)
+ * <<start address>>
+ *
+ * LOAD_REL (LEN) (DSA relative)
+ * <<dsa_offset>>
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_REG_OFS2(ofs) (((ofs) & 0xff) << 16ul)
+#define SCR_NO_FLUSH2 0x02000000
+#define SCR_DSA_REL2 0x10000000
+
+#define SCR_LOAD_R(reg, how, n) \
+ (0xe1000000 | how | (SCR_REG_OFS2(REG(reg))) | (n))
+
+#define SCR_STORE_R(reg, how, n) \
+ (0xe0000000 | how | (SCR_REG_OFS2(REG(reg))) | (n))
+
+#define SCR_LOAD_ABS(reg, n) SCR_LOAD_R(reg, SCR_NO_FLUSH2, n)
+#define SCR_LOAD_REL(reg, n) SCR_LOAD_R(reg, SCR_NO_FLUSH2|SCR_DSA_REL2, n)
+#define SCR_LOAD_ABS_F(reg, n) SCR_LOAD_R(reg, 0, n)
+#define SCR_LOAD_REL_F(reg, n) SCR_LOAD_R(reg, SCR_DSA_REL2, n)
+
+#define SCR_STORE_ABS(reg, n) SCR_STORE_R(reg, SCR_NO_FLUSH2, n)
+#define SCR_STORE_REL(reg, n) SCR_STORE_R(reg, SCR_NO_FLUSH2|SCR_DSA_REL2,n)
+#define SCR_STORE_ABS_F(reg, n) SCR_STORE_R(reg, 0, n)
+#define SCR_STORE_REL_F(reg, n) SCR_STORE_R(reg, SCR_DSA_REL2, n)
+
+
+/*-----------------------------------------------------------
+ *
+ * Waiting for Disconnect or Reselect
+ *
+ *-----------------------------------------------------------
+ *
+ * JUMP [ | IFTRUE/IFFALSE ( ... ) ]
+ * <<address>>
+ *
+ * JUMPR [ | IFTRUE/IFFALSE ( ... ) ]
+ * <<distance>>
+ *
+ * CALL [ | IFTRUE/IFFALSE ( ... ) ]
+ * <<address>>
+ *
+ * CALLR [ | IFTRUE/IFFALSE ( ... ) ]
+ * <<distance>>
+ *
+ * RETURN [ | IFTRUE/IFFALSE ( ... ) ]
+ * <<dummy>>
+ *
+ * INT [ | IFTRUE/IFFALSE ( ... ) ]
+ * <<ident>>
+ *
+ * INT_FLY [ | IFTRUE/IFFALSE ( ... ) ]
+ * <<ident>>
+ *
+ * Conditions:
+ * WHEN (phase)
+ * IF (phase)
+ * CARRYSET
+ * DATA (data, mask)
+ *
+ *-----------------------------------------------------------
+ */
+
+#define SCR_NO_OP 0x80000000
+#define SCR_JUMP 0x80080000
+#define SCR_JUMP64 0x80480000
+#define SCR_JUMPR 0x80880000
+#define SCR_CALL 0x88080000
+#define SCR_CALLR 0x88880000
+#define SCR_RETURN 0x90080000
+#define SCR_INT 0x98080000
+#define SCR_INT_FLY 0x98180000
+
+#define IFFALSE(arg) (0x00080000 | (arg))
+#define IFTRUE(arg) (0x00000000 | (arg))
+
+#define WHEN(phase) (0x00030000 | (phase))
+#define IF(phase) (0x00020000 | (phase))
+
+#define DATA(D) (0x00040000 | ((D) & 0xff))
+#define MASK(D,M) (0x00040000 | (((M ^ 0xff) & 0xff) << 8ul)|((D) & 0xff))
+
+#define CARRYSET (0x00200000)
+
+/*-----------------------------------------------------------
+ *
+ * SCSI constants.
+ *
+ *-----------------------------------------------------------
+ */
+
+/*
+ * Messages
+ */
+
+#define M_COMPLETE COMMAND_COMPLETE
+#define M_EXTENDED EXTENDED_MESSAGE
+#define M_SAVE_DP SAVE_POINTERS
+#define M_RESTORE_DP RESTORE_POINTERS
+#define M_DISCONNECT DISCONNECT
+#define M_ID_ERROR INITIATOR_ERROR
+#define M_ABORT ABORT_TASK_SET
+#define M_REJECT MESSAGE_REJECT
+#define M_NOOP NOP
+#define M_PARITY MSG_PARITY_ERROR
+#define M_LCOMPLETE LINKED_CMD_COMPLETE
+#define M_FCOMPLETE LINKED_FLG_CMD_COMPLETE
+#define M_RESET TARGET_RESET
+#define M_ABORT_TAG ABORT_TASK
+#define M_CLEAR_QUEUE CLEAR_TASK_SET
+#define M_INIT_REC INITIATE_RECOVERY
+#define M_REL_REC RELEASE_RECOVERY
+#define M_TERMINATE (0x11)
+#define M_SIMPLE_TAG SIMPLE_QUEUE_TAG
+#define M_HEAD_TAG HEAD_OF_QUEUE_TAG
+#define M_ORDERED_TAG ORDERED_QUEUE_TAG
+#define M_IGN_RESIDUE IGNORE_WIDE_RESIDUE
+
+#define M_X_MODIFY_DP EXTENDED_MODIFY_DATA_POINTER
+#define M_X_SYNC_REQ EXTENDED_SDTR
+#define M_X_WIDE_REQ EXTENDED_WDTR
+#define M_X_PPR_REQ EXTENDED_PPR
+
+/*
+ * PPR protocol options
+ */
+#define PPR_OPT_IU (0x01)
+#define PPR_OPT_DT (0x02)
+#define PPR_OPT_QAS (0x04)
+#define PPR_OPT_MASK (0x07)
+
+/*
+ * Status
+ */
+
+#define S_GOOD SAM_STAT_GOOD
+#define S_CHECK_COND SAM_STAT_CHECK_CONDITION
+#define S_COND_MET SAM_STAT_CONDITION_MET
+#define S_BUSY SAM_STAT_BUSY
+#define S_INT SAM_STAT_INTERMEDIATE
+#define S_INT_COND_MET SAM_STAT_INTERMEDIATE_CONDITION_MET
+#define S_CONFLICT SAM_STAT_RESERVATION_CONFLICT
+#define S_TERMINATED SAM_STAT_COMMAND_TERMINATED
+#define S_QUEUE_FULL SAM_STAT_TASK_SET_FULL
+#define S_ILLEGAL (0xff)
+
+#endif /* defined SYM_DEFS_H */
diff --git a/drivers/scsi/sym53c8xx_2/sym_fw.c b/drivers/scsi/sym53c8xx_2/sym_fw.c
new file mode 100644
index 000000000000..fd36cf9858cb
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_fw.c
@@ -0,0 +1,568 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifdef __FreeBSD__
+#include <dev/sym/sym_glue.h>
+#else
+#include "sym_glue.h"
+#endif
+
+/*
+ * Macros used for all firmwares.
+ */
+#define SYM_GEN_A(s, label) ((short) offsetof(s, label)),
+#define SYM_GEN_B(s, label) ((short) offsetof(s, label)),
+#define SYM_GEN_Z(s, label) ((short) offsetof(s, label)),
+#define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label)
+#define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label)
+
+
+#if SYM_CONF_GENERIC_SUPPORT
+/*
+ * Allocate firmware #1 script area.
+ */
+#define SYM_FWA_SCR sym_fw1a_scr
+#define SYM_FWB_SCR sym_fw1b_scr
+#define SYM_FWZ_SCR sym_fw1z_scr
+#ifdef __FreeBSD__
+#include <dev/sym/sym_fw1.h>
+#else
+#include "sym_fw1.h"
+#endif
+static struct sym_fwa_ofs sym_fw1a_ofs = {
+ SYM_GEN_FW_A(struct SYM_FWA_SCR)
+};
+static struct sym_fwb_ofs sym_fw1b_ofs = {
+ SYM_GEN_FW_B(struct SYM_FWB_SCR)
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ SYM_GEN_B(struct SYM_FWB_SCR, data_io)
+#endif
+};
+static struct sym_fwz_ofs sym_fw1z_ofs = {
+ SYM_GEN_FW_Z(struct SYM_FWZ_SCR)
+};
+#undef SYM_FWA_SCR
+#undef SYM_FWB_SCR
+#undef SYM_FWZ_SCR
+#endif /* SYM_CONF_GENERIC_SUPPORT */
+
+/*
+ * Allocate firmware #2 script area.
+ */
+#define SYM_FWA_SCR sym_fw2a_scr
+#define SYM_FWB_SCR sym_fw2b_scr
+#define SYM_FWZ_SCR sym_fw2z_scr
+#ifdef __FreeBSD__
+#include <dev/sym/sym_fw2.h>
+#else
+#include "sym_fw2.h"
+#endif
+static struct sym_fwa_ofs sym_fw2a_ofs = {
+ SYM_GEN_FW_A(struct SYM_FWA_SCR)
+};
+static struct sym_fwb_ofs sym_fw2b_ofs = {
+ SYM_GEN_FW_B(struct SYM_FWB_SCR)
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ SYM_GEN_B(struct SYM_FWB_SCR, data_io)
+#endif
+ SYM_GEN_B(struct SYM_FWB_SCR, start64)
+ SYM_GEN_B(struct SYM_FWB_SCR, pm_handle)
+};
+static struct sym_fwz_ofs sym_fw2z_ofs = {
+ SYM_GEN_FW_Z(struct SYM_FWZ_SCR)
+};
+#undef SYM_FWA_SCR
+#undef SYM_FWB_SCR
+#undef SYM_FWZ_SCR
+
+#undef SYM_GEN_A
+#undef SYM_GEN_B
+#undef SYM_GEN_Z
+#undef PADDR_A
+#undef PADDR_B
+
+#if SYM_CONF_GENERIC_SUPPORT
+/*
+ * Patch routine for firmware #1.
+ */
+static void
+sym_fw1_patch(struct sym_hcb *np)
+{
+ struct sym_fw1a_scr *scripta0;
+ struct sym_fw1b_scr *scriptb0;
+
+ scripta0 = (struct sym_fw1a_scr *) np->scripta0;
+ scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
+
+ /*
+ * Remove LED support if not needed.
+ */
+ if (!(np->features & FE_LED0)) {
+ scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
+ }
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If user does not want to use IMMEDIATE ARBITRATION
+ * when we are reselected while attempting to arbitrate,
+ * patch the SCRIPTS accordingly with a SCRIPT NO_OP.
+ */
+ if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
+ scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
+#endif
+ /*
+ * Patch some data in SCRIPTS.
+ * - start and done queue initial bus address.
+ * - target bus address table bus address.
+ */
+ scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
+ scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
+ scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
+}
+#endif /* SYM_CONF_GENERIC_SUPPORT */
+
+/*
+ * Patch routine for firmware #2.
+ */
+static void
+sym_fw2_patch(struct sym_hcb *np)
+{
+ struct sym_fw2a_scr *scripta0;
+ struct sym_fw2b_scr *scriptb0;
+
+ scripta0 = (struct sym_fw2a_scr *) np->scripta0;
+ scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
+
+ /*
+ * Remove LED support if not needed.
+ */
+ if (!(np->features & FE_LED0)) {
+ scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
+ }
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ /*
+ * Remove useless 64 bit DMA specific SCRIPTS,
+ * when this feature is not available.
+ */
+ if (!np->use_dac) {
+ scripta0->is_dmap_dirty[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->is_dmap_dirty[1] = 0;
+ scripta0->is_dmap_dirty[2] = cpu_to_scr(SCR_NO_OP);
+ scripta0->is_dmap_dirty[3] = 0;
+ }
+#endif
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If user does not want to use IMMEDIATE ARBITRATION
+ * when we are reselected while attempting to arbitrate,
+ * patch the SCRIPTS accordingly with a SCRIPT NO_OP.
+ */
+ if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
+ scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
+#endif
+ /*
+ * Patch some variable in SCRIPTS.
+ * - start and done queue initial bus address.
+ * - target bus address table bus address.
+ */
+ scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba);
+ scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba);
+ scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba);
+
+ /*
+ * Remove the load of SCNTL4 on reselection if not a C10.
+ */
+ if (!(np->features & FE_C10)) {
+ scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->resel_scntl4[1] = cpu_to_scr(0);
+ }
+
+ /*
+ * Remove a couple of work-arounds specific to C1010 if
+ * they are not desirable. See `sym_fw2.h' for more details.
+ */
+ if (!(np->device_id == PCI_DEVICE_ID_LSI_53C1010_66 &&
+ np->revision_id < 0x1 &&
+ np->pciclk_khz < 60000)) {
+ scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->datao_phase[1] = cpu_to_scr(0);
+ }
+ if (!(np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
+ /* np->revision_id < 0xff */ 1)) {
+ scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP);
+ scripta0->sel_done[1] = cpu_to_scr(0);
+ }
+
+ /*
+ * Patch some other variables in SCRIPTS.
+ * These ones are loaded by the SCRIPTS processor.
+ */
+ scriptb0->pm0_data_addr[0] =
+ cpu_to_scr(np->scripta_ba +
+ offsetof(struct sym_fw2a_scr, pm0_data));
+ scriptb0->pm1_data_addr[0] =
+ cpu_to_scr(np->scripta_ba +
+ offsetof(struct sym_fw2a_scr, pm1_data));
+}
+
+/*
+ * Fill the data area in scripts.
+ * To be done for all firmwares.
+ */
+static void
+sym_fw_fill_data (u32 *in, u32 *out)
+{
+ int i;
+
+ for (i = 0; i < SYM_CONF_MAX_SG; i++) {
+ *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN;
+ *in++ = offsetof (struct sym_dsb, data[i]);
+ *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT;
+ *out++ = offsetof (struct sym_dsb, data[i]);
+ }
+}
+
+/*
+ * Setup useful script bus addresses.
+ * To be done for all firmwares.
+ */
+static void
+sym_fw_setup_bus_addresses(struct sym_hcb *np, struct sym_fw *fw)
+{
+ u32 *pa;
+ u_short *po;
+ int i;
+
+ /*
+ * Build the bus address table for script A
+ * from the script A offset table.
+ */
+ po = (u_short *) fw->a_ofs;
+ pa = (u32 *) &np->fwa_bas;
+ for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++)
+ pa[i] = np->scripta_ba + po[i];
+
+ /*
+ * Same for script B.
+ */
+ po = (u_short *) fw->b_ofs;
+ pa = (u32 *) &np->fwb_bas;
+ for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++)
+ pa[i] = np->scriptb_ba + po[i];
+
+ /*
+ * Same for script Z.
+ */
+ po = (u_short *) fw->z_ofs;
+ pa = (u32 *) &np->fwz_bas;
+ for (i = 0 ; i < sizeof(np->fwz_bas)/sizeof(u32) ; i++)
+ pa[i] = np->scriptz_ba + po[i];
+}
+
+#if SYM_CONF_GENERIC_SUPPORT
+/*
+ * Setup routine for firmware #1.
+ */
+static void
+sym_fw1_setup(struct sym_hcb *np, struct sym_fw *fw)
+{
+ struct sym_fw1a_scr *scripta0;
+ struct sym_fw1b_scr *scriptb0;
+
+ scripta0 = (struct sym_fw1a_scr *) np->scripta0;
+ scriptb0 = (struct sym_fw1b_scr *) np->scriptb0;
+
+ /*
+ * Fill variable parts in scripts.
+ */
+ sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
+
+ /*
+ * Setup bus addresses used from the C code..
+ */
+ sym_fw_setup_bus_addresses(np, fw);
+}
+#endif /* SYM_CONF_GENERIC_SUPPORT */
+
+/*
+ * Setup routine for firmware #2.
+ */
+static void
+sym_fw2_setup(struct sym_hcb *np, struct sym_fw *fw)
+{
+ struct sym_fw2a_scr *scripta0;
+ struct sym_fw2b_scr *scriptb0;
+
+ scripta0 = (struct sym_fw2a_scr *) np->scripta0;
+ scriptb0 = (struct sym_fw2b_scr *) np->scriptb0;
+
+ /*
+ * Fill variable parts in scripts.
+ */
+ sym_fw_fill_data(scripta0->data_in, scripta0->data_out);
+
+ /*
+ * Setup bus addresses used from the C code..
+ */
+ sym_fw_setup_bus_addresses(np, fw);
+}
+
+/*
+ * Allocate firmware descriptors.
+ */
+#if SYM_CONF_GENERIC_SUPPORT
+static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic");
+#endif /* SYM_CONF_GENERIC_SUPPORT */
+static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based");
+
+/*
+ * Find the most appropriate firmware for a chip.
+ */
+struct sym_fw *
+sym_find_firmware(struct sym_chip *chip)
+{
+ if (chip->features & FE_LDSTR)
+ return &sym_fw2;
+#if SYM_CONF_GENERIC_SUPPORT
+ else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC)))
+ return &sym_fw1;
+#endif
+ else
+ return NULL;
+}
+
+/*
+ * Bind a script to physical addresses.
+ */
+void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len)
+{
+ u32 opcode, new, old, tmp1, tmp2;
+ u32 *end, *cur;
+ int relocs;
+
+ cur = start;
+ end = start + len/4;
+
+ while (cur < end) {
+
+ opcode = *cur;
+
+ /*
+ * If we forget to change the length
+ * in scripts, a field will be
+ * padded with 0. This is an illegal
+ * command.
+ */
+ if (opcode == 0) {
+ printf ("%s: ERROR0 IN SCRIPT at %d.\n",
+ sym_name(np), (int) (cur-start));
+ ++cur;
+ continue;
+ };
+
+ /*
+ * We use the bogus value 0xf00ff00f ;-)
+ * to reserve data area in SCRIPTS.
+ */
+ if (opcode == SCR_DATA_ZERO) {
+ *cur++ = 0;
+ continue;
+ }
+
+ if (DEBUG_FLAGS & DEBUG_SCRIPT)
+ printf ("%d: <%x>\n", (int) (cur-start),
+ (unsigned)opcode);
+
+ /*
+ * We don't have to decode ALL commands
+ */
+ switch (opcode >> 28) {
+ case 0xf:
+ /*
+ * LOAD / STORE DSA relative, don't relocate.
+ */
+ relocs = 0;
+ break;
+ case 0xe:
+ /*
+ * LOAD / STORE absolute.
+ */
+ relocs = 1;
+ break;
+ case 0xc:
+ /*
+ * COPY has TWO arguments.
+ */
+ relocs = 2;
+ tmp1 = cur[1];
+ tmp2 = cur[2];
+ if ((tmp1 ^ tmp2) & 3) {
+ printf ("%s: ERROR1 IN SCRIPT at %d.\n",
+ sym_name(np), (int) (cur-start));
+ }
+ /*
+ * If PREFETCH feature not enabled, remove
+ * the NO FLUSH bit if present.
+ */
+ if ((opcode & SCR_NO_FLUSH) &&
+ !(np->features & FE_PFEN)) {
+ opcode = (opcode & ~SCR_NO_FLUSH);
+ }
+ break;
+ case 0x0:
+ /*
+ * MOVE/CHMOV (absolute address)
+ */
+ if (!(np->features & FE_WIDE))
+ opcode = (opcode | OPC_MOVE);
+ relocs = 1;
+ break;
+ case 0x1:
+ /*
+ * MOVE/CHMOV (table indirect)
+ */
+ if (!(np->features & FE_WIDE))
+ opcode = (opcode | OPC_MOVE);
+ relocs = 0;
+ break;
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ case 0x2:
+ /*
+ * MOVE/CHMOV in target role (absolute address)
+ */
+ opcode &= ~0x20000000;
+ if (!(np->features & FE_WIDE))
+ opcode = (opcode & ~OPC_TCHMOVE);
+ relocs = 1;
+ break;
+ case 0x3:
+ /*
+ * MOVE/CHMOV in target role (table indirect)
+ */
+ opcode &= ~0x20000000;
+ if (!(np->features & FE_WIDE))
+ opcode = (opcode & ~OPC_TCHMOVE);
+ relocs = 0;
+ break;
+#endif
+ case 0x8:
+ /*
+ * JUMP / CALL
+ * don't relocate if relative :-)
+ */
+ if (opcode & 0x00800000)
+ relocs = 0;
+ else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
+ relocs = 2;
+ else
+ relocs = 1;
+ break;
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7:
+ relocs = 1;
+ break;
+ default:
+ relocs = 0;
+ break;
+ };
+
+ /*
+ * Scriptify:) the opcode.
+ */
+ *cur++ = cpu_to_scr(opcode);
+
+ /*
+ * If no relocation, assume 1 argument
+ * and just scriptize:) it.
+ */
+ if (!relocs) {
+ *cur = cpu_to_scr(*cur);
+ ++cur;
+ continue;
+ }
+
+ /*
+ * Otherwise performs all needed relocations.
+ */
+ while (relocs--) {
+ old = *cur;
+
+ switch (old & RELOC_MASK) {
+ case RELOC_REGISTER:
+ new = (old & ~RELOC_MASK) + np->mmio_ba;
+ break;
+ case RELOC_LABEL_A:
+ new = (old & ~RELOC_MASK) + np->scripta_ba;
+ break;
+ case RELOC_LABEL_B:
+ new = (old & ~RELOC_MASK) + np->scriptb_ba;
+ break;
+ case RELOC_SOFTC:
+ new = (old & ~RELOC_MASK) + np->hcb_ba;
+ break;
+ case 0:
+ /*
+ * Don't relocate a 0 address.
+ * They are mostly used for patched or
+ * script self-modified areas.
+ */
+ if (old == 0) {
+ new = old;
+ break;
+ }
+ /* fall through */
+ default:
+ new = 0;
+ panic("sym_fw_bind_script: "
+ "weird relocation %x\n", old);
+ break;
+ }
+
+ *cur++ = cpu_to_scr(new);
+ }
+ };
+}
diff --git a/drivers/scsi/sym53c8xx_2/sym_fw.h b/drivers/scsi/sym53c8xx_2/sym_fw.h
new file mode 100644
index 000000000000..43f6810a4045
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_fw.h
@@ -0,0 +1,211 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifndef SYM_FW_H
+#define SYM_FW_H
+/*
+ * Macro used to generate interfaces for script A.
+ */
+#define SYM_GEN_FW_A(s) \
+ SYM_GEN_A(s, start) SYM_GEN_A(s, getjob_begin) \
+ SYM_GEN_A(s, getjob_end) \
+ SYM_GEN_A(s, select) SYM_GEN_A(s, wf_sel_done) \
+ SYM_GEN_A(s, send_ident) \
+ SYM_GEN_A(s, dispatch) SYM_GEN_A(s, init) \
+ SYM_GEN_A(s, clrack) SYM_GEN_A(s, complete_error) \
+ SYM_GEN_A(s, done) SYM_GEN_A(s, done_end) \
+ SYM_GEN_A(s, idle) SYM_GEN_A(s, ungetjob) \
+ SYM_GEN_A(s, reselect) \
+ SYM_GEN_A(s, resel_tag) SYM_GEN_A(s, resel_dsa) \
+ SYM_GEN_A(s, resel_no_tag) \
+ SYM_GEN_A(s, data_in) SYM_GEN_A(s, data_in2) \
+ SYM_GEN_A(s, data_out) SYM_GEN_A(s, data_out2) \
+ SYM_GEN_A(s, pm0_data) SYM_GEN_A(s, pm1_data)
+
+/*
+ * Macro used to generate interfaces for script B.
+ */
+#define SYM_GEN_FW_B(s) \
+ SYM_GEN_B(s, no_data) \
+ SYM_GEN_B(s, sel_for_abort) SYM_GEN_B(s, sel_for_abort_1) \
+ SYM_GEN_B(s, msg_bad) SYM_GEN_B(s, msg_weird) \
+ SYM_GEN_B(s, wdtr_resp) SYM_GEN_B(s, send_wdtr) \
+ SYM_GEN_B(s, sdtr_resp) SYM_GEN_B(s, send_sdtr) \
+ SYM_GEN_B(s, ppr_resp) SYM_GEN_B(s, send_ppr) \
+ SYM_GEN_B(s, nego_bad_phase) \
+ SYM_GEN_B(s, ident_break) SYM_GEN_B(s, ident_break_atn) \
+ SYM_GEN_B(s, sdata_in) SYM_GEN_B(s, resel_bad_lun) \
+ SYM_GEN_B(s, bad_i_t_l) SYM_GEN_B(s, bad_i_t_l_q) \
+ SYM_GEN_B(s, wsr_ma_helper)
+
+/*
+ * Macro used to generate interfaces for script Z.
+ */
+#define SYM_GEN_FW_Z(s) \
+ SYM_GEN_Z(s, snooptest) SYM_GEN_Z(s, snoopend)
+
+/*
+ * Generates structure interface that contains
+ * offsets within script A, B and Z.
+ */
+#define SYM_GEN_A(s, label) s label;
+#define SYM_GEN_B(s, label) s label;
+#define SYM_GEN_Z(s, label) s label;
+struct sym_fwa_ofs {
+ SYM_GEN_FW_A(u_short)
+};
+struct sym_fwb_ofs {
+ SYM_GEN_FW_B(u_short)
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ SYM_GEN_B(u_short, data_io)
+#endif
+ SYM_GEN_B(u_short, start64)
+ SYM_GEN_B(u_short, pm_handle)
+};
+struct sym_fwz_ofs {
+ SYM_GEN_FW_Z(u_short)
+};
+
+/*
+ * Generates structure interface that contains
+ * bus addresses within script A, B and Z.
+ */
+struct sym_fwa_ba {
+ SYM_GEN_FW_A(u32)
+};
+struct sym_fwb_ba {
+ SYM_GEN_FW_B(u32)
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ SYM_GEN_B(u32, data_io)
+#endif
+ SYM_GEN_B(u32, start64);
+ SYM_GEN_B(u32, pm_handle);
+};
+struct sym_fwz_ba {
+ SYM_GEN_FW_Z(u32)
+};
+#undef SYM_GEN_A
+#undef SYM_GEN_B
+#undef SYM_GEN_Z
+
+/*
+ * Let cc know about the name of the controller data structure.
+ * We need this for function prototype declarations just below.
+ */
+struct sym_hcb;
+
+/*
+ * Generic structure that defines a firmware.
+ */
+struct sym_fw {
+ char *name; /* Name we want to print out */
+ u32 *a_base; /* Pointer to script A template */
+ int a_size; /* Size of script A */
+ struct sym_fwa_ofs
+ *a_ofs; /* Useful offsets in script A */
+ u32 *b_base; /* Pointer to script B template */
+ int b_size; /* Size of script B */
+ struct sym_fwb_ofs
+ *b_ofs; /* Useful offsets in script B */
+ u32 *z_base; /* Pointer to script Z template */
+ int z_size; /* Size of script Z */
+ struct sym_fwz_ofs
+ *z_ofs; /* Useful offsets in script Z */
+ /* Setup and patch methods for this firmware */
+ void (*setup)(struct sym_hcb *, struct sym_fw *);
+ void (*patch)(struct sym_hcb *);
+};
+
+/*
+ * Macro used to declare a firmware.
+ */
+#define SYM_FW_ENTRY(fw, name) \
+{ \
+ name, \
+ (u32 *) &fw##a_scr, sizeof(fw##a_scr), &fw##a_ofs, \
+ (u32 *) &fw##b_scr, sizeof(fw##b_scr), &fw##b_ofs, \
+ (u32 *) &fw##z_scr, sizeof(fw##z_scr), &fw##z_ofs, \
+ fw##_setup, fw##_patch \
+}
+
+/*
+ * Macros used from the C code to get useful
+ * SCRIPTS bus addresses.
+ */
+#define SCRIPTA_BA(np, label) (np->fwa_bas.label)
+#define SCRIPTB_BA(np, label) (np->fwb_bas.label)
+#define SCRIPTZ_BA(np, label) (np->fwz_bas.label)
+
+/*
+ * Macros used by scripts definitions.
+ *
+ * HADDR_1 generates a reference to a field of the controller data.
+ * HADDR_2 generates a reference to a field of the controller data
+ * with offset.
+ * RADDR_1 generates a reference to a script processor register.
+ * RADDR_2 generates a reference to a script processor register
+ * with offset.
+ * PADDR_A generates a reference to another part of script A.
+ * PADDR_B generates a reference to another part of script B.
+ *
+ * SYM_GEN_PADDR_A and SYM_GEN_PADDR_B are used to define respectively
+ * the PADDR_A and PADDR_B macros for each firmware by setting argument
+ * `s' to the name of the corresponding structure.
+ *
+ * SCR_DATA_ZERO is used to allocate a DWORD of data in scripts areas.
+ */
+
+#define RELOC_SOFTC 0x40000000
+#define RELOC_LABEL_A 0x50000000
+#define RELOC_REGISTER 0x60000000
+#define RELOC_LABEL_B 0x80000000
+#define RELOC_MASK 0xf0000000
+
+#define HADDR_1(label) (RELOC_SOFTC | offsetof(struct sym_hcb, label))
+#define HADDR_2(label,ofs) (RELOC_SOFTC | \
+ (offsetof(struct sym_hcb, label)+(ofs)))
+#define RADDR_1(label) (RELOC_REGISTER | REG(label))
+#define RADDR_2(label,ofs) (RELOC_REGISTER | ((REG(label))+(ofs)))
+
+#define SYM_GEN_PADDR_A(s, label) (RELOC_LABEL_A | offsetof(s, label))
+#define SYM_GEN_PADDR_B(s, label) (RELOC_LABEL_B | offsetof(s, label))
+
+#define SCR_DATA_ZERO 0xf00ff00f
+
+#endif /* SYM_FW_H */
diff --git a/drivers/scsi/sym53c8xx_2/sym_fw1.h b/drivers/scsi/sym53c8xx_2/sym_fw1.h
new file mode 100644
index 000000000000..cdd92d82f4b2
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_fw1.h
@@ -0,0 +1,1838 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+/*
+ * Scripts for SYMBIOS-Processor
+ *
+ * We have to know the offsets of all labels before we reach
+ * them (for forward jumps). Therefore we declare a struct
+ * here. If you make changes inside the script,
+ *
+ * DONT FORGET TO CHANGE THE LENGTHS HERE!
+ */
+
+/*
+ * Script fragments which are loaded into the on-chip RAM
+ * of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
+ * Must not exceed 4K bytes.
+ */
+struct SYM_FWA_SCR {
+ u32 start [ 11];
+ u32 getjob_begin [ 4];
+ u32 _sms_a10 [ 5];
+ u32 getjob_end [ 4];
+ u32 _sms_a20 [ 4];
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 select [ 8];
+#else
+ u32 select [ 6];
+#endif
+ u32 _sms_a30 [ 5];
+ u32 wf_sel_done [ 2];
+ u32 send_ident [ 2];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 select2 [ 8];
+#else
+ u32 select2 [ 2];
+#endif
+ u32 command [ 2];
+ u32 dispatch [ 28];
+ u32 sel_no_cmd [ 10];
+ u32 init [ 6];
+ u32 clrack [ 4];
+ u32 datai_done [ 11];
+ u32 datai_done_wsr [ 20];
+ u32 datao_done [ 11];
+ u32 datao_done_wss [ 6];
+ u32 datai_phase [ 5];
+ u32 datao_phase [ 5];
+ u32 msg_in [ 2];
+ u32 msg_in2 [ 10];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 status [ 14];
+#else
+ u32 status [ 10];
+#endif
+ u32 complete [ 6];
+ u32 complete2 [ 8];
+ u32 _sms_a40 [ 12];
+ u32 done [ 5];
+ u32 _sms_a50 [ 5];
+ u32 _sms_a60 [ 2];
+ u32 done_end [ 4];
+ u32 complete_error [ 5];
+ u32 save_dp [ 11];
+ u32 restore_dp [ 7];
+ u32 disconnect [ 11];
+ u32 disconnect2 [ 5];
+ u32 _sms_a65 [ 3];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 idle [ 4];
+#else
+ u32 idle [ 2];
+#endif
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 ungetjob [ 7];
+#else
+ u32 ungetjob [ 5];
+#endif
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 reselect [ 4];
+#else
+ u32 reselect [ 2];
+#endif
+ u32 reselected [ 19];
+ u32 _sms_a70 [ 6];
+ u32 _sms_a80 [ 4];
+ u32 reselected1 [ 25];
+ u32 _sms_a90 [ 4];
+ u32 resel_lun0 [ 7];
+ u32 _sms_a100 [ 4];
+ u32 resel_tag [ 8];
+#if SYM_CONF_MAX_TASK*4 > 512
+ u32 _sms_a110 [ 23];
+#elif SYM_CONF_MAX_TASK*4 > 256
+ u32 _sms_a110 [ 17];
+#else
+ u32 _sms_a110 [ 13];
+#endif
+ u32 _sms_a120 [ 2];
+ u32 resel_go [ 4];
+ u32 _sms_a130 [ 7];
+ u32 resel_dsa [ 2];
+ u32 resel_dsa1 [ 4];
+ u32 _sms_a140 [ 7];
+ u32 resel_no_tag [ 4];
+ u32 _sms_a145 [ 7];
+ u32 data_in [SYM_CONF_MAX_SG * 2];
+ u32 data_in2 [ 4];
+ u32 data_out [SYM_CONF_MAX_SG * 2];
+ u32 data_out2 [ 4];
+ u32 pm0_data [ 12];
+ u32 pm0_data_out [ 6];
+ u32 pm0_data_end [ 7];
+ u32 pm_data_end [ 4];
+ u32 _sms_a150 [ 4];
+ u32 pm1_data [ 12];
+ u32 pm1_data_out [ 6];
+ u32 pm1_data_end [ 9];
+};
+
+/*
+ * Script fragments which stay in main memory for all chips
+ * except for chips that support 8K on-chip RAM.
+ */
+struct SYM_FWB_SCR {
+ u32 no_data [ 2];
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 sel_for_abort [ 18];
+#else
+ u32 sel_for_abort [ 16];
+#endif
+ u32 sel_for_abort_1 [ 2];
+ u32 msg_in_etc [ 12];
+ u32 msg_received [ 5];
+ u32 msg_weird_seen [ 5];
+ u32 msg_extended [ 17];
+ u32 _sms_b10 [ 4];
+ u32 msg_bad [ 6];
+ u32 msg_weird [ 4];
+ u32 msg_weird1 [ 8];
+ u32 wdtr_resp [ 6];
+ u32 send_wdtr [ 4];
+ u32 sdtr_resp [ 6];
+ u32 send_sdtr [ 4];
+ u32 ppr_resp [ 6];
+ u32 send_ppr [ 4];
+ u32 nego_bad_phase [ 4];
+ u32 msg_out [ 4];
+ u32 msg_out_done [ 4];
+ u32 data_ovrun [ 3];
+ u32 data_ovrun1 [ 22];
+ u32 data_ovrun2 [ 8];
+ u32 abort_resel [ 16];
+ u32 resend_ident [ 4];
+ u32 ident_break [ 4];
+ u32 ident_break_atn [ 4];
+ u32 sdata_in [ 6];
+ u32 resel_bad_lun [ 4];
+ u32 bad_i_t_l [ 4];
+ u32 bad_i_t_l_q [ 4];
+ u32 bad_status [ 7];
+ u32 wsr_ma_helper [ 4];
+
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ /* Unknown direction handling */
+ u32 data_io [ 2];
+ u32 data_io_com [ 8];
+ u32 data_io_out [ 7];
+#endif
+ /* Data area */
+ u32 zero [ 1];
+ u32 scratch [ 1];
+ u32 scratch1 [ 1];
+ u32 prev_done [ 1];
+ u32 done_pos [ 1];
+ u32 nextjob [ 1];
+ u32 startpos [ 1];
+ u32 targtbl [ 1];
+};
+
+/*
+ * Script fragments used at initialisations.
+ * Only runs out of main memory.
+ */
+struct SYM_FWZ_SCR {
+ u32 snooptest [ 9];
+ u32 snoopend [ 2];
+};
+
+static struct SYM_FWA_SCR SYM_FWA_SCR = {
+/*--------------------------< START >----------------------------*/ {
+ /*
+ * Switch the LED on.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_AND, 0xfe),
+ 0,
+ /*
+ * Clear SIGP.
+ */
+ SCR_FROM_REG (ctest2),
+ 0,
+ /*
+ * Stop here if the C code wants to perform
+ * some error recovery procedure manually.
+ * (Indicate this by setting SEM in ISTAT)
+ */
+ SCR_FROM_REG (istat),
+ 0,
+ /*
+ * Report to the C code the next position in
+ * the start queue the SCRIPTS will schedule.
+ * The C code must not change SCRATCHA.
+ */
+ SCR_COPY (4),
+ PADDR_B (startpos),
+ RADDR_1 (scratcha),
+ SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
+ SIR_SCRIPT_STOPPED,
+ /*
+ * Start the next job.
+ *
+ * @DSA = start point for this job.
+ * SCRATCHA = address of this job in the start queue.
+ *
+ * We will restore startpos with SCRATCHA if we fails the
+ * arbitration or if it is the idle job.
+ *
+ * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
+ * is a critical path. If it is partially executed, it then
+ * may happen that the job address is not yet in the DSA
+ * and the next queue position points to the next JOB.
+ */
+}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
+ /*
+ * Copy to a fixed location both the next STARTPOS
+ * and the current JOB address, using self modifying
+ * SCRIPTS.
+ */
+ SCR_COPY (4),
+ RADDR_1 (scratcha),
+ PADDR_A (_sms_a10),
+ SCR_COPY (8),
+}/*-------------------------< _SMS_A10 >-------------------------*/,{
+ 0,
+ PADDR_B (nextjob),
+ /*
+ * Move the start address to TEMP using self-
+ * modifying SCRIPTS and jump indirectly to
+ * that address.
+ */
+ SCR_COPY (4),
+ PADDR_B (nextjob),
+ RADDR_1 (dsa),
+}/*-------------------------< GETJOB_END >-----------------------*/,{
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a20),
+ SCR_COPY (4),
+}/*-------------------------< _SMS_A20 >-------------------------*/,{
+ 0,
+ RADDR_1 (temp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< SELECT >---------------------------*/,{
+ /*
+ * DSA contains the address of a scheduled
+ * data structure.
+ *
+ * SCRATCHA contains the address of the start queue
+ * entry which points to the next job.
+ *
+ * Set Initiator mode.
+ *
+ * (Target mode is left as an exercise for the reader)
+ */
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * And try to select this target.
+ */
+ SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
+ PADDR_A (ungetjob),
+ /*
+ * Now there are 4 possibilities:
+ *
+ * (1) The chip loses arbitration.
+ * This is ok, because it will try again,
+ * when the bus becomes idle.
+ * (But beware of the timeout function!)
+ *
+ * (2) The chip is reselected.
+ * Then the script processor takes the jump
+ * to the RESELECT label.
+ *
+ * (3) The chip wins arbitration.
+ * Then it will execute SCRIPTS instruction until
+ * the next instruction that checks SCSI phase.
+ * Then will stop and wait for selection to be
+ * complete or selection time-out to occur.
+ *
+ * After having won arbitration, the SCRIPTS
+ * processor is able to execute instructions while
+ * the SCSI core is performing SCSI selection.
+ */
+
+ /*
+ * Copy the CCB header to a fixed location
+ * in the HCB using self-modifying SCRIPTS.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a30),
+ SCR_COPY (sizeof(struct sym_ccbh)),
+}/*-------------------------< _SMS_A30 >-------------------------*/,{
+ 0,
+ HADDR_1 (ccb_head),
+ /*
+ * Initialize the status register
+ */
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.status),
+ RADDR_1 (scr0),
+}/*-------------------------< WF_SEL_DONE >----------------------*/,{
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ SIR_SEL_ATN_NO_MSG_OUT,
+}/*-------------------------< SEND_IDENT >-----------------------*/,{
+ /*
+ * Selection complete.
+ * Send the IDENTIFY and possibly the TAG message
+ * and negotiation message if present.
+ */
+ SCR_MOVE_TBL ^ SCR_MSG_OUT,
+ offsetof (struct sym_dsb, smsg),
+}/*-------------------------< SELECT2 >--------------------------*/,{
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * Set IMMEDIATE ARBITRATION if we have been given
+ * a hint to do so. (Some job to do after this one).
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
+ 8,
+ SCR_REG_REG (scntl1, SCR_OR, IARB),
+ 0,
+#endif
+ /*
+ * Anticipate the COMMAND phase.
+ * This is the PHASE we expect at this point.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
+ PADDR_A (sel_no_cmd),
+}/*-------------------------< COMMAND >--------------------------*/,{
+ /*
+ * ... and send the command
+ */
+ SCR_MOVE_TBL ^ SCR_COMMAND,
+ offsetof (struct sym_dsb, cmd),
+}/*-------------------------< DISPATCH >-------------------------*/,{
+ /*
+ * MSG_IN is the only phase that shall be
+ * entered at least once for each (re)selection.
+ * So we test it first.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
+ PADDR_A (datao_phase),
+ SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
+ PADDR_A (datai_phase),
+ SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
+ PADDR_A (command),
+ SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
+ PADDR_B (msg_out),
+ /*
+ * Discard as many illegal phases as
+ * required and tell the C code about.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
+ 16,
+ SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
+ HADDR_1 (scratch),
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
+ -16,
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
+ 16,
+ SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
+ HADDR_1 (scratch),
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
+ -16,
+ SCR_INT,
+ SIR_BAD_PHASE,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
+ /*
+ * The target does not switch to command
+ * phase after IDENTIFY has been sent.
+ *
+ * If it stays in MSG OUT phase send it
+ * the IDENTIFY again.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (resend_ident),
+ /*
+ * If target does not switch to MSG IN phase
+ * and we sent a negotiation, assert the
+ * failure immediately.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ SCR_FROM_REG (HS_REG),
+ 0,
+ SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
+ SIR_NEGO_FAILED,
+ /*
+ * Jump to dispatcher.
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< INIT >-----------------------------*/,{
+ /*
+ * Wait for the SCSI RESET signal to be
+ * inactive before restarting operations,
+ * since the chip may hang on SEL_ATN
+ * if SCSI RESET is active.
+ */
+ SCR_FROM_REG (sstat0),
+ 0,
+ SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
+ -16,
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< CLRACK >---------------------------*/,{
+ /*
+ * Terminate possible pending message phase.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_DONE >-----------------------*/,{
+ /*
+ * Save current pointer to LASTP.
+ */
+ SCR_COPY (4),
+ RADDR_1 (temp),
+ HADDR_1 (ccb_head.lastp),
+ /*
+ * If the SWIDE is not full, jump to dispatcher.
+ * We anticipate a STATUS phase.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
+ PADDR_A (datai_done_wsr),
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
+ /*
+ * The SWIDE is full.
+ * Clear this condition.
+ */
+ SCR_REG_REG (scntl2, SCR_OR, WSR),
+ 0,
+ /*
+ * We are expecting an IGNORE RESIDUE message
+ * from the device, otherwise we are in data
+ * overrun condition. Check against MSG_IN phase.
+ */
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ SIR_SWIDE_OVERRUN,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ /*
+ * We are in MSG_IN phase,
+ * Read the first byte of the message.
+ * If it is not an IGNORE RESIDUE message,
+ * signal overrun and jump to message
+ * processing.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[0]),
+ SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
+ SIR_SWIDE_OVERRUN,
+ SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
+ PADDR_A (msg_in2),
+ /*
+ * We got the message we expected.
+ * Read the 2nd byte, and jump to dispatcher.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAO_DONE >-----------------------*/,{
+ /*
+ * Save current pointer to LASTP.
+ */
+ SCR_COPY (4),
+ RADDR_1 (temp),
+ HADDR_1 (ccb_head.lastp),
+ /*
+ * If the SODL is not full jump to dispatcher.
+ * We anticipate a STATUS phase.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
+ PADDR_A (datao_done_wss),
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
+ /*
+ * The SODL is full, clear this condition.
+ */
+ SCR_REG_REG (scntl2, SCR_OR, WSS),
+ 0,
+ /*
+ * And signal a DATA UNDERRUN condition
+ * to the C code.
+ */
+ SCR_INT,
+ SIR_SODL_UNDERRUN,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_PHASE >----------------------*/,{
+ /*
+ * Jump to current pointer.
+ */
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.lastp),
+ RADDR_1 (temp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< DATAO_PHASE >----------------------*/,{
+ /*
+ * Jump to current pointer.
+ */
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.lastp),
+ RADDR_1 (temp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< MSG_IN >---------------------------*/,{
+ /*
+ * Get the first byte of the message.
+ *
+ * The script processor doesn't negate the
+ * ACK signal after this transfer.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[0]),
+}/*-------------------------< MSG_IN2 >--------------------------*/,{
+ /*
+ * Check first against 1 byte messages
+ * that we handle from SCRIPTS.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
+ PADDR_A (complete),
+ SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
+ PADDR_A (disconnect),
+ SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
+ PADDR_A (save_dp),
+ SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
+ PADDR_A (restore_dp),
+ /*
+ * We handle all other messages from the
+ * C code, so no need to waste on-chip RAM
+ * for those ones.
+ */
+ SCR_JUMP,
+ PADDR_B (msg_in_etc),
+}/*-------------------------< STATUS >---------------------------*/,{
+ /*
+ * get the status
+ */
+ SCR_MOVE_ABS (1) ^ SCR_STATUS,
+ HADDR_1 (scratch),
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
+ * since we may have to tamper the start queue from
+ * the C code.
+ */
+ SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
+ 8,
+ SCR_REG_REG (scntl1, SCR_AND, ~IARB),
+ 0,
+#endif
+ /*
+ * save status to scsi_status.
+ * mark as complete.
+ */
+ SCR_TO_REG (SS_REG),
+ 0,
+ SCR_LOAD_REG (HS_REG, HS_COMPLETE),
+ 0,
+ /*
+ * Anticipate the MESSAGE PHASE for
+ * the TASK COMPLETE message.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< COMPLETE >-------------------------*/,{
+ /*
+ * Complete message.
+ *
+ * When we terminate the cycle by clearing ACK,
+ * the target may disconnect immediately.
+ *
+ * We don't want to be told of an "unexpected disconnect",
+ * so we disable this feature.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ /*
+ * Terminate cycle ...
+ */
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ /*
+ * ... and wait for the disconnect.
+ */
+ SCR_WAIT_DISC,
+ 0,
+}/*-------------------------< COMPLETE2 >------------------------*/,{
+ /*
+ * Save host status.
+ */
+ SCR_COPY (4),
+ RADDR_1 (scr0),
+ HADDR_1 (ccb_head.status),
+ /*
+ * Move back the CCB header using self-modifying
+ * SCRIPTS.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a40),
+ SCR_COPY (sizeof(struct sym_ccbh)),
+ HADDR_1 (ccb_head),
+}/*-------------------------< _SMS_A40 >-------------------------*/,{
+ 0,
+ /*
+ * Some bridges may reorder DMA writes to memory.
+ * We donnot want the CPU to deal with completions
+ * without all the posted write having been flushed
+ * to memory. This DUMMY READ should flush posted
+ * buffers prior to the CPU having to deal with
+ * completions.
+ */
+ SCR_COPY (4), /* DUMMY READ */
+ HADDR_1 (ccb_head.status),
+ RADDR_1 (scr0),
+ /*
+ * If command resulted in not GOOD status,
+ * call the C code if needed.
+ */
+ SCR_FROM_REG (SS_REG),
+ 0,
+ SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
+ PADDR_B (bad_status),
+ /*
+ * If we performed an auto-sense, call
+ * the C code to synchronyze task aborts
+ * with UNIT ATTENTION conditions.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
+ PADDR_A (complete_error),
+}/*-------------------------< DONE >-----------------------------*/,{
+ /*
+ * Copy the DSA to the DONE QUEUE and
+ * signal completion to the host.
+ * If we are interrupted between DONE
+ * and DONE_END, we must reset, otherwise
+ * the completed CCB may be lost.
+ */
+ SCR_COPY (4),
+ PADDR_B (done_pos),
+ PADDR_A (_sms_a50),
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+}/*-------------------------< _SMS_A50 >-------------------------*/,{
+ 0,
+ SCR_COPY (4),
+ PADDR_B (done_pos),
+ PADDR_A (_sms_a60),
+ /*
+ * The instruction below reads the DONE QUEUE next
+ * free position from memory.
+ * In addition it ensures that all PCI posted writes
+ * are flushed and so the DSA value of the done
+ * CCB is visible by the CPU before INTFLY is raised.
+ */
+ SCR_COPY (8),
+}/*-------------------------< _SMS_A60 >-------------------------*/,{
+ 0,
+ PADDR_B (prev_done),
+}/*-------------------------< DONE_END >-------------------------*/,{
+ SCR_INT_FLY,
+ 0,
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
+ SCR_COPY (4),
+ PADDR_B (startpos),
+ RADDR_1 (scratcha),
+ SCR_INT,
+ SIR_COMPLETE_ERROR,
+}/*-------------------------< SAVE_DP >--------------------------*/,{
+ /*
+ * Clear ACK immediately.
+ * No need to delay it.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * Keep track we received a SAVE DP, so
+ * we will switch to the other PM context
+ * on the next PM since the DP may point
+ * to the current PM context.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
+ 0,
+ /*
+ * SAVE_DP message:
+ * Copy LASTP to SAVEP.
+ */
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.lastp),
+ HADDR_1 (ccb_head.savep),
+ /*
+ * Anticipate the MESSAGE PHASE for
+ * the DISCONNECT message.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< RESTORE_DP >-----------------------*/,{
+ /*
+ * Clear ACK immediately.
+ * No need to delay it.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * Copy SAVEP to LASTP.
+ */
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.savep),
+ HADDR_1 (ccb_head.lastp),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DISCONNECT >-----------------------*/,{
+ /*
+ * DISCONNECTing ...
+ *
+ * disable the "unexpected disconnect" feature,
+ * and remove the ACK signal.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ /*
+ * Wait for the disconnect.
+ */
+ SCR_WAIT_DISC,
+ 0,
+ /*
+ * Status is: DISCONNECTED.
+ */
+ SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
+ 0,
+ /*
+ * Save host status.
+ */
+ SCR_COPY (4),
+ RADDR_1 (scr0),
+ HADDR_1 (ccb_head.status),
+}/*-------------------------< DISCONNECT2 >----------------------*/,{
+ /*
+ * Move back the CCB header using self-modifying
+ * SCRIPTS.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a65),
+ SCR_COPY (sizeof(struct sym_ccbh)),
+ HADDR_1 (ccb_head),
+}/*-------------------------< _SMS_A65 >-------------------------*/,{
+ 0,
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< IDLE >-----------------------------*/,{
+ /*
+ * Nothing to do?
+ * Switch the LED off and wait for reselect.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_OR, 0x01),
+ 0,
+#ifdef SYM_CONF_IARB_SUPPORT
+ SCR_JUMPR,
+ 8,
+#endif
+}/*-------------------------< UNGETJOB >-------------------------*/,{
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * Set IMMEDIATE ARBITRATION, for the next time.
+ * This will give us better chance to win arbitration
+ * for the job we just wanted to do.
+ */
+ SCR_REG_REG (scntl1, SCR_OR, IARB),
+ 0,
+#endif
+ /*
+ * We are not able to restart the SCRIPTS if we are
+ * interrupted and these instruction haven't been
+ * all executed. BTW, this is very unlikely to
+ * happen, but we check that from the C code.
+ */
+ SCR_LOAD_REG (dsa, 0xff),
+ 0,
+ SCR_COPY (4),
+ RADDR_1 (scratcha),
+ PADDR_B (startpos),
+}/*-------------------------< RESELECT >-------------------------*/,{
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ /*
+ * Make sure we are in initiator mode.
+ */
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * Sleep waiting for a reselection.
+ */
+ SCR_WAIT_RESEL,
+ PADDR_A(start),
+}/*-------------------------< RESELECTED >-----------------------*/,{
+ /*
+ * Switch the LED on.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_AND, 0xfe),
+ 0,
+ /*
+ * load the target id into the sdid
+ */
+ SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
+ 0,
+ SCR_TO_REG (sdid),
+ 0,
+ /*
+ * Load the target control block address
+ */
+ SCR_COPY (4),
+ PADDR_B (targtbl),
+ RADDR_1 (dsa),
+ SCR_SFBR_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_AND, 0x3c),
+ 0,
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a70),
+ SCR_COPY (4),
+}/*-------------------------< _SMS_A70 >-------------------------*/,{
+ 0,
+ RADDR_1 (dsa),
+ /*
+ * Copy the TCB header to a fixed place in
+ * the HCB.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a80),
+ SCR_COPY (sizeof(struct sym_tcbh)),
+}/*-------------------------< _SMS_A80 >-------------------------*/,{
+ 0,
+ HADDR_1 (tcb_head),
+ /*
+ * We expect MESSAGE IN phase.
+ * If not, get help from the C code.
+ */
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ SIR_RESEL_NO_MSG_IN,
+}/*-------------------------< RESELECTED1 >----------------------*/,{
+ /*
+ * Load the synchronous transfer registers.
+ */
+ SCR_COPY (1),
+ HADDR_1 (tcb_head.wval),
+ RADDR_1 (scntl3),
+ SCR_COPY (1),
+ HADDR_1 (tcb_head.sval),
+ RADDR_1 (sxfer),
+ /*
+ * Get the IDENTIFY message.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin),
+ /*
+ * If IDENTIFY LUN #0, use a faster path
+ * to find the LCB structure.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
+ PADDR_A (resel_lun0),
+ /*
+ * If message isn't an IDENTIFY,
+ * tell the C code about.
+ */
+ SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
+ SIR_RESEL_NO_IDENTIFY,
+ /*
+ * It is an IDENTIFY message,
+ * Load the LUN control block address.
+ */
+ SCR_COPY (4),
+ HADDR_1 (tcb_head.luntbl_sa),
+ RADDR_1 (dsa),
+ SCR_SFBR_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_AND, 0xfc),
+ 0,
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a90),
+ SCR_COPY (4),
+}/*-------------------------< _SMS_A90 >-------------------------*/,{
+ 0,
+ RADDR_1 (dsa),
+ SCR_JUMPR,
+ 12,
+}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
+ /*
+ * LUN 0 special case (but usual one :))
+ */
+ SCR_COPY (4),
+ HADDR_1 (tcb_head.lun0_sa),
+ RADDR_1 (dsa),
+ /*
+ * Jump indirectly to the reselect action for this LUN.
+ * (lcb.head.resel_sa assumed at offset zero of lcb).
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a100),
+ SCR_COPY (4),
+}/*-------------------------< _SMS_A100 >------------------------*/,{
+ 0,
+ RADDR_1 (temp),
+ SCR_RETURN,
+ 0,
+ /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
+}/*-------------------------< RESEL_TAG >------------------------*/,{
+ /*
+ * ACK the IDENTIFY previously received.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * It shall be a tagged command.
+ * Read SIMPLE+TAG.
+ * The C code will deal with errors.
+ * Agressive optimization, is'nt it? :)
+ */
+ SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
+ HADDR_1 (msgin),
+ /*
+ * Copy the LCB header to a fixed place in
+ * the HCB using self-modifying SCRIPTS.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a110),
+ SCR_COPY (sizeof(struct sym_lcbh)),
+}/*-------------------------< _SMS_A110 >------------------------*/,{
+ 0,
+ HADDR_1 (lcb_head),
+ /*
+ * Load the pointer to the tagged task
+ * table for this LUN.
+ */
+ SCR_COPY (4),
+ HADDR_1 (lcb_head.itlq_tbl_sa),
+ RADDR_1 (dsa),
+ /*
+ * The SIDL still contains the TAG value.
+ * Agressive optimization, isn't it? :):)
+ */
+ SCR_REG_SFBR (sidl, SCR_SHL, 0),
+ 0,
+#if SYM_CONF_MAX_TASK*4 > 512
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 2),
+ 0,
+ SCR_REG_REG (sfbr, SCR_SHL, 0),
+ 0,
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 1),
+ 0,
+#elif SYM_CONF_MAX_TASK*4 > 256
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 1),
+ 0,
+#endif
+ /*
+ * Retrieve the DSA of this task.
+ * JUMP indirectly to the restart point of the CCB.
+ */
+ SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
+ 0,
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a120),
+ SCR_COPY (4),
+}/*-------------------------< _SMS_A120 >------------------------*/,{
+ 0,
+ RADDR_1 (dsa),
+}/*-------------------------< RESEL_GO >-------------------------*/,{
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a130),
+ /*
+ * Move 'ccb.phys.head.go' action to
+ * scratch/scratch1. So scratch1 will
+ * contain the 'restart' field of the
+ * 'go' structure.
+ */
+ SCR_COPY (8),
+}/*-------------------------< _SMS_A130 >------------------------*/,{
+ 0,
+ PADDR_B (scratch),
+ SCR_COPY (4),
+ PADDR_B (scratch1), /* phys.head.go.restart */
+ RADDR_1 (temp),
+ SCR_RETURN,
+ 0,
+ /* In normal situations we branch to RESEL_DSA */
+}/*-------------------------< RESEL_DSA >------------------------*/,{
+ /*
+ * ACK the IDENTIFY or TAG previously received.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
+ /*
+ * Copy the CCB header to a fixed location
+ * in the HCB using self-modifying SCRIPTS.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a140),
+ SCR_COPY (sizeof(struct sym_ccbh)),
+}/*-------------------------< _SMS_A140 >------------------------*/,{
+ 0,
+ HADDR_1 (ccb_head),
+ /*
+ * Initialize the status register
+ */
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.status),
+ RADDR_1 (scr0),
+ /*
+ * Jump to dispatcher.
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
+ /*
+ * Copy the LCB header to a fixed place in
+ * the HCB using self-modifying SCRIPTS.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ PADDR_A (_sms_a145),
+ SCR_COPY (sizeof(struct sym_lcbh)),
+}/*-------------------------< _SMS_A145 >------------------------*/,{
+ 0,
+ HADDR_1 (lcb_head),
+ /*
+ * Load the DSA with the unique ITL task.
+ */
+ SCR_COPY (4),
+ HADDR_1 (lcb_head.itl_task_sa),
+ RADDR_1 (dsa),
+ SCR_JUMP,
+ PADDR_A (resel_go),
+}/*-------------------------< DATA_IN >--------------------------*/,{
+/*
+ * Because the size depends on the
+ * #define SYM_CONF_MAX_SG parameter,
+ * it is filled in at runtime.
+ *
+ * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
+ * || SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ * || offsetof (struct sym_dsb, data[ i]),
+ * ##==========================================
+ */
+0
+}/*-------------------------< DATA_IN2 >-------------------------*/,{
+ SCR_CALL,
+ PADDR_A (datai_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< DATA_OUT >-------------------------*/,{
+/*
+ * Because the size depends on the
+ * #define SYM_CONF_MAX_SG parameter,
+ * it is filled in at runtime.
+ *
+ * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
+ * || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ * || offsetof (struct sym_dsb, data[ i]),
+ * ##==========================================
+ */
+0
+}/*-------------------------< DATA_OUT2 >------------------------*/,{
+ SCR_CALL,
+ PADDR_A (datao_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< PM0_DATA >-------------------------*/,{
+ /*
+ * Read our host flags to SFBR, so we will be able
+ * to check against the data direction we expect.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ /*
+ * Check against actual DATA PHASE.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
+ PADDR_A (pm0_data_out),
+ /*
+ * Actual phase is DATA IN.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
+ 0,
+ /*
+ * Move the data to memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.pm0.sg),
+ SCR_JUMP,
+ PADDR_A (pm0_data_end),
+}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
+ /*
+ * Actual phase is DATA OUT.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
+ 0,
+ /*
+ * Move the data from memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ offsetof (struct sym_ccb, phys.pm0.sg),
+}/*-------------------------< PM0_DATA_END >---------------------*/,{
+ /*
+ * Clear the flag that told we were moving
+ * data from the PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
+ 0,
+ /*
+ * Return to the previous DATA script which
+ * is guaranteed by design (if no bug) to be
+ * the main DATA script for this transfer.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ RADDR_1 (scratcha),
+ SCR_REG_REG (scratcha, SCR_ADD, offsetof (struct sym_ccb,phys.pm0.ret)),
+ 0,
+}/*-------------------------< PM_DATA_END >----------------------*/,{
+ SCR_COPY (4),
+ RADDR_1 (scratcha),
+ PADDR_A (_sms_a150),
+ SCR_COPY (4),
+}/*-------------------------< _SMS_A150 >------------------------*/,{
+ 0,
+ RADDR_1 (temp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< PM1_DATA >-------------------------*/,{
+ /*
+ * Read our host flags to SFBR, so we will be able
+ * to check against the data direction we expect.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ /*
+ * Check against actual DATA PHASE.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
+ PADDR_A (pm1_data_out),
+ /*
+ * Actual phase is DATA IN.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
+ 0,
+ /*
+ * Move the data to memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.pm1.sg),
+ SCR_JUMP,
+ PADDR_A (pm1_data_end),
+}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
+ /*
+ * Actual phase is DATA OUT.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
+ 0,
+ /*
+ * Move the data from memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ offsetof (struct sym_ccb, phys.pm1.sg),
+}/*-------------------------< PM1_DATA_END >---------------------*/,{
+ /*
+ * Clear the flag that told we were moving
+ * data from the PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
+ 0,
+ /*
+ * Return to the previous DATA script which
+ * is guaranteed by design (if no bug) to be
+ * the main DATA script for this transfer.
+ */
+ SCR_COPY (4),
+ RADDR_1 (dsa),
+ RADDR_1 (scratcha),
+ SCR_REG_REG (scratcha, SCR_ADD, offsetof (struct sym_ccb,phys.pm1.ret)),
+ 0,
+ SCR_JUMP,
+ PADDR_A (pm_data_end),
+}/*--------------------------<>----------------------------------*/
+};
+
+static struct SYM_FWB_SCR SYM_FWB_SCR = {
+/*-------------------------< NO_DATA >--------------------------*/ {
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
+ /*
+ * We are jumped here by the C code, if we have
+ * some target to reset or some disconnected
+ * job to abort. Since error recovery is a serious
+ * busyness, we will really reset the SCSI BUS, if
+ * case of a SCSI interrupt occurring in this path.
+ */
+
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ /*
+ * Set initiator mode.
+ */
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * And try to select this target.
+ */
+ SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
+ PADDR_A (reselect),
+ /*
+ * Wait for the selection to complete or
+ * the selection to time out.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ -8,
+ /*
+ * Call the C code.
+ */
+ SCR_INT,
+ SIR_TARGET_SELECTED,
+ /*
+ * The C code should let us continue here.
+ * Send the 'kiss of death' message.
+ * We expect an immediate disconnect once
+ * the target has eaten the message.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_MOVE_TBL ^ SCR_MSG_OUT,
+ offsetof (struct sym_hcb, abrt_tbl),
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ SCR_WAIT_DISC,
+ 0,
+ /*
+ * Tell the C code that we are done.
+ */
+ SCR_INT,
+ SIR_ABORT_SENT,
+}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
+ /*
+ * Jump at scheduler.
+ */
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
+ /*
+ * If it is an EXTENDED (variable size message)
+ * Handle it.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
+ PADDR_B (msg_extended),
+ /*
+ * Let the C code handle any other
+ * 1 byte message.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
+ PADDR_B (msg_received),
+ SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
+ PADDR_B (msg_received),
+ /*
+ * We donnot handle 2 bytes messages from SCRIPTS.
+ * So, let the C code deal with these ones too.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
+ PADDR_B (msg_weird_seen),
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+}/*-------------------------< MSG_RECEIVED >---------------------*/,{
+ SCR_COPY (4), /* DUMMY READ */
+ HADDR_1 (scratch),
+ RADDR_1 (scratcha),
+ SCR_INT,
+ SIR_MSG_RECEIVED,
+}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
+ SCR_COPY (4), /* DUMMY READ */
+ HADDR_1 (scratch),
+ RADDR_1 (scratcha),
+ SCR_INT,
+ SIR_MSG_WEIRD,
+}/*-------------------------< MSG_EXTENDED >---------------------*/,{
+ /*
+ * Clear ACK and get the next byte
+ * assumed to be the message length.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+ /*
+ * Try to catch some unlikely situations as 0 length
+ * or too large the length.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (0)),
+ PADDR_B (msg_weird_seen),
+ SCR_TO_REG (scratcha),
+ 0,
+ SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
+ 0,
+ SCR_JUMP ^ IFTRUE (CARRYSET),
+ PADDR_B (msg_weird_seen),
+ /*
+ * We donnot handle extended messages from SCRIPTS.
+ * Read the amount of data correponding to the
+ * message length and call the C code.
+ */
+ SCR_COPY (1),
+ RADDR_1 (scratcha),
+ PADDR_B (_sms_b10),
+ SCR_CLR (SCR_ACK),
+ 0,
+}/*-------------------------< _SMS_B10 >-------------------------*/,{
+ SCR_MOVE_ABS (0) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[2]),
+ SCR_JUMP,
+ PADDR_B (msg_received),
+}/*-------------------------< MSG_BAD >--------------------------*/,{
+ /*
+ * unimplemented message - reject it.
+ */
+ SCR_INT,
+ SIR_REJECT_TO_SEND,
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (clrack),
+}/*-------------------------< MSG_WEIRD >------------------------*/,{
+ /*
+ * weird message received
+ * ignore all MSG IN phases and reject it.
+ */
+ SCR_INT,
+ SIR_REJECT_TO_SEND,
+ SCR_SET (SCR_ATN),
+ 0,
+}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (scratch),
+ SCR_JUMP,
+ PADDR_B (msg_weird1),
+}/*-------------------------< WDTR_RESP >------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_WDTR >------------------------*/,{
+ /*
+ * Send the M_X_WIDE_REQ
+ */
+ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< SDTR_RESP >------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_SDTR >------------------------*/,{
+ /*
+ * Send the M_X_SYNC_REQ
+ */
+ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< PPR_RESP >-------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_PPR >-------------------------*/,{
+ /*
+ * Send the M_X_PPR_REQ
+ */
+ SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
+ SCR_INT,
+ SIR_NEGO_PROTO,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< MSG_OUT >--------------------------*/,{
+ /*
+ * The target requests a message.
+ * We donnot send messages that may
+ * require the device to go to bus free.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ /*
+ * ... wait for the next phase
+ * if it's a message out, send it again, ...
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (msg_out),
+}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
+ /*
+ * Let the C code be aware of the
+ * sent message and clear the message.
+ */
+ SCR_INT,
+ SIR_MSG_OUT_DONE,
+ /*
+ * ... and process the next phase
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATA_OVRUN >-----------------------*/,{
+ /*
+ * Zero scratcha that will count the
+ * extras bytes.
+ */
+ SCR_COPY (4),
+ PADDR_B (zero),
+ RADDR_1 (scratcha),
+}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
+ /*
+ * The target may want to transfer too much data.
+ *
+ * If phase is DATA OUT write 1 byte and count it.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
+ 16,
+ SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
+ HADDR_1 (scratch),
+ SCR_JUMP,
+ PADDR_B (data_ovrun2),
+ /*
+ * If WSR is set, clear this condition, and
+ * count this byte.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
+ 16,
+ SCR_REG_REG (scntl2, SCR_OR, WSR),
+ 0,
+ SCR_JUMP,
+ PADDR_B (data_ovrun2),
+ /*
+ * Finally check against DATA IN phase.
+ * Signal data overrun to the C code
+ * and jump to dispatcher if not so.
+ * Read 1 byte otherwise and count it.
+ */
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
+ 16,
+ SCR_INT,
+ SIR_DATA_OVERRUN,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+ SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
+ HADDR_1 (scratch),
+}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
+ /*
+ * Count this byte.
+ * This will allow to return a negative
+ * residual to user.
+ */
+ SCR_REG_REG (scratcha, SCR_ADD, 0x01),
+ 0,
+ SCR_REG_REG (scratcha1, SCR_ADDC, 0),
+ 0,
+ SCR_REG_REG (scratcha2, SCR_ADDC, 0),
+ 0,
+ /*
+ * .. and repeat as required.
+ */
+ SCR_JUMP,
+ PADDR_B (data_ovrun1),
+}/*-------------------------< ABORT_RESEL >----------------------*/,{
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * send the abort/abortag/reset message
+ * we expect an immediate disconnect
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ SCR_WAIT_DISC,
+ 0,
+ SCR_INT,
+ SIR_RESEL_ABORTED,
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< RESEND_IDENT >---------------------*/,{
+ /*
+ * The target stays in MSG OUT phase after having acked
+ * Identify [+ Tag [+ Extended message ]]. Targets shall
+ * behave this way on parity error.
+ * We must send it again all the messages.
+ */
+ SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
+ 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
+ SCR_JUMP,
+ PADDR_A (send_ident),
+}/*-------------------------< IDENT_BREAK >----------------------*/,{
+ SCR_CLR (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (select2),
+}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (select2),
+}/*-------------------------< SDATA_IN >-------------------------*/,{
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_dsb, sense),
+ SCR_CALL,
+ PADDR_A (datai_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
+ /*
+ * Message is an IDENTIFY, but lun is unknown.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORT to clear all pending tasks.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_LUN,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_I_T_L >------------------------*/,{
+ /*
+ * We donnot have a task for that I_T_L.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORT message.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_I_T_L,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
+ /*
+ * We donnot have a task that matches the tag.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORTTAG message.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_I_T_L_Q,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_STATUS >-----------------------*/,{
+ /*
+ * Anything different from INTERMEDIATE
+ * CONDITION MET should be a bad SCSI status,
+ * given that GOOD status has already been tested.
+ * Call the C code.
+ */
+ SCR_COPY (4),
+ PADDR_B (startpos),
+ RADDR_1 (scratcha),
+ SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
+ SIR_BAD_SCSI_STATUS,
+ SCR_RETURN,
+ 0,
+}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
+ /*
+ * Helper for the C code when WSR bit is set.
+ * Perform the move of the residual byte.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.wresid),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+}/*-------------------------< DATA_IO >--------------------------*/,{
+ /*
+ * We jump here if the data direction was unknown at the
+ * time we had to queue the command to the scripts processor.
+ * Pointers had been set as follow in this situation:
+ * savep --> DATA_IO
+ * lastp --> start pointer when DATA_IN
+ * wlastp --> start pointer when DATA_OUT
+ * This script sets savep and lastp according to the
+ * direction chosen by the target.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
+ PADDR_B (data_io_out),
+}/*-------------------------< DATA_IO_COM >----------------------*/,{
+ /*
+ * Direction is DATA IN.
+ */
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.lastp),
+ HADDR_1 (ccb_head.savep),
+ /*
+ * Jump to the SCRIPTS according to actual direction.
+ */
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.savep),
+ RADDR_1 (temp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< DATA_IO_OUT >----------------------*/,{
+ /*
+ * Direction is DATA OUT.
+ */
+ SCR_REG_REG (HF_REG, SCR_AND, (~HF_DATA_IN)),
+ 0,
+ SCR_COPY (4),
+ HADDR_1 (ccb_head.wlastp),
+ HADDR_1 (ccb_head.lastp),
+ SCR_JUMP,
+ PADDR_B(data_io_com),
+#endif /* SYM_OPT_HANDLE_DIR_UNKNOWN */
+
+}/*-------------------------< ZERO >-----------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< SCRATCH >--------------------------*/,{
+ SCR_DATA_ZERO, /* MUST BE BEFORE SCRATCH1 */
+}/*-------------------------< SCRATCH1 >-------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< PREV_DONE >------------------------*/,{
+ SCR_DATA_ZERO, /* MUST BE BEFORE DONE_POS ! */
+}/*-------------------------< DONE_POS >-------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< NEXTJOB >--------------------------*/,{
+ SCR_DATA_ZERO, /* MUST BE BEFORE STARTPOS ! */
+}/*-------------------------< STARTPOS >-------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< TARGTBL >--------------------------*/,{
+ SCR_DATA_ZERO,
+}/*--------------------------<>----------------------------------*/
+};
+
+static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
+ /*-------------------------< SNOOPTEST >------------------------*/{
+ /*
+ * Read the variable.
+ */
+ SCR_COPY (4),
+ HADDR_1 (scratch),
+ RADDR_1 (scratcha),
+ /*
+ * Write the variable.
+ */
+ SCR_COPY (4),
+ RADDR_1 (temp),
+ HADDR_1 (scratch),
+ /*
+ * Read back the variable.
+ */
+ SCR_COPY (4),
+ HADDR_1 (scratch),
+ RADDR_1 (temp),
+}/*-------------------------< SNOOPEND >-------------------------*/,{
+ /*
+ * And stop.
+ */
+ SCR_INT,
+ 99,
+}/*--------------------------<>----------------------------------*/
+};
diff --git a/drivers/scsi/sym53c8xx_2/sym_fw2.h b/drivers/scsi/sym53c8xx_2/sym_fw2.h
new file mode 100644
index 000000000000..7ea7151f5d1d
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_fw2.h
@@ -0,0 +1,1927 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+/*
+ * Scripts for SYMBIOS-Processor
+ *
+ * We have to know the offsets of all labels before we reach
+ * them (for forward jumps). Therefore we declare a struct
+ * here. If you make changes inside the script,
+ *
+ * DONT FORGET TO CHANGE THE LENGTHS HERE!
+ */
+
+/*
+ * Script fragments which are loaded into the on-chip RAM
+ * of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
+ * Must not exceed 4K bytes.
+ */
+struct SYM_FWA_SCR {
+ u32 start [ 14];
+ u32 getjob_begin [ 4];
+ u32 getjob_end [ 4];
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 select [ 6];
+#else
+ u32 select [ 4];
+#endif
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ u32 is_dmap_dirty [ 4];
+#endif
+ u32 wf_sel_done [ 2];
+ u32 sel_done [ 2];
+ u32 send_ident [ 2];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 select2 [ 8];
+#else
+ u32 select2 [ 2];
+#endif
+ u32 command [ 2];
+ u32 dispatch [ 28];
+ u32 sel_no_cmd [ 10];
+ u32 init [ 6];
+ u32 clrack [ 4];
+ u32 datai_done [ 10];
+ u32 datai_done_wsr [ 20];
+ u32 datao_done [ 10];
+ u32 datao_done_wss [ 6];
+ u32 datai_phase [ 4];
+ u32 datao_phase [ 6];
+ u32 msg_in [ 2];
+ u32 msg_in2 [ 10];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 status [ 14];
+#else
+ u32 status [ 10];
+#endif
+ u32 complete [ 6];
+ u32 complete2 [ 12];
+ u32 done [ 14];
+ u32 done_end [ 2];
+ u32 complete_error [ 4];
+ u32 save_dp [ 12];
+ u32 restore_dp [ 8];
+ u32 disconnect [ 12];
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 idle [ 4];
+#else
+ u32 idle [ 2];
+#endif
+#ifdef SYM_CONF_IARB_SUPPORT
+ u32 ungetjob [ 6];
+#else
+ u32 ungetjob [ 4];
+#endif
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 reselect [ 4];
+#else
+ u32 reselect [ 2];
+#endif
+ u32 reselected [ 22];
+ u32 resel_scntl4 [ 20];
+ u32 resel_lun0 [ 6];
+#if SYM_CONF_MAX_TASK*4 > 512
+ u32 resel_tag [ 26];
+#elif SYM_CONF_MAX_TASK*4 > 256
+ u32 resel_tag [ 20];
+#else
+ u32 resel_tag [ 16];
+#endif
+ u32 resel_dsa [ 2];
+ u32 resel_dsa1 [ 4];
+ u32 resel_no_tag [ 6];
+ u32 data_in [SYM_CONF_MAX_SG * 2];
+ u32 data_in2 [ 4];
+ u32 data_out [SYM_CONF_MAX_SG * 2];
+ u32 data_out2 [ 4];
+ u32 pm0_data [ 12];
+ u32 pm0_data_out [ 6];
+ u32 pm0_data_end [ 6];
+ u32 pm1_data [ 12];
+ u32 pm1_data_out [ 6];
+ u32 pm1_data_end [ 6];
+};
+
+/*
+ * Script fragments which stay in main memory for all chips
+ * except for chips that support 8K on-chip RAM.
+ */
+struct SYM_FWB_SCR {
+ u32 start64 [ 2];
+ u32 no_data [ 2];
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ u32 sel_for_abort [ 18];
+#else
+ u32 sel_for_abort [ 16];
+#endif
+ u32 sel_for_abort_1 [ 2];
+ u32 msg_in_etc [ 12];
+ u32 msg_received [ 4];
+ u32 msg_weird_seen [ 4];
+ u32 msg_extended [ 20];
+ u32 msg_bad [ 6];
+ u32 msg_weird [ 4];
+ u32 msg_weird1 [ 8];
+
+ u32 wdtr_resp [ 6];
+ u32 send_wdtr [ 4];
+ u32 sdtr_resp [ 6];
+ u32 send_sdtr [ 4];
+ u32 ppr_resp [ 6];
+ u32 send_ppr [ 4];
+ u32 nego_bad_phase [ 4];
+ u32 msg_out [ 4];
+ u32 msg_out_done [ 4];
+ u32 data_ovrun [ 2];
+ u32 data_ovrun1 [ 22];
+ u32 data_ovrun2 [ 8];
+ u32 abort_resel [ 16];
+ u32 resend_ident [ 4];
+ u32 ident_break [ 4];
+ u32 ident_break_atn [ 4];
+ u32 sdata_in [ 6];
+ u32 resel_bad_lun [ 4];
+ u32 bad_i_t_l [ 4];
+ u32 bad_i_t_l_q [ 4];
+ u32 bad_status [ 6];
+ u32 pm_handle [ 20];
+ u32 pm_handle1 [ 4];
+ u32 pm_save [ 4];
+ u32 pm0_save [ 12];
+ u32 pm_save_end [ 4];
+ u32 pm1_save [ 14];
+
+ /* WSR handling */
+ u32 pm_wsr_handle [ 38];
+ u32 wsr_ma_helper [ 4];
+
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ /* Unknown direction handling */
+ u32 data_io [ 2];
+ u32 data_io_in [ 2];
+ u32 data_io_com [ 6];
+ u32 data_io_out [ 8];
+#endif
+ /* Data area */
+ u32 zero [ 1];
+ u32 scratch [ 1];
+ u32 pm0_data_addr [ 1];
+ u32 pm1_data_addr [ 1];
+ u32 done_pos [ 1];
+ u32 startpos [ 1];
+ u32 targtbl [ 1];
+};
+
+/*
+ * Script fragments used at initialisations.
+ * Only runs out of main memory.
+ */
+struct SYM_FWZ_SCR {
+ u32 snooptest [ 6];
+ u32 snoopend [ 2];
+};
+
+static struct SYM_FWA_SCR SYM_FWA_SCR = {
+/*--------------------------< START >----------------------------*/ {
+ /*
+ * Switch the LED on.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_AND, 0xfe),
+ 0,
+ /*
+ * Clear SIGP.
+ */
+ SCR_FROM_REG (ctest2),
+ 0,
+ /*
+ * Stop here if the C code wants to perform
+ * some error recovery procedure manually.
+ * (Indicate this by setting SEM in ISTAT)
+ */
+ SCR_FROM_REG (istat),
+ 0,
+ /*
+ * Report to the C code the next position in
+ * the start queue the SCRIPTS will schedule.
+ * The C code must not change SCRATCHA.
+ */
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (startpos),
+ SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
+ SIR_SCRIPT_STOPPED,
+ /*
+ * Start the next job.
+ *
+ * @DSA = start point for this job.
+ * SCRATCHA = address of this job in the start queue.
+ *
+ * We will restore startpos with SCRATCHA if we fails the
+ * arbitration or if it is the idle job.
+ *
+ * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
+ * is a critical path. If it is partially executed, it then
+ * may happen that the job address is not yet in the DSA
+ * and the next queue position points to the next JOB.
+ */
+ SCR_LOAD_ABS (dsa, 4),
+ PADDR_B (startpos),
+ SCR_LOAD_REL (temp, 4),
+ 4,
+}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
+ SCR_STORE_ABS (temp, 4),
+ PADDR_B (startpos),
+ SCR_LOAD_REL (dsa, 4),
+ 0,
+}/*-------------------------< GETJOB_END >-----------------------*/,{
+ SCR_LOAD_REL (temp, 4),
+ 0,
+ SCR_RETURN,
+ 0,
+}/*-------------------------< SELECT >---------------------------*/,{
+ /*
+ * DSA contains the address of a scheduled
+ * data structure.
+ *
+ * SCRATCHA contains the address of the start queue
+ * entry which points to the next job.
+ *
+ * Set Initiator mode.
+ *
+ * (Target mode is left as an exercise for the reader)
+ */
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * And try to select this target.
+ */
+ SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
+ PADDR_A (ungetjob),
+ /*
+ * Now there are 4 possibilities:
+ *
+ * (1) The chip loses arbitration.
+ * This is ok, because it will try again,
+ * when the bus becomes idle.
+ * (But beware of the timeout function!)
+ *
+ * (2) The chip is reselected.
+ * Then the script processor takes the jump
+ * to the RESELECT label.
+ *
+ * (3) The chip wins arbitration.
+ * Then it will execute SCRIPTS instruction until
+ * the next instruction that checks SCSI phase.
+ * Then will stop and wait for selection to be
+ * complete or selection time-out to occur.
+ *
+ * After having won arbitration, the SCRIPTS
+ * processor is able to execute instructions while
+ * the SCSI core is performing SCSI selection.
+ */
+ /*
+ * Initialize the status registers
+ */
+ SCR_LOAD_REL (scr0, 4),
+ offsetof (struct sym_ccb, phys.head.status),
+ /*
+ * We may need help from CPU if the DMA segment
+ * registers aren't up-to-date for this IO.
+ * Patched with NOOP for chips that donnot
+ * support DAC addressing.
+ */
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
+ SCR_FROM_REG (HX_REG),
+ 0,
+ SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
+ SIR_DMAP_DIRTY,
+#endif
+}/*-------------------------< WF_SEL_DONE >----------------------*/,{
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ SIR_SEL_ATN_NO_MSG_OUT,
+}/*-------------------------< SEL_DONE >-------------------------*/,{
+ /*
+ * C1010-33 errata work-around.
+ * Due to a race, the SCSI core may not have
+ * loaded SCNTL3 on SEL_TBL instruction.
+ * We reload it once phase is stable.
+ * Patched with a NOOP for other chips.
+ */
+ SCR_LOAD_REL (scntl3, 1),
+ offsetof(struct sym_dsb, select.sel_scntl3),
+}/*-------------------------< SEND_IDENT >-----------------------*/,{
+ /*
+ * Selection complete.
+ * Send the IDENTIFY and possibly the TAG message
+ * and negotiation message if present.
+ */
+ SCR_MOVE_TBL ^ SCR_MSG_OUT,
+ offsetof (struct sym_dsb, smsg),
+}/*-------------------------< SELECT2 >--------------------------*/,{
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * Set IMMEDIATE ARBITRATION if we have been given
+ * a hint to do so. (Some job to do after this one).
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
+ 8,
+ SCR_REG_REG (scntl1, SCR_OR, IARB),
+ 0,
+#endif
+ /*
+ * Anticipate the COMMAND phase.
+ * This is the PHASE we expect at this point.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
+ PADDR_A (sel_no_cmd),
+}/*-------------------------< COMMAND >--------------------------*/,{
+ /*
+ * ... and send the command
+ */
+ SCR_MOVE_TBL ^ SCR_COMMAND,
+ offsetof (struct sym_dsb, cmd),
+}/*-------------------------< DISPATCH >-------------------------*/,{
+ /*
+ * MSG_IN is the only phase that shall be
+ * entered at least once for each (re)selection.
+ * So we test it first.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
+ PADDR_A (datao_phase),
+ SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
+ PADDR_A (datai_phase),
+ SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
+ PADDR_A (command),
+ SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
+ PADDR_B (msg_out),
+ /*
+ * Discard as many illegal phases as
+ * required and tell the C code about.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
+ 16,
+ SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
+ HADDR_1 (scratch),
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
+ -16,
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
+ 16,
+ SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
+ HADDR_1 (scratch),
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
+ -16,
+ SCR_INT,
+ SIR_BAD_PHASE,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
+ /*
+ * The target does not switch to command
+ * phase after IDENTIFY has been sent.
+ *
+ * If it stays in MSG OUT phase send it
+ * the IDENTIFY again.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (resend_ident),
+ /*
+ * If target does not switch to MSG IN phase
+ * and we sent a negotiation, assert the
+ * failure immediately.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ SCR_FROM_REG (HS_REG),
+ 0,
+ SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
+ SIR_NEGO_FAILED,
+ /*
+ * Jump to dispatcher.
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< INIT >-----------------------------*/,{
+ /*
+ * Wait for the SCSI RESET signal to be
+ * inactive before restarting operations,
+ * since the chip may hang on SEL_ATN
+ * if SCSI RESET is active.
+ */
+ SCR_FROM_REG (sstat0),
+ 0,
+ SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
+ -16,
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< CLRACK >---------------------------*/,{
+ /*
+ * Terminate possible pending message phase.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_DONE >-----------------------*/,{
+ /*
+ * Save current pointer to LASTP.
+ */
+ SCR_STORE_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ /*
+ * If the SWIDE is not full, jump to dispatcher.
+ * We anticipate a STATUS phase.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
+ PADDR_A (datai_done_wsr),
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
+ /*
+ * The SWIDE is full.
+ * Clear this condition.
+ */
+ SCR_REG_REG (scntl2, SCR_OR, WSR),
+ 0,
+ /*
+ * We are expecting an IGNORE RESIDUE message
+ * from the device, otherwise we are in data
+ * overrun condition. Check against MSG_IN phase.
+ */
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ SIR_SWIDE_OVERRUN,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ /*
+ * We are in MSG_IN phase,
+ * Read the first byte of the message.
+ * If it is not an IGNORE RESIDUE message,
+ * signal overrun and jump to message
+ * processing.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[0]),
+ SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
+ SIR_SWIDE_OVERRUN,
+ SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
+ PADDR_A (msg_in2),
+ /*
+ * We got the message we expected.
+ * Read the 2nd byte, and jump to dispatcher.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAO_DONE >-----------------------*/,{
+ /*
+ * Save current pointer to LASTP.
+ */
+ SCR_STORE_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ /*
+ * If the SODL is not full jump to dispatcher.
+ * We anticipate a STATUS phase.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
+ PADDR_A (datao_done_wss),
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
+ PADDR_A (status),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
+ /*
+ * The SODL is full, clear this condition.
+ */
+ SCR_REG_REG (scntl2, SCR_OR, WSS),
+ 0,
+ /*
+ * And signal a DATA UNDERRUN condition
+ * to the C code.
+ */
+ SCR_INT,
+ SIR_SODL_UNDERRUN,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATAI_PHASE >----------------------*/,{
+ /*
+ * Jump to current pointer.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< DATAO_PHASE >----------------------*/,{
+ /*
+ * C1010-66 errata work-around.
+ * Extra clocks of data hold must be inserted
+ * in DATA OUT phase on 33 MHz PCI BUS.
+ * Patched with a NOOP for other chips.
+ */
+ SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
+ 0,
+ /*
+ * Jump to current pointer.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< MSG_IN >---------------------------*/,{
+ /*
+ * Get the first byte of the message.
+ *
+ * The script processor doesn't negate the
+ * ACK signal after this transfer.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[0]),
+}/*-------------------------< MSG_IN2 >--------------------------*/,{
+ /*
+ * Check first against 1 byte messages
+ * that we handle from SCRIPTS.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
+ PADDR_A (complete),
+ SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
+ PADDR_A (disconnect),
+ SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
+ PADDR_A (save_dp),
+ SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
+ PADDR_A (restore_dp),
+ /*
+ * We handle all other messages from the
+ * C code, so no need to waste on-chip RAM
+ * for those ones.
+ */
+ SCR_JUMP,
+ PADDR_B (msg_in_etc),
+}/*-------------------------< STATUS >---------------------------*/,{
+ /*
+ * get the status
+ */
+ SCR_MOVE_ABS (1) ^ SCR_STATUS,
+ HADDR_1 (scratch),
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
+ * since we may have to tamper the start queue from
+ * the C code.
+ */
+ SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
+ 8,
+ SCR_REG_REG (scntl1, SCR_AND, ~IARB),
+ 0,
+#endif
+ /*
+ * save status to scsi_status.
+ * mark as complete.
+ */
+ SCR_TO_REG (SS_REG),
+ 0,
+ SCR_LOAD_REG (HS_REG, HS_COMPLETE),
+ 0,
+ /*
+ * Anticipate the MESSAGE PHASE for
+ * the TASK COMPLETE message.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< COMPLETE >-------------------------*/,{
+ /*
+ * Complete message.
+ *
+ * When we terminate the cycle by clearing ACK,
+ * the target may disconnect immediately.
+ *
+ * We don't want to be told of an "unexpected disconnect",
+ * so we disable this feature.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ /*
+ * Terminate cycle ...
+ */
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ /*
+ * ... and wait for the disconnect.
+ */
+ SCR_WAIT_DISC,
+ 0,
+}/*-------------------------< COMPLETE2 >------------------------*/,{
+ /*
+ * Save host status.
+ */
+ SCR_STORE_REL (scr0, 4),
+ offsetof (struct sym_ccb, phys.head.status),
+ /*
+ * Some bridges may reorder DMA writes to memory.
+ * We donnot want the CPU to deal with completions
+ * without all the posted write having been flushed
+ * to memory. This DUMMY READ should flush posted
+ * buffers prior to the CPU having to deal with
+ * completions.
+ */
+ SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
+ offsetof (struct sym_ccb, phys.head.status),
+
+ /*
+ * If command resulted in not GOOD status,
+ * call the C code if needed.
+ */
+ SCR_FROM_REG (SS_REG),
+ 0,
+ SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
+ PADDR_B (bad_status),
+ /*
+ * If we performed an auto-sense, call
+ * the C code to synchronyze task aborts
+ * with UNIT ATTENTION conditions.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
+ PADDR_A (complete_error),
+}/*-------------------------< DONE >-----------------------------*/,{
+ /*
+ * Copy the DSA to the DONE QUEUE and
+ * signal completion to the host.
+ * If we are interrupted between DONE
+ * and DONE_END, we must reset, otherwise
+ * the completed CCB may be lost.
+ */
+ SCR_STORE_ABS (dsa, 4),
+ PADDR_B (scratch),
+ SCR_LOAD_ABS (dsa, 4),
+ PADDR_B (done_pos),
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (scratch),
+ SCR_STORE_REL (scratcha, 4),
+ 0,
+ /*
+ * The instruction below reads the DONE QUEUE next
+ * free position from memory.
+ * In addition it ensures that all PCI posted writes
+ * are flushed and so the DSA value of the done
+ * CCB is visible by the CPU before INTFLY is raised.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ 4,
+ SCR_INT_FLY,
+ 0,
+ SCR_STORE_ABS (scratcha, 4),
+ PADDR_B (done_pos),
+}/*-------------------------< DONE_END >-------------------------*/,{
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (startpos),
+ SCR_INT,
+ SIR_COMPLETE_ERROR,
+}/*-------------------------< SAVE_DP >--------------------------*/,{
+ /*
+ * Clear ACK immediately.
+ * No need to delay it.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * Keep track we received a SAVE DP, so
+ * we will switch to the other PM context
+ * on the next PM since the DP may point
+ * to the current PM context.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
+ 0,
+ /*
+ * SAVE_DP message:
+ * Copy LASTP to SAVEP.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_STORE_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.savep),
+ /*
+ * Anticipate the MESSAGE PHASE for
+ * the DISCONNECT message.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
+ PADDR_A (msg_in),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< RESTORE_DP >-----------------------*/,{
+ /*
+ * Clear ACK immediately.
+ * No need to delay it.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * Copy SAVEP to LASTP.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.savep),
+ SCR_STORE_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DISCONNECT >-----------------------*/,{
+ /*
+ * DISCONNECTing ...
+ *
+ * disable the "unexpected disconnect" feature,
+ * and remove the ACK signal.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ /*
+ * Wait for the disconnect.
+ */
+ SCR_WAIT_DISC,
+ 0,
+ /*
+ * Status is: DISCONNECTED.
+ */
+ SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
+ 0,
+ /*
+ * Save host status.
+ */
+ SCR_STORE_REL (scr0, 4),
+ offsetof (struct sym_ccb, phys.head.status),
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< IDLE >-----------------------------*/,{
+ /*
+ * Nothing to do?
+ * Switch the LED off and wait for reselect.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_OR, 0x01),
+ 0,
+#ifdef SYM_CONF_IARB_SUPPORT
+ SCR_JUMPR,
+ 8,
+#endif
+}/*-------------------------< UNGETJOB >-------------------------*/,{
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * Set IMMEDIATE ARBITRATION, for the next time.
+ * This will give us better chance to win arbitration
+ * for the job we just wanted to do.
+ */
+ SCR_REG_REG (scntl1, SCR_OR, IARB),
+ 0,
+#endif
+ /*
+ * We are not able to restart the SCRIPTS if we are
+ * interrupted and these instruction haven't been
+ * all executed. BTW, this is very unlikely to
+ * happen, but we check that from the C code.
+ */
+ SCR_LOAD_REG (dsa, 0xff),
+ 0,
+ SCR_STORE_ABS (scratcha, 4),
+ PADDR_B (startpos),
+}/*-------------------------< RESELECT >-------------------------*/,{
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ /*
+ * Make sure we are in initiator mode.
+ */
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * Sleep waiting for a reselection.
+ */
+ SCR_WAIT_RESEL,
+ PADDR_A(start),
+}/*-------------------------< RESELECTED >-----------------------*/,{
+ /*
+ * Switch the LED on.
+ * Will be patched with a NO_OP if LED
+ * not needed or not desired.
+ */
+ SCR_REG_REG (gpreg, SCR_AND, 0xfe),
+ 0,
+ /*
+ * load the target id into the sdid
+ */
+ SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
+ 0,
+ SCR_TO_REG (sdid),
+ 0,
+ /*
+ * Load the target control block address
+ */
+ SCR_LOAD_ABS (dsa, 4),
+ PADDR_B (targtbl),
+ SCR_SFBR_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_AND, 0x3c),
+ 0,
+ SCR_LOAD_REL (dsa, 4),
+ 0,
+ /*
+ * We expect MESSAGE IN phase.
+ * If not, get help from the C code.
+ */
+ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ SIR_RESEL_NO_MSG_IN,
+ /*
+ * Load the legacy synchronous transfer registers.
+ */
+ SCR_LOAD_REL (scntl3, 1),
+ offsetof(struct sym_tcb, head.wval),
+ SCR_LOAD_REL (sxfer, 1),
+ offsetof(struct sym_tcb, head.sval),
+}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
+ /*
+ * The C1010 uses a new synchronous timing scheme.
+ * Will be patched with a NO_OP if not a C1010.
+ */
+ SCR_LOAD_REL (scntl4, 1),
+ offsetof(struct sym_tcb, head.uval),
+ /*
+ * Get the IDENTIFY message.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin),
+ /*
+ * If IDENTIFY LUN #0, use a faster path
+ * to find the LCB structure.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
+ PADDR_A (resel_lun0),
+ /*
+ * If message isn't an IDENTIFY,
+ * tell the C code about.
+ */
+ SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
+ SIR_RESEL_NO_IDENTIFY,
+ /*
+ * It is an IDENTIFY message,
+ * Load the LUN control block address.
+ */
+ SCR_LOAD_REL (dsa, 4),
+ offsetof(struct sym_tcb, head.luntbl_sa),
+ SCR_SFBR_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_SHL, 0),
+ 0,
+ SCR_REG_REG (dsa, SCR_AND, 0xfc),
+ 0,
+ SCR_LOAD_REL (dsa, 4),
+ 0,
+ SCR_JUMPR,
+ 8,
+}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
+ /*
+ * LUN 0 special case (but usual one :))
+ */
+ SCR_LOAD_REL (dsa, 4),
+ offsetof(struct sym_tcb, head.lun0_sa),
+ /*
+ * Jump indirectly to the reselect action for this LUN.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof(struct sym_lcb, head.resel_sa),
+ SCR_RETURN,
+ 0,
+ /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
+}/*-------------------------< RESEL_TAG >------------------------*/,{
+ /*
+ * ACK the IDENTIFY previously received.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * It shall be a tagged command.
+ * Read SIMPLE+TAG.
+ * The C code will deal with errors.
+ * Agressive optimization, is'nt it? :)
+ */
+ SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
+ HADDR_1 (msgin),
+ /*
+ * Load the pointer to the tagged task
+ * table for this LUN.
+ */
+ SCR_LOAD_REL (dsa, 4),
+ offsetof(struct sym_lcb, head.itlq_tbl_sa),
+ /*
+ * The SIDL still contains the TAG value.
+ * Agressive optimization, isn't it? :):)
+ */
+ SCR_REG_SFBR (sidl, SCR_SHL, 0),
+ 0,
+#if SYM_CONF_MAX_TASK*4 > 512
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 2),
+ 0,
+ SCR_REG_REG (sfbr, SCR_SHL, 0),
+ 0,
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 1),
+ 0,
+#elif SYM_CONF_MAX_TASK*4 > 256
+ SCR_JUMPR ^ IFFALSE (CARRYSET),
+ 8,
+ SCR_REG_REG (dsa1, SCR_OR, 1),
+ 0,
+#endif
+ /*
+ * Retrieve the DSA of this task.
+ * JUMP indirectly to the restart point of the CCB.
+ */
+ SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
+ 0,
+ SCR_LOAD_REL (dsa, 4),
+ 0,
+ SCR_LOAD_REL (temp, 4),
+ offsetof(struct sym_ccb, phys.head.go.restart),
+ SCR_RETURN,
+ 0,
+ /* In normal situations we branch to RESEL_DSA */
+}/*-------------------------< RESEL_DSA >------------------------*/,{
+ /*
+ * ACK the IDENTIFY or TAG previously received.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
+ /*
+ * Initialize the status registers
+ */
+ SCR_LOAD_REL (scr0, 4),
+ offsetof (struct sym_ccb, phys.head.status),
+ /*
+ * Jump to dispatcher.
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
+ /*
+ * Load the DSA with the unique ITL task.
+ */
+ SCR_LOAD_REL (dsa, 4),
+ offsetof(struct sym_lcb, head.itl_task_sa),
+ /*
+ * JUMP indirectly to the restart point of the CCB.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof(struct sym_ccb, phys.head.go.restart),
+ SCR_RETURN,
+ 0,
+ /* In normal situations we branch to RESEL_DSA */
+}/*-------------------------< DATA_IN >--------------------------*/,{
+/*
+ * Because the size depends on the
+ * #define SYM_CONF_MAX_SG parameter,
+ * it is filled in at runtime.
+ *
+ * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
+ * || SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ * || offsetof (struct sym_dsb, data[ i]),
+ * ##==========================================
+ */
+0
+}/*-------------------------< DATA_IN2 >-------------------------*/,{
+ SCR_CALL,
+ PADDR_A (datai_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< DATA_OUT >-------------------------*/,{
+/*
+ * Because the size depends on the
+ * #define SYM_CONF_MAX_SG parameter,
+ * it is filled in at runtime.
+ *
+ * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
+ * || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ * || offsetof (struct sym_dsb, data[ i]),
+ * ##==========================================
+ */
+0
+}/*-------------------------< DATA_OUT2 >------------------------*/,{
+ SCR_CALL,
+ PADDR_A (datao_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< PM0_DATA >-------------------------*/,{
+ /*
+ * Read our host flags to SFBR, so we will be able
+ * to check against the data direction we expect.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ /*
+ * Check against actual DATA PHASE.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
+ PADDR_A (pm0_data_out),
+ /*
+ * Actual phase is DATA IN.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
+ 0,
+ /*
+ * Move the data to memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.pm0.sg),
+ SCR_JUMP,
+ PADDR_A (pm0_data_end),
+}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
+ /*
+ * Actual phase is DATA OUT.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
+ 0,
+ /*
+ * Move the data from memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ offsetof (struct sym_ccb, phys.pm0.sg),
+}/*-------------------------< PM0_DATA_END >---------------------*/,{
+ /*
+ * Clear the flag that told we were moving
+ * data from the PM0 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
+ 0,
+ /*
+ * Return to the previous DATA script which
+ * is guaranteed by design (if no bug) to be
+ * the main DATA script for this transfer.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.pm0.ret),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< PM1_DATA >-------------------------*/,{
+ /*
+ * Read our host flags to SFBR, so we will be able
+ * to check against the data direction we expect.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ /*
+ * Check against actual DATA PHASE.
+ */
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
+ PADDR_A (pm1_data_out),
+ /*
+ * Actual phase is DATA IN.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
+ 0,
+ /*
+ * Move the data to memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.pm1.sg),
+ SCR_JUMP,
+ PADDR_A (pm1_data_end),
+}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
+ /*
+ * Actual phase is DATA OUT.
+ * Check against expected direction.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
+ PADDR_B (data_ovrun),
+ /*
+ * Keep track we are moving data from the
+ * PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
+ 0,
+ /*
+ * Move the data from memory.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_OUT,
+ offsetof (struct sym_ccb, phys.pm1.sg),
+}/*-------------------------< PM1_DATA_END >---------------------*/,{
+ /*
+ * Clear the flag that told we were moving
+ * data from the PM1 DATA mini-script.
+ */
+ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
+ 0,
+ /*
+ * Return to the previous DATA script which
+ * is guaranteed by design (if no bug) to be
+ * the main DATA script for this transfer.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.pm1.ret),
+ SCR_RETURN,
+ 0,
+}/*-------------------------<>-----------------------------------*/
+};
+
+static struct SYM_FWB_SCR SYM_FWB_SCR = {
+/*--------------------------< START64 >--------------------------*/ {
+ /*
+ * SCRIPT entry point for the 895A, 896 and 1010.
+ * For now, there is no specific stuff for those
+ * chips at this point, but this may come.
+ */
+ SCR_JUMP,
+ PADDR_A (init),
+}/*-------------------------< NO_DATA >--------------------------*/,{
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
+ /*
+ * We are jumped here by the C code, if we have
+ * some target to reset or some disconnected
+ * job to abort. Since error recovery is a serious
+ * busyness, we will really reset the SCSI BUS, if
+ * case of a SCSI interrupt occurring in this path.
+ */
+#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
+ /*
+ * Set initiator mode.
+ */
+ SCR_CLR (SCR_TRG),
+ 0,
+#endif
+ /*
+ * And try to select this target.
+ */
+ SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
+ PADDR_A (reselect),
+ /*
+ * Wait for the selection to complete or
+ * the selection to time out.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ -8,
+ /*
+ * Call the C code.
+ */
+ SCR_INT,
+ SIR_TARGET_SELECTED,
+ /*
+ * The C code should let us continue here.
+ * Send the 'kiss of death' message.
+ * We expect an immediate disconnect once
+ * the target has eaten the message.
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_MOVE_TBL ^ SCR_MSG_OUT,
+ offsetof (struct sym_hcb, abrt_tbl),
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ SCR_WAIT_DISC,
+ 0,
+ /*
+ * Tell the C code that we are done.
+ */
+ SCR_INT,
+ SIR_ABORT_SENT,
+}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
+ /*
+ * Jump at scheduler.
+ */
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
+ /*
+ * If it is an EXTENDED (variable size message)
+ * Handle it.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
+ PADDR_B (msg_extended),
+ /*
+ * Let the C code handle any other
+ * 1 byte message.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
+ PADDR_B (msg_received),
+ SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
+ PADDR_B (msg_received),
+ /*
+ * We donnot handle 2 bytes messages from SCRIPTS.
+ * So, let the C code deal with these ones too.
+ */
+ SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
+ PADDR_B (msg_weird_seen),
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+}/*-------------------------< MSG_RECEIVED >---------------------*/,{
+ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
+ 0,
+ SCR_INT,
+ SIR_MSG_RECEIVED,
+}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
+ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
+ 0,
+ SCR_INT,
+ SIR_MSG_WEIRD,
+}/*-------------------------< MSG_EXTENDED >---------------------*/,{
+ /*
+ * Clear ACK and get the next byte
+ * assumed to be the message length.
+ */
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (msgin[1]),
+ /*
+ * Try to catch some unlikely situations as 0 length
+ * or too large the length.
+ */
+ SCR_JUMP ^ IFTRUE (DATA (0)),
+ PADDR_B (msg_weird_seen),
+ SCR_TO_REG (scratcha),
+ 0,
+ SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
+ 0,
+ SCR_JUMP ^ IFTRUE (CARRYSET),
+ PADDR_B (msg_weird_seen),
+ /*
+ * We donnot handle extended messages from SCRIPTS.
+ * Read the amount of data correponding to the
+ * message length and call the C code.
+ */
+ SCR_STORE_REL (scratcha, 1),
+ offsetof (struct sym_dsb, smsg_ext.size),
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_MOVE_TBL ^ SCR_MSG_IN,
+ offsetof (struct sym_dsb, smsg_ext),
+ SCR_JUMP,
+ PADDR_B (msg_received),
+}/*-------------------------< MSG_BAD >--------------------------*/,{
+ /*
+ * unimplemented message - reject it.
+ */
+ SCR_INT,
+ SIR_REJECT_TO_SEND,
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (clrack),
+}/*-------------------------< MSG_WEIRD >------------------------*/,{
+ /*
+ * weird message received
+ * ignore all MSG IN phases and reject it.
+ */
+ SCR_INT,
+ SIR_REJECT_TO_SEND,
+ SCR_SET (SCR_ATN),
+ 0,
+}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
+ PADDR_A (dispatch),
+ SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
+ HADDR_1 (scratch),
+ SCR_JUMP,
+ PADDR_B (msg_weird1),
+}/*-------------------------< WDTR_RESP >------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_WDTR >------------------------*/,{
+ /*
+ * Send the M_X_WIDE_REQ
+ */
+ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< SDTR_RESP >------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_SDTR >------------------------*/,{
+ /*
+ * Send the M_X_SYNC_REQ
+ */
+ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< PPR_RESP >-------------------------*/,{
+ /*
+ * let the target fetch our answer.
+ */
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (nego_bad_phase),
+}/*-------------------------< SEND_PPR >-------------------------*/,{
+ /*
+ * Send the M_X_PPR_REQ
+ */
+ SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_JUMP,
+ PADDR_B (msg_out_done),
+}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
+ SCR_INT,
+ SIR_NEGO_PROTO,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< MSG_OUT >--------------------------*/,{
+ /*
+ * The target requests a message.
+ * We donnot send messages that may
+ * require the device to go to bus free.
+ */
+ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ /*
+ * ... wait for the next phase
+ * if it's a message out, send it again, ...
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
+ PADDR_B (msg_out),
+}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
+ /*
+ * Let the C code be aware of the
+ * sent message and clear the message.
+ */
+ SCR_INT,
+ SIR_MSG_OUT_DONE,
+ /*
+ * ... and process the next phase
+ */
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< DATA_OVRUN >-----------------------*/,{
+ /*
+ * Use scratcha to count the extra bytes.
+ */
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (zero),
+}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
+ /*
+ * The target may want to transfer too much data.
+ *
+ * If phase is DATA OUT write 1 byte and count it.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
+ 16,
+ SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
+ HADDR_1 (scratch),
+ SCR_JUMP,
+ PADDR_B (data_ovrun2),
+ /*
+ * If WSR is set, clear this condition, and
+ * count this byte.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
+ 16,
+ SCR_REG_REG (scntl2, SCR_OR, WSR),
+ 0,
+ SCR_JUMP,
+ PADDR_B (data_ovrun2),
+ /*
+ * Finally check against DATA IN phase.
+ * Signal data overrun to the C code
+ * and jump to dispatcher if not so.
+ * Read 1 byte otherwise and count it.
+ */
+ SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
+ 16,
+ SCR_INT,
+ SIR_DATA_OVERRUN,
+ SCR_JUMP,
+ PADDR_A (dispatch),
+ SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
+ HADDR_1 (scratch),
+}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
+ /*
+ * Count this byte.
+ * This will allow to return a negative
+ * residual to user.
+ */
+ SCR_REG_REG (scratcha, SCR_ADD, 0x01),
+ 0,
+ SCR_REG_REG (scratcha1, SCR_ADDC, 0),
+ 0,
+ SCR_REG_REG (scratcha2, SCR_ADDC, 0),
+ 0,
+ /*
+ * .. and repeat as required.
+ */
+ SCR_JUMP,
+ PADDR_B (data_ovrun1),
+}/*-------------------------< ABORT_RESEL >----------------------*/,{
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_CLR (SCR_ACK),
+ 0,
+ /*
+ * send the abort/abortag/reset message
+ * we expect an immediate disconnect
+ */
+ SCR_REG_REG (scntl2, SCR_AND, 0x7f),
+ 0,
+ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
+ HADDR_1 (msgout),
+ SCR_CLR (SCR_ACK|SCR_ATN),
+ 0,
+ SCR_WAIT_DISC,
+ 0,
+ SCR_INT,
+ SIR_RESEL_ABORTED,
+ SCR_JUMP,
+ PADDR_A (start),
+}/*-------------------------< RESEND_IDENT >---------------------*/,{
+ /*
+ * The target stays in MSG OUT phase after having acked
+ * Identify [+ Tag [+ Extended message ]]. Targets shall
+ * behave this way on parity error.
+ * We must send it again all the messages.
+ */
+ SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
+ 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
+ SCR_JUMP,
+ PADDR_A (send_ident),
+}/*-------------------------< IDENT_BREAK >----------------------*/,{
+ SCR_CLR (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (select2),
+}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
+ SCR_SET (SCR_ATN),
+ 0,
+ SCR_JUMP,
+ PADDR_A (select2),
+}/*-------------------------< SDATA_IN >-------------------------*/,{
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_dsb, sense),
+ SCR_CALL,
+ PADDR_A (datai_done),
+ SCR_JUMP,
+ PADDR_B (data_ovrun),
+}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
+ /*
+ * Message is an IDENTIFY, but lun is unknown.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORT to clear all pending tasks.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_LUN,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_I_T_L >------------------------*/,{
+ /*
+ * We donnot have a task for that I_T_L.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORT message.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_I_T_L,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
+ /*
+ * We donnot have a task that matches the tag.
+ * Signal problem to C code for logging the event.
+ * Send a M_ABORTTAG message.
+ */
+ SCR_INT,
+ SIR_RESEL_BAD_I_T_L_Q,
+ SCR_JUMP,
+ PADDR_B (abort_resel),
+}/*-------------------------< BAD_STATUS >-----------------------*/,{
+ /*
+ * Anything different from INTERMEDIATE
+ * CONDITION MET should be a bad SCSI status,
+ * given that GOOD status has already been tested.
+ * Call the C code.
+ */
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (startpos),
+ SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
+ SIR_BAD_SCSI_STATUS,
+ SCR_RETURN,
+ 0,
+}/*-------------------------< PM_HANDLE >------------------------*/,{
+ /*
+ * Phase mismatch handling.
+ *
+ * Since we have to deal with 2 SCSI data pointers
+ * (current and saved), we need at least 2 contexts.
+ * Each context (pm0 and pm1) has a saved area, a
+ * SAVE mini-script and a DATA phase mini-script.
+ */
+ /*
+ * Get the PM handling flags.
+ */
+ SCR_FROM_REG (HF_REG),
+ 0,
+ /*
+ * If no flags (1rst PM for example), avoid
+ * all the below heavy flags testing.
+ * This makes the normal case a bit faster.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
+ PADDR_B (pm_handle1),
+ /*
+ * If we received a SAVE DP, switch to the
+ * other PM context since the savep may point
+ * to the current PM context.
+ */
+ SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
+ 8,
+ SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
+ 0,
+ /*
+ * If we have been interrupt in a PM DATA mini-script,
+ * we take the return address from the corresponding
+ * saved area.
+ * This ensure the return address always points to the
+ * main DATA script for this transfer.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
+ PADDR_B (pm_handle1),
+ SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
+ 16,
+ SCR_LOAD_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.pm0.ret),
+ SCR_JUMP,
+ PADDR_B (pm_save),
+ SCR_LOAD_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.pm1.ret),
+ SCR_JUMP,
+ PADDR_B (pm_save),
+}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
+ /*
+ * Normal case.
+ * Update the return address so that it
+ * will point after the interrupted MOVE.
+ */
+ SCR_REG_REG (ia, SCR_ADD, 8),
+ 0,
+ SCR_REG_REG (ia1, SCR_ADDC, 0),
+ 0,
+}/*-------------------------< PM_SAVE >--------------------------*/,{
+ /*
+ * Clear all the flags that told us if we were
+ * interrupted in a PM DATA mini-script and/or
+ * we received a SAVE DP.
+ */
+ SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
+ 0,
+ /*
+ * Choose the current PM context.
+ */
+ SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
+ PADDR_B (pm1_save),
+}/*-------------------------< PM0_SAVE >-------------------------*/,{
+ SCR_STORE_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.pm0.ret),
+ /*
+ * If WSR bit is set, either UA and RBC may
+ * have to be changed whether the device wants
+ * to ignore this residue or not.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
+ PADDR_B (pm_wsr_handle),
+ /*
+ * Save the remaining byte count, the updated
+ * address and the return address.
+ */
+ SCR_STORE_REL (rbc, 4),
+ offsetof(struct sym_ccb, phys.pm0.sg.size),
+ SCR_STORE_REL (ua, 4),
+ offsetof(struct sym_ccb, phys.pm0.sg.addr),
+ /*
+ * Set the current pointer at the PM0 DATA mini-script.
+ */
+ SCR_LOAD_ABS (ia, 4),
+ PADDR_B (pm0_data_addr),
+}/*-------------------------< PM_SAVE_END >----------------------*/,{
+ SCR_STORE_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.head.lastp),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+}/*-------------------------< PM1_SAVE >-------------------------*/,{
+ SCR_STORE_REL (ia, 4),
+ offsetof(struct sym_ccb, phys.pm1.ret),
+ /*
+ * If WSR bit is set, either UA and RBC may
+ * have to be changed whether the device wants
+ * to ignore this residue or not.
+ */
+ SCR_FROM_REG (scntl2),
+ 0,
+ SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
+ PADDR_B (pm_wsr_handle),
+ /*
+ * Save the remaining byte count, the updated
+ * address and the return address.
+ */
+ SCR_STORE_REL (rbc, 4),
+ offsetof(struct sym_ccb, phys.pm1.sg.size),
+ SCR_STORE_REL (ua, 4),
+ offsetof(struct sym_ccb, phys.pm1.sg.addr),
+ /*
+ * Set the current pointer at the PM1 DATA mini-script.
+ */
+ SCR_LOAD_ABS (ia, 4),
+ PADDR_B (pm1_data_addr),
+ SCR_JUMP,
+ PADDR_B (pm_save_end),
+}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
+ /*
+ * Phase mismatch handling from SCRIPT with WSR set.
+ * Such a condition can occur if the chip wants to
+ * execute a CHMOV(size > 1) when the WSR bit is
+ * set and the target changes PHASE.
+ *
+ * We must move the residual byte to memory.
+ *
+ * UA contains bit 0..31 of the address to
+ * move the residual byte.
+ * Move it to the table indirect.
+ */
+ SCR_STORE_REL (ua, 4),
+ offsetof (struct sym_ccb, phys.wresid.addr),
+ /*
+ * Increment UA (move address to next position).
+ */
+ SCR_REG_REG (ua, SCR_ADD, 1),
+ 0,
+ SCR_REG_REG (ua1, SCR_ADDC, 0),
+ 0,
+ SCR_REG_REG (ua2, SCR_ADDC, 0),
+ 0,
+ SCR_REG_REG (ua3, SCR_ADDC, 0),
+ 0,
+ /*
+ * Compute SCRATCHA as:
+ * - size to transfer = 1 byte.
+ * - bit 24..31 = high address bit [32...39].
+ */
+ SCR_LOAD_ABS (scratcha, 4),
+ PADDR_B (zero),
+ SCR_REG_REG (scratcha, SCR_OR, 1),
+ 0,
+ SCR_FROM_REG (rbc3),
+ 0,
+ SCR_TO_REG (scratcha3),
+ 0,
+ /*
+ * Move this value to the table indirect.
+ */
+ SCR_STORE_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.wresid.size),
+ /*
+ * Wait for a valid phase.
+ * While testing with bogus QUANTUM drives, the C1010
+ * sometimes raised a spurious phase mismatch with
+ * WSR and the CHMOV(1) triggered another PM.
+ * Waiting explicitely for the PHASE seemed to avoid
+ * the nested phase mismatch. Btw, this didn't happen
+ * using my IBM drives.
+ */
+ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
+ 0,
+ /*
+ * Perform the move of the residual byte.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.wresid),
+ /*
+ * We can now handle the phase mismatch with UA fixed.
+ * RBC[0..23]=0 is a special case that does not require
+ * a PM context. The C code also checks against this.
+ */
+ SCR_FROM_REG (rbc),
+ 0,
+ SCR_RETURN ^ IFFALSE (DATA (0)),
+ 0,
+ SCR_FROM_REG (rbc1),
+ 0,
+ SCR_RETURN ^ IFFALSE (DATA (0)),
+ 0,
+ SCR_FROM_REG (rbc2),
+ 0,
+ SCR_RETURN ^ IFFALSE (DATA (0)),
+ 0,
+ /*
+ * RBC[0..23]=0.
+ * Not only we donnot need a PM context, but this would
+ * lead to a bogus CHMOV(0). This condition means that
+ * the residual was the last byte to move from this CHMOV.
+ * So, we just have to move the current data script pointer
+ * (i.e. TEMP) to the SCRIPTS address following the
+ * interrupted CHMOV and jump to dispatcher.
+ * IA contains the data pointer to save.
+ */
+ SCR_JUMP,
+ PADDR_B (pm_save_end),
+}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
+ /*
+ * Helper for the C code when WSR bit is set.
+ * Perform the move of the residual byte.
+ */
+ SCR_CHMOV_TBL ^ SCR_DATA_IN,
+ offsetof (struct sym_ccb, phys.wresid),
+ SCR_JUMP,
+ PADDR_A (dispatch),
+
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+}/*-------------------------< DATA_IO >--------------------------*/,{
+ /*
+ * We jump here if the data direction was unknown at the
+ * time we had to queue the command to the scripts processor.
+ * Pointers had been set as follow in this situation:
+ * savep --> DATA_IO
+ * lastp --> start pointer when DATA_IN
+ * wlastp --> start pointer when DATA_OUT
+ * This script sets savep and lastp according to the
+ * direction chosen by the target.
+ */
+ SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
+ PADDR_B (data_io_out),
+}/*-------------------------< DATA_IO_IN >-----------------------*/,{
+ /*
+ * Direction is DATA IN.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+}/*-------------------------< DATA_IO_COM >----------------------*/,{
+ SCR_STORE_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.savep),
+
+ /*
+ * Jump to the SCRIPTS according to actual direction.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof (struct sym_ccb, phys.head.savep),
+ SCR_RETURN,
+ 0,
+}/*-------------------------< DATA_IO_OUT >----------------------*/,{
+ /*
+ * Direction is DATA OUT.
+ */
+ SCR_REG_REG (HF_REG, SCR_AND, (~HF_DATA_IN)),
+ 0,
+ SCR_LOAD_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.wlastp),
+ SCR_STORE_REL (scratcha, 4),
+ offsetof (struct sym_ccb, phys.head.lastp),
+ SCR_JUMP,
+ PADDR_B(data_io_com),
+#endif /* SYM_OPT_HANDLE_DIR_UNKNOWN */
+
+}/*-------------------------< ZERO >-----------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< SCRATCH >--------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< DONE_POS >-------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< STARTPOS >-------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------< TARGTBL >--------------------------*/,{
+ SCR_DATA_ZERO,
+}/*-------------------------<>-----------------------------------*/
+};
+
+static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
+ /*-------------------------< SNOOPTEST >------------------------*/{
+ /*
+ * Read the variable from memory.
+ */
+ SCR_LOAD_REL (scratcha, 4),
+ offsetof(struct sym_hcb, scratch),
+ /*
+ * Write the variable to memory.
+ */
+ SCR_STORE_REL (temp, 4),
+ offsetof(struct sym_hcb, scratch),
+ /*
+ * Read back the variable from memory.
+ */
+ SCR_LOAD_REL (temp, 4),
+ offsetof(struct sym_hcb, scratch),
+}/*-------------------------< SNOOPEND >-------------------------*/,{
+ /*
+ * And stop.
+ */
+ SCR_INT,
+ 99,
+}/*-------------------------<>-----------------------------------*/
+};
diff --git a/drivers/scsi/sym53c8xx_2/sym_glue.c b/drivers/scsi/sym53c8xx_2/sym_glue.c
new file mode 100644
index 000000000000..a1dff6d437bc
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_glue.c
@@ -0,0 +1,2196 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include <linux/ctype.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/spinlock.h>
+#include <scsi/scsi.h>
+#include <scsi/scsi_tcq.h>
+#include <scsi/scsi_device.h>
+#include <scsi/scsi_transport.h>
+
+#include "sym_glue.h"
+#include "sym_nvram.h"
+
+#define NAME53C "sym53c"
+#define NAME53C8XX "sym53c8xx"
+
+/* SPARC just has to be different ... */
+#ifdef __sparc__
+#define IRQ_FMT "%s"
+#define IRQ_PRM(x) __irq_itoa(x)
+#else
+#define IRQ_FMT "%d"
+#define IRQ_PRM(x) (x)
+#endif
+
+struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
+unsigned int sym_debug_flags = 0;
+
+static char *excl_string;
+static char *safe_string;
+module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
+module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
+module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
+module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
+module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
+module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
+module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
+module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
+module_param_named(verb, sym_driver_setup.verbose, byte, 0);
+module_param_named(debug, sym_debug_flags, uint, 0);
+module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
+module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
+module_param_named(excl, excl_string, charp, 0);
+module_param_named(safe, safe_string, charp, 0);
+
+MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
+MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
+MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers");
+MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
+MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
+MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
+MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
+MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
+MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
+MODULE_PARM_DESC(debug, "Set bits to enable debugging");
+MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3");
+MODULE_PARM_DESC(nvram, "Option currently not used");
+MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
+MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
+
+MODULE_LICENSE("GPL");
+MODULE_VERSION(SYM_VERSION);
+MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
+MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
+
+static void sym2_setup_params(void)
+{
+ char *p = excl_string;
+ int xi = 0;
+
+ while (p && (xi < 8)) {
+ char *next_p;
+ int val = (int) simple_strtoul(p, &next_p, 0);
+ sym_driver_setup.excludes[xi++] = val;
+ p = next_p;
+ }
+
+ if (safe_string) {
+ if (*safe_string == 'y') {
+ sym_driver_setup.max_tag = 0;
+ sym_driver_setup.burst_order = 0;
+ sym_driver_setup.scsi_led = 0;
+ sym_driver_setup.scsi_diff = 1;
+ sym_driver_setup.irq_mode = 0;
+ sym_driver_setup.scsi_bus_check = 2;
+ sym_driver_setup.host_id = 7;
+ sym_driver_setup.verbose = 2;
+ sym_driver_setup.settle_delay = 10;
+ sym_driver_setup.use_nvram = 1;
+ } else if (*safe_string != 'n') {
+ printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
+ " passed to safe option", safe_string);
+ }
+ }
+}
+
+/*
+ * We used to try to deal with 64-bit BARs here, but don't any more.
+ * There are many parts of this driver which would need to be modified
+ * to handle a 64-bit base address, including scripts. I'm uncomfortable
+ * with making those changes when I have no way of testing it, so I'm
+ * just going to disable it.
+ *
+ * Note that some machines (eg HP rx8620 and Superdome) have bus addresses
+ * below 4GB and physical addresses above 4GB. These will continue to work.
+ */
+static int __devinit
+pci_get_base_address(struct pci_dev *pdev, int index, unsigned long *basep)
+{
+ u32 tmp;
+ unsigned long base;
+#define PCI_BAR_OFFSET(index) (PCI_BASE_ADDRESS_0 + (index<<2))
+
+ pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
+ base = tmp;
+ if ((tmp & 0x7) == PCI_BASE_ADDRESS_MEM_TYPE_64) {
+ pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
+ if (tmp > 0)
+ dev_err(&pdev->dev,
+ "BAR %d is 64-bit, disabling\n", index - 1);
+ base = 0;
+ }
+
+ if ((base & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
+ base &= PCI_BASE_ADDRESS_IO_MASK;
+ } else {
+ base &= PCI_BASE_ADDRESS_MEM_MASK;
+ }
+
+ *basep = base;
+ return index;
+#undef PCI_BAR_OFFSET
+}
+
+static struct scsi_transport_template *sym2_transport_template = NULL;
+
+/*
+ * Used by the eh thread to wait for command completion.
+ * It is allocated on the eh thread stack.
+ */
+struct sym_eh_wait {
+ struct completion done;
+ struct timer_list timer;
+ void (*old_done)(struct scsi_cmnd *);
+ int to_do;
+ int timed_out;
+};
+
+/*
+ * Driver private area in the SCSI command structure.
+ */
+struct sym_ucmd { /* Override the SCSI pointer structure */
+ dma_addr_t data_mapping;
+ u_char data_mapped;
+ struct sym_eh_wait *eh_wait;
+};
+
+#define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp))
+#define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
+
+static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
+{
+ int dma_dir = cmd->sc_data_direction;
+
+ switch(SYM_UCMD_PTR(cmd)->data_mapped) {
+ case 2:
+ pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
+ break;
+ case 1:
+ pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
+ cmd->request_bufflen, dma_dir);
+ break;
+ }
+ SYM_UCMD_PTR(cmd)->data_mapped = 0;
+}
+
+static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
+{
+ dma_addr_t mapping;
+ int dma_dir = cmd->sc_data_direction;
+
+ mapping = pci_map_single(pdev, cmd->request_buffer,
+ cmd->request_bufflen, dma_dir);
+ if (mapping) {
+ SYM_UCMD_PTR(cmd)->data_mapped = 1;
+ SYM_UCMD_PTR(cmd)->data_mapping = mapping;
+ }
+
+ return mapping;
+}
+
+static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
+{
+ int use_sg;
+ int dma_dir = cmd->sc_data_direction;
+
+ use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
+ if (use_sg > 0) {
+ SYM_UCMD_PTR(cmd)->data_mapped = 2;
+ SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
+ }
+
+ return use_sg;
+}
+
+#define unmap_scsi_data(np, cmd) \
+ __unmap_scsi_data(np->s.device, cmd)
+#define map_scsi_single_data(np, cmd) \
+ __map_scsi_single_data(np->s.device, cmd)
+#define map_scsi_sg_data(np, cmd) \
+ __map_scsi_sg_data(np->s.device, cmd)
+/*
+ * Complete a pending CAM CCB.
+ */
+void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
+{
+ unmap_scsi_data(np, cmd);
+ cmd->scsi_done(cmd);
+}
+
+static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
+{
+ sym_set_cam_status(cmd, cam_status);
+ sym_xpt_done(np, cmd);
+}
+
+
+/*
+ * Tell the SCSI layer about a BUS RESET.
+ */
+void sym_xpt_async_bus_reset(struct sym_hcb *np)
+{
+ printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
+ np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
+ np->s.settle_time_valid = 1;
+ if (sym_verbose >= 2)
+ printf_info("%s: command processing suspended for %d seconds\n",
+ sym_name(np), sym_driver_setup.settle_delay);
+}
+
+/*
+ * Tell the SCSI layer about a BUS DEVICE RESET message sent.
+ */
+void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
+{
+ printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
+}
+
+/*
+ * Choose the more appropriate CAM status if
+ * the IO encountered an extended error.
+ */
+static int sym_xerr_cam_status(int cam_status, int x_status)
+{
+ if (x_status) {
+ if (x_status & XE_PARITY_ERR)
+ cam_status = DID_PARITY;
+ else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
+ cam_status = DID_ERROR;
+ else if (x_status & XE_BAD_PHASE)
+ cam_status = DID_ERROR;
+ else
+ cam_status = DID_ERROR;
+ }
+ return cam_status;
+}
+
+/*
+ * Build CAM result for a failed or auto-sensed IO.
+ */
+void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
+{
+ struct scsi_cmnd *cmd = cp->cmd;
+ u_int cam_status, scsi_status, drv_status;
+
+ drv_status = 0;
+ cam_status = DID_OK;
+ scsi_status = cp->ssss_status;
+
+ if (cp->host_flags & HF_SENSE) {
+ scsi_status = cp->sv_scsi_status;
+ resid = cp->sv_resid;
+ if (sym_verbose && cp->sv_xerr_status)
+ sym_print_xerr(cmd, cp->sv_xerr_status);
+ if (cp->host_status == HS_COMPLETE &&
+ cp->ssss_status == S_GOOD &&
+ cp->xerr_status == 0) {
+ cam_status = sym_xerr_cam_status(DID_OK,
+ cp->sv_xerr_status);
+ drv_status = DRIVER_SENSE;
+ /*
+ * Bounce back the sense data to user.
+ */
+ memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
+ memcpy(cmd->sense_buffer, cp->sns_bbuf,
+ min(sizeof(cmd->sense_buffer),
+ (size_t)SYM_SNS_BBUF_LEN));
+#if 0
+ /*
+ * If the device reports a UNIT ATTENTION condition
+ * due to a RESET condition, we should consider all
+ * disconnect CCBs for this unit as aborted.
+ */
+ if (1) {
+ u_char *p;
+ p = (u_char *) cmd->sense_data;
+ if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
+ sym_clear_tasks(np, DID_ABORT,
+ cp->target,cp->lun, -1);
+ }
+#endif
+ } else {
+ /*
+ * Error return from our internal request sense. This
+ * is bad: we must clear the contingent allegiance
+ * condition otherwise the device will always return
+ * BUSY. Use a big stick.
+ */
+ sym_reset_scsi_target(np, cmd->device->id);
+ cam_status = DID_ERROR;
+ }
+ } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */
+ cam_status = DID_OK;
+ else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
+ cam_status = DID_NO_CONNECT;
+ else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
+ cam_status = DID_ERROR;
+ else { /* Extended error */
+ if (sym_verbose) {
+ sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
+ cp->host_status, cp->ssss_status,
+ cp->xerr_status);
+ }
+ /*
+ * Set the most appropriate value for CAM status.
+ */
+ cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
+ }
+ cmd->resid = resid;
+ cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
+}
+
+
+/*
+ * Build the scatter/gather array for an I/O.
+ */
+
+static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
+{
+ struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
+ int segment;
+
+ cp->data_len = cmd->request_bufflen;
+
+ if (cmd->request_bufflen) {
+ dma_addr_t baddr = map_scsi_single_data(np, cmd);
+ if (baddr) {
+ sym_build_sge(np, data, baddr, cmd->request_bufflen);
+ segment = 1;
+ } else {
+ segment = -2;
+ }
+ } else {
+ segment = 0;
+ }
+
+ return segment;
+}
+
+static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
+{
+ int segment;
+ int use_sg = (int) cmd->use_sg;
+
+ cp->data_len = 0;
+
+ if (!use_sg)
+ segment = sym_scatter_no_sglist(np, cp, cmd);
+ else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
+ struct scatterlist *scatter = (struct scatterlist *)cmd->buffer;
+ struct sym_tblmove *data;
+
+ if (use_sg > SYM_CONF_MAX_SG) {
+ unmap_scsi_data(np, cmd);
+ return -1;
+ }
+
+ data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
+
+ for (segment = 0; segment < use_sg; segment++) {
+ dma_addr_t baddr = sg_dma_address(&scatter[segment]);
+ unsigned int len = sg_dma_len(&scatter[segment]);
+
+ sym_build_sge(np, &data[segment], baddr, len);
+ cp->data_len += len;
+ }
+ } else {
+ segment = -2;
+ }
+
+ return segment;
+}
+
+/*
+ * Queue a SCSI command.
+ */
+static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
+{
+ struct scsi_device *sdev = cmd->device;
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ struct sym_ccb *cp;
+ int order;
+
+ /*
+ * Minimal checkings, so that we will not
+ * go outside our tables.
+ */
+ if (sdev->id == np->myaddr ||
+ sdev->id >= SYM_CONF_MAX_TARGET ||
+ sdev->lun >= SYM_CONF_MAX_LUN) {
+ sym_xpt_done2(np, cmd, CAM_DEV_NOT_THERE);
+ return 0;
+ }
+
+ /*
+ * Retrieve the target descriptor.
+ */
+ tp = &np->target[sdev->id];
+
+ /*
+ * Complete the 1st INQUIRY command with error
+ * condition if the device is flagged NOSCAN
+ * at BOOT in the NVRAM. This may speed up
+ * the boot and maintain coherency with BIOS
+ * device numbering. Clearing the flag allows
+ * user to rescan skipped devices later.
+ * We also return error for devices not flagged
+ * for SCAN LUNS in the NVRAM since some mono-lun
+ * devices behave badly when asked for some non
+ * zero LUN. Btw, this is an absolute hack.:-)
+ */
+ if (cmd->cmnd[0] == 0x12 || cmd->cmnd[0] == 0x0) {
+ if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
+ ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
+ sdev->lun != 0)) {
+ tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
+ sym_xpt_done2(np, cmd, CAM_DEV_NOT_THERE);
+ return 0;
+ }
+ }
+
+ /*
+ * Select tagged/untagged.
+ */
+ lp = sym_lp(tp, sdev->lun);
+ order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
+
+ /*
+ * Queue the SCSI IO.
+ */
+ cp = sym_get_ccb(np, cmd, order);
+ if (!cp)
+ return 1; /* Means resource shortage */
+ sym_queue_scsiio(np, cmd, cp);
+ return 0;
+}
+
+/*
+ * Setup buffers and pointers that address the CDB.
+ */
+static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
+{
+ u32 cmd_ba;
+ int cmd_len;
+
+ /*
+ * CDB is 16 bytes max.
+ */
+ if (cmd->cmd_len > sizeof(cp->cdb_buf)) {
+ sym_set_cam_status(cp->cmd, CAM_REQ_INVALID);
+ return -1;
+ }
+
+ memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
+ cmd_ba = CCB_BA (cp, cdb_buf[0]);
+ cmd_len = cmd->cmd_len;
+
+ cp->phys.cmd.addr = cpu_to_scr(cmd_ba);
+ cp->phys.cmd.size = cpu_to_scr(cmd_len);
+
+ return 0;
+}
+
+/*
+ * Setup pointers that address the data and start the I/O.
+ */
+int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
+{
+ int dir;
+ struct sym_tcb *tp = &np->target[cp->target];
+ struct sym_lcb *lp = sym_lp(tp, cp->lun);
+
+ /*
+ * Build the CDB.
+ */
+ if (sym_setup_cdb(np, cmd, cp))
+ goto out_abort;
+
+ /*
+ * No direction means no data.
+ */
+ dir = cmd->sc_data_direction;
+ if (dir != DMA_NONE) {
+ cp->segments = sym_scatter(np, cp, cmd);
+ if (cp->segments < 0) {
+ if (cp->segments == -2)
+ sym_set_cam_status(cmd, CAM_RESRC_UNAVAIL);
+ else
+ sym_set_cam_status(cmd, CAM_REQ_TOO_BIG);
+ goto out_abort;
+ }
+ } else {
+ cp->data_len = 0;
+ cp->segments = 0;
+ }
+
+ /*
+ * Set data pointers.
+ */
+ sym_setup_data_pointers(np, cp, dir);
+
+ /*
+ * When `#ifed 1', the code below makes the driver
+ * panic on the first attempt to write to a SCSI device.
+ * It is the first test we want to do after a driver
+ * change that does not seem obviously safe. :)
+ */
+#if 0
+ switch (cp->cdb_buf[0]) {
+ case 0x0A: case 0x2A: case 0xAA:
+ panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
+ break;
+ default:
+ break;
+ }
+#endif
+
+ /*
+ * activate this job.
+ */
+ if (lp)
+ sym_start_next_ccbs(np, lp, 2);
+ else
+ sym_put_start_queue(np, cp);
+ return 0;
+
+out_abort:
+ sym_free_ccb(np, cp);
+ sym_xpt_done(np, cmd);
+ return 0;
+}
+
+
+/*
+ * timer daemon.
+ *
+ * Misused to keep the driver running when
+ * interrupts are not configured correctly.
+ */
+static void sym_timer(struct sym_hcb *np)
+{
+ unsigned long thistime = jiffies;
+
+ /*
+ * Restart the timer.
+ */
+ np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
+ add_timer(&np->s.timer);
+
+ /*
+ * If we are resetting the ncr, wait for settle_time before
+ * clearing it. Then command processing will be resumed.
+ */
+ if (np->s.settle_time_valid) {
+ if (time_before_eq(np->s.settle_time, thistime)) {
+ if (sym_verbose >= 2 )
+ printk("%s: command processing resumed\n",
+ sym_name(np));
+ np->s.settle_time_valid = 0;
+ }
+ return;
+ }
+
+ /*
+ * Nothing to do for now, but that may come.
+ */
+ if (np->s.lasttime + 4*HZ < thistime) {
+ np->s.lasttime = thistime;
+ }
+
+#ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
+ /*
+ * Some way-broken PCI bridges may lead to
+ * completions being lost when the clearing
+ * of the INTFLY flag by the CPU occurs
+ * concurrently with the chip raising this flag.
+ * If this ever happen, lost completions will
+ * be reaped here.
+ */
+ sym_wakeup_done(np);
+#endif
+}
+
+
+/*
+ * PCI BUS error handler.
+ */
+void sym_log_bus_error(struct sym_hcb *np)
+{
+ u_short pci_sts;
+ pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
+ if (pci_sts & 0xf900) {
+ pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
+ printf("%s: PCI STATUS = 0x%04x\n",
+ sym_name(np), pci_sts & 0xf900);
+ }
+}
+
+/*
+ * queuecommand method. Entered with the host adapter lock held and
+ * interrupts disabled.
+ */
+static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
+ void (*done)(struct scsi_cmnd *))
+{
+ struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
+ struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
+ int sts = 0;
+
+ cmd->scsi_done = done;
+ memset(ucp, 0, sizeof(*ucp));
+
+ /*
+ * Shorten our settle_time if needed for
+ * this command not to time out.
+ */
+ if (np->s.settle_time_valid && cmd->timeout_per_command) {
+ unsigned long tlimit = jiffies + cmd->timeout_per_command;
+ tlimit -= SYM_CONF_TIMER_INTERVAL*2;
+ if (time_after(np->s.settle_time, tlimit)) {
+ np->s.settle_time = tlimit;
+ }
+ }
+
+ if (np->s.settle_time_valid)
+ return SCSI_MLQUEUE_HOST_BUSY;
+
+ sts = sym_queue_command(np, cmd);
+ if (sts)
+ return SCSI_MLQUEUE_HOST_BUSY;
+ return 0;
+}
+
+/*
+ * Linux entry point of the interrupt handler.
+ */
+static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
+{
+ unsigned long flags;
+ struct sym_hcb *np = (struct sym_hcb *)dev_id;
+
+ if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
+
+ spin_lock_irqsave(np->s.host->host_lock, flags);
+ sym_interrupt(np);
+ spin_unlock_irqrestore(np->s.host->host_lock, flags);
+
+ if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * Linux entry point of the timer handler
+ */
+static void sym53c8xx_timer(unsigned long npref)
+{
+ struct sym_hcb *np = (struct sym_hcb *)npref;
+ unsigned long flags;
+
+ spin_lock_irqsave(np->s.host->host_lock, flags);
+ sym_timer(np);
+ spin_unlock_irqrestore(np->s.host->host_lock, flags);
+}
+
+
+/*
+ * What the eh thread wants us to perform.
+ */
+#define SYM_EH_ABORT 0
+#define SYM_EH_DEVICE_RESET 1
+#define SYM_EH_BUS_RESET 2
+#define SYM_EH_HOST_RESET 3
+
+/*
+ * What we will do regarding the involved SCSI command.
+ */
+#define SYM_EH_DO_IGNORE 0
+#define SYM_EH_DO_COMPLETE 1
+#define SYM_EH_DO_WAIT 2
+
+/*
+ * Our general completion handler.
+ */
+static void __sym_eh_done(struct scsi_cmnd *cmd, int timed_out)
+{
+ struct sym_eh_wait *ep = SYM_UCMD_PTR(cmd)->eh_wait;
+ if (!ep)
+ return;
+
+ /* Try to avoid a race here (not 100% safe) */
+ if (!timed_out) {
+ ep->timed_out = 0;
+ if (ep->to_do == SYM_EH_DO_WAIT && !del_timer(&ep->timer))
+ return;
+ }
+
+ /* Revert everything */
+ SYM_UCMD_PTR(cmd)->eh_wait = NULL;
+ cmd->scsi_done = ep->old_done;
+
+ /* Wake up the eh thread if it wants to sleep */
+ if (ep->to_do == SYM_EH_DO_WAIT)
+ complete(&ep->done);
+}
+
+/*
+ * scsi_done() alias when error recovery is in progress.
+ */
+static void sym_eh_done(struct scsi_cmnd *cmd) { __sym_eh_done(cmd, 0); }
+
+/*
+ * Some timeout handler to avoid waiting too long.
+ */
+static void sym_eh_timeout(u_long p) { __sym_eh_done((struct scsi_cmnd *)p, 1); }
+
+/*
+ * Generic method for our eh processing.
+ * The 'op' argument tells what we have to do.
+ */
+static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
+{
+ struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
+ SYM_QUEHEAD *qp;
+ int to_do = SYM_EH_DO_IGNORE;
+ int sts = -1;
+ struct sym_eh_wait eh, *ep = &eh;
+
+ dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
+
+#if 0
+ /* This one should be the result of some race, thus to ignore */
+ if (cmd->serial_number != cmd->serial_number_at_timeout)
+ goto prepare;
+#endif
+
+ /* This one is queued in some place -> to wait for completion */
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->cmd == cmd) {
+ to_do = SYM_EH_DO_WAIT;
+ goto prepare;
+ }
+ }
+
+prepare:
+ /* Prepare stuff to either ignore, complete or wait for completion */
+ switch(to_do) {
+ default:
+ case SYM_EH_DO_IGNORE:
+ break;
+ case SYM_EH_DO_WAIT:
+ init_completion(&ep->done);
+ /* fall through */
+ case SYM_EH_DO_COMPLETE:
+ ep->old_done = cmd->scsi_done;
+ cmd->scsi_done = sym_eh_done;
+ SYM_UCMD_PTR(cmd)->eh_wait = ep;
+ }
+
+ /* Try to proceed the operation we have been asked for */
+ sts = -1;
+ switch(op) {
+ case SYM_EH_ABORT:
+ sts = sym_abort_scsiio(np, cmd, 1);
+ break;
+ case SYM_EH_DEVICE_RESET:
+ sts = sym_reset_scsi_target(np, cmd->device->id);
+ break;
+ case SYM_EH_BUS_RESET:
+ sym_reset_scsi_bus(np, 1);
+ sts = 0;
+ break;
+ case SYM_EH_HOST_RESET:
+ sym_reset_scsi_bus(np, 0);
+ sym_start_up (np, 1);
+ sts = 0;
+ break;
+ default:
+ break;
+ }
+
+ /* On error, restore everything and cross fingers :) */
+ if (sts) {
+ SYM_UCMD_PTR(cmd)->eh_wait = NULL;
+ cmd->scsi_done = ep->old_done;
+ to_do = SYM_EH_DO_IGNORE;
+ }
+
+ ep->to_do = to_do;
+ /* Complete the command with locks held as required by the driver */
+ if (to_do == SYM_EH_DO_COMPLETE)
+ sym_xpt_done2(np, cmd, CAM_REQ_ABORTED);
+
+ /* Wait for completion with locks released, as required by kernel */
+ if (to_do == SYM_EH_DO_WAIT) {
+ init_timer(&ep->timer);
+ ep->timer.expires = jiffies + (5*HZ);
+ ep->timer.function = sym_eh_timeout;
+ ep->timer.data = (u_long)cmd;
+ ep->timed_out = 1; /* Be pessimistic for once :) */
+ add_timer(&ep->timer);
+ spin_unlock_irq(np->s.host->host_lock);
+ wait_for_completion(&ep->done);
+ spin_lock_irq(np->s.host->host_lock);
+ if (ep->timed_out)
+ sts = -2;
+ }
+ dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
+ sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
+ return sts ? SCSI_FAILED : SCSI_SUCCESS;
+}
+
+
+/*
+ * Error handlers called from the eh thread (one thread per HBA).
+ */
+static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
+{
+ return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
+}
+
+static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
+{
+ return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
+}
+
+static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
+{
+ return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
+}
+
+static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
+{
+ return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
+}
+
+/*
+ * Tune device queuing depth, according to various limits.
+ */
+static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
+{
+ struct sym_lcb *lp = sym_lp(tp, lun);
+ u_short oldtags;
+
+ if (!lp)
+ return;
+
+ oldtags = lp->s.reqtags;
+
+ if (reqtags > lp->s.scdev_depth)
+ reqtags = lp->s.scdev_depth;
+
+ lp->started_limit = reqtags ? reqtags : 2;
+ lp->started_max = 1;
+ lp->s.reqtags = reqtags;
+
+ if (reqtags != oldtags) {
+ dev_info(&tp->sdev->sdev_target->dev,
+ "tagged command queuing %s, command queue depth %d.\n",
+ lp->s.reqtags ? "enabled" : "disabled",
+ lp->started_limit);
+ }
+}
+
+/*
+ * Linux select queue depths function
+ */
+#define DEF_DEPTH (sym_driver_setup.max_tag)
+#define ALL_TARGETS -2
+#define NO_TARGET -1
+#define ALL_LUNS -2
+#define NO_LUN -1
+
+static int device_queue_depth(struct sym_hcb *np, int target, int lun)
+{
+ int c, h, t, u, v;
+ char *p = sym_driver_setup.tag_ctrl;
+ char *ep;
+
+ h = -1;
+ t = NO_TARGET;
+ u = NO_LUN;
+ while ((c = *p++) != 0) {
+ v = simple_strtoul(p, &ep, 0);
+ switch(c) {
+ case '/':
+ ++h;
+ t = ALL_TARGETS;
+ u = ALL_LUNS;
+ break;
+ case 't':
+ if (t != target)
+ t = (target == v) ? v : NO_TARGET;
+ u = ALL_LUNS;
+ break;
+ case 'u':
+ if (u != lun)
+ u = (lun == v) ? v : NO_LUN;
+ break;
+ case 'q':
+ if (h == np->s.unit &&
+ (t == ALL_TARGETS || t == target) &&
+ (u == ALL_LUNS || u == lun))
+ return v;
+ break;
+ case '-':
+ t = ALL_TARGETS;
+ u = ALL_LUNS;
+ break;
+ default:
+ break;
+ }
+ p = ep;
+ }
+ return DEF_DEPTH;
+}
+
+static int sym53c8xx_slave_alloc(struct scsi_device *device)
+{
+ struct sym_hcb *np = sym_get_hcb(device->host);
+ struct sym_tcb *tp = &np->target[device->id];
+ if (!tp->sdev)
+ tp->sdev = device;
+
+ return 0;
+}
+
+static void sym53c8xx_slave_destroy(struct scsi_device *device)
+{
+ struct sym_hcb *np = sym_get_hcb(device->host);
+ struct sym_tcb *tp = &np->target[device->id];
+ if (tp->sdev == device)
+ tp->sdev = NULL;
+}
+
+/*
+ * Linux entry point for device queue sizing.
+ */
+static int sym53c8xx_slave_configure(struct scsi_device *device)
+{
+ struct sym_hcb *np = sym_get_hcb(device->host);
+ struct sym_tcb *tp = &np->target[device->id];
+ struct sym_lcb *lp;
+ int reqtags, depth_to_use;
+
+ /*
+ * Allocate the LCB if not yet.
+ * If it fail, we may well be in the sh*t. :)
+ */
+ lp = sym_alloc_lcb(np, device->id, device->lun);
+ if (!lp)
+ return -ENOMEM;
+
+ /*
+ * Get user flags.
+ */
+ lp->curr_flags = lp->user_flags;
+
+ /*
+ * Select queue depth from driver setup.
+ * Donnot use more than configured by user.
+ * Use at least 2.
+ * Donnot use more than our maximum.
+ */
+ reqtags = device_queue_depth(np, device->id, device->lun);
+ if (reqtags > tp->usrtags)
+ reqtags = tp->usrtags;
+ if (!device->tagged_supported)
+ reqtags = 0;
+#if 1 /* Avoid to locally queue commands for no good reasons */
+ if (reqtags > SYM_CONF_MAX_TAG)
+ reqtags = SYM_CONF_MAX_TAG;
+ depth_to_use = (reqtags ? reqtags : 2);
+#else
+ depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
+#endif
+ scsi_adjust_queue_depth(device,
+ (device->tagged_supported ?
+ MSG_SIMPLE_TAG : 0),
+ depth_to_use);
+ lp->s.scdev_depth = depth_to_use;
+ sym_tune_dev_queuing(tp, device->lun, reqtags);
+
+ if (!spi_initial_dv(device->sdev_target))
+ spi_dv_device(device);
+
+ return 0;
+}
+
+/*
+ * Linux entry point for info() function
+ */
+static const char *sym53c8xx_info (struct Scsi_Host *host)
+{
+ return SYM_DRIVER_NAME;
+}
+
+
+#ifdef SYM_LINUX_PROC_INFO_SUPPORT
+/*
+ * Proc file system stuff
+ *
+ * A read operation returns adapter information.
+ * A write operation is a control command.
+ * The string is parsed in the driver code and the command is passed
+ * to the sym_usercmd() function.
+ */
+
+#ifdef SYM_LINUX_USER_COMMAND_SUPPORT
+
+struct sym_usrcmd {
+ u_long target;
+ u_long lun;
+ u_long data;
+ u_long cmd;
+};
+
+#define UC_SETSYNC 10
+#define UC_SETTAGS 11
+#define UC_SETDEBUG 12
+#define UC_SETWIDE 14
+#define UC_SETFLAG 15
+#define UC_SETVERBOSE 17
+#define UC_RESETDEV 18
+#define UC_CLEARDEV 19
+
+static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
+{
+ struct sym_tcb *tp;
+ int t, l;
+
+ switch (uc->cmd) {
+ case 0: return;
+
+#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
+ case UC_SETDEBUG:
+ sym_debug_flags = uc->data;
+ break;
+#endif
+ case UC_SETVERBOSE:
+ np->verbose = uc->data;
+ break;
+ default:
+ /*
+ * We assume that other commands apply to targets.
+ * This should always be the case and avoid the below
+ * 4 lines to be repeated 6 times.
+ */
+ for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
+ if (!((uc->target >> t) & 1))
+ continue;
+ tp = &np->target[t];
+
+ switch (uc->cmd) {
+
+ case UC_SETSYNC:
+ if (!uc->data || uc->data >= 255) {
+ tp->tgoal.iu = tp->tgoal.dt =
+ tp->tgoal.qas = 0;
+ tp->tgoal.offset = 0;
+ } else if (uc->data <= 9 && np->minsync_dt) {
+ if (uc->data < np->minsync_dt)
+ uc->data = np->minsync_dt;
+ tp->tgoal.iu = tp->tgoal.dt =
+ tp->tgoal.qas = 1;
+ tp->tgoal.width = 1;
+ tp->tgoal.period = uc->data;
+ tp->tgoal.offset = np->maxoffs_dt;
+ } else {
+ if (uc->data < np->minsync)
+ uc->data = np->minsync;
+ tp->tgoal.iu = tp->tgoal.dt =
+ tp->tgoal.qas = 0;
+ tp->tgoal.period = uc->data;
+ tp->tgoal.offset = np->maxoffs;
+ }
+ tp->tgoal.check_nego = 1;
+ break;
+ case UC_SETWIDE:
+ tp->tgoal.width = uc->data ? 1 : 0;
+ tp->tgoal.check_nego = 1;
+ break;
+ case UC_SETTAGS:
+ for (l = 0; l < SYM_CONF_MAX_LUN; l++)
+ sym_tune_dev_queuing(tp, l, uc->data);
+ break;
+ case UC_RESETDEV:
+ tp->to_reset = 1;
+ np->istat_sem = SEM;
+ OUTB(np, nc_istat, SIGP|SEM);
+ break;
+ case UC_CLEARDEV:
+ for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
+ struct sym_lcb *lp = sym_lp(tp, l);
+ if (lp) lp->to_clear = 1;
+ }
+ np->istat_sem = SEM;
+ OUTB(np, nc_istat, SIGP|SEM);
+ break;
+ case UC_SETFLAG:
+ tp->usrflags = uc->data;
+ break;
+ }
+ }
+ break;
+ }
+}
+
+static int skip_spaces(char *ptr, int len)
+{
+ int cnt, c;
+
+ for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
+
+ return (len - cnt);
+}
+
+static int get_int_arg(char *ptr, int len, u_long *pv)
+{
+ char *end;
+
+ *pv = simple_strtoul(ptr, &end, 10);
+ return (end - ptr);
+}
+
+static int is_keyword(char *ptr, int len, char *verb)
+{
+ int verb_len = strlen(verb);
+
+ if (len >= verb_len && !memcmp(verb, ptr, verb_len))
+ return verb_len;
+ else
+ return 0;
+}
+
+#define SKIP_SPACES(ptr, len) \
+ if ((arg_len = skip_spaces(ptr, len)) < 1) \
+ return -EINVAL; \
+ ptr += arg_len; len -= arg_len;
+
+#define GET_INT_ARG(ptr, len, v) \
+ if (!(arg_len = get_int_arg(ptr, len, &(v)))) \
+ return -EINVAL; \
+ ptr += arg_len; len -= arg_len;
+
+
+/*
+ * Parse a control command
+ */
+
+static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
+{
+ char *ptr = buffer;
+ int len = length;
+ struct sym_usrcmd cmd, *uc = &cmd;
+ int arg_len;
+ u_long target;
+
+ memset(uc, 0, sizeof(*uc));
+
+ if (len > 0 && ptr[len-1] == '\n')
+ --len;
+
+ if ((arg_len = is_keyword(ptr, len, "setsync")) != 0)
+ uc->cmd = UC_SETSYNC;
+ else if ((arg_len = is_keyword(ptr, len, "settags")) != 0)
+ uc->cmd = UC_SETTAGS;
+ else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
+ uc->cmd = UC_SETVERBOSE;
+ else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0)
+ uc->cmd = UC_SETWIDE;
+#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
+ else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
+ uc->cmd = UC_SETDEBUG;
+#endif
+ else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0)
+ uc->cmd = UC_SETFLAG;
+ else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
+ uc->cmd = UC_RESETDEV;
+ else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
+ uc->cmd = UC_CLEARDEV;
+ else
+ arg_len = 0;
+
+#ifdef DEBUG_PROC_INFO
+printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
+#endif
+
+ if (!arg_len)
+ return -EINVAL;
+ ptr += arg_len; len -= arg_len;
+
+ switch(uc->cmd) {
+ case UC_SETSYNC:
+ case UC_SETTAGS:
+ case UC_SETWIDE:
+ case UC_SETFLAG:
+ case UC_RESETDEV:
+ case UC_CLEARDEV:
+ SKIP_SPACES(ptr, len);
+ if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
+ ptr += arg_len; len -= arg_len;
+ uc->target = ~0;
+ } else {
+ GET_INT_ARG(ptr, len, target);
+ uc->target = (1<<target);
+#ifdef DEBUG_PROC_INFO
+printk("sym_user_command: target=%ld\n", target);
+#endif
+ }
+ break;
+ }
+
+ switch(uc->cmd) {
+ case UC_SETVERBOSE:
+ case UC_SETSYNC:
+ case UC_SETTAGS:
+ case UC_SETWIDE:
+ SKIP_SPACES(ptr, len);
+ GET_INT_ARG(ptr, len, uc->data);
+#ifdef DEBUG_PROC_INFO
+printk("sym_user_command: data=%ld\n", uc->data);
+#endif
+ break;
+#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
+ case UC_SETDEBUG:
+ while (len > 0) {
+ SKIP_SPACES(ptr, len);
+ if ((arg_len = is_keyword(ptr, len, "alloc")))
+ uc->data |= DEBUG_ALLOC;
+ else if ((arg_len = is_keyword(ptr, len, "phase")))
+ uc->data |= DEBUG_PHASE;
+ else if ((arg_len = is_keyword(ptr, len, "queue")))
+ uc->data |= DEBUG_QUEUE;
+ else if ((arg_len = is_keyword(ptr, len, "result")))
+ uc->data |= DEBUG_RESULT;
+ else if ((arg_len = is_keyword(ptr, len, "scatter")))
+ uc->data |= DEBUG_SCATTER;
+ else if ((arg_len = is_keyword(ptr, len, "script")))
+ uc->data |= DEBUG_SCRIPT;
+ else if ((arg_len = is_keyword(ptr, len, "tiny")))
+ uc->data |= DEBUG_TINY;
+ else if ((arg_len = is_keyword(ptr, len, "timing")))
+ uc->data |= DEBUG_TIMING;
+ else if ((arg_len = is_keyword(ptr, len, "nego")))
+ uc->data |= DEBUG_NEGO;
+ else if ((arg_len = is_keyword(ptr, len, "tags")))
+ uc->data |= DEBUG_TAGS;
+ else if ((arg_len = is_keyword(ptr, len, "pointer")))
+ uc->data |= DEBUG_POINTER;
+ else
+ return -EINVAL;
+ ptr += arg_len; len -= arg_len;
+ }
+#ifdef DEBUG_PROC_INFO
+printk("sym_user_command: data=%ld\n", uc->data);
+#endif
+ break;
+#endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
+ case UC_SETFLAG:
+ while (len > 0) {
+ SKIP_SPACES(ptr, len);
+ if ((arg_len = is_keyword(ptr, len, "no_disc")))
+ uc->data &= ~SYM_DISC_ENABLED;
+ else
+ return -EINVAL;
+ ptr += arg_len; len -= arg_len;
+ }
+ break;
+ default:
+ break;
+ }
+
+ if (len)
+ return -EINVAL;
+ else {
+ unsigned long flags;
+
+ spin_lock_irqsave(np->s.host->host_lock, flags);
+ sym_exec_user_command (np, uc);
+ spin_unlock_irqrestore(np->s.host->host_lock, flags);
+ }
+ return length;
+}
+
+#endif /* SYM_LINUX_USER_COMMAND_SUPPORT */
+
+
+#ifdef SYM_LINUX_USER_INFO_SUPPORT
+/*
+ * Informations through the proc file system.
+ */
+struct info_str {
+ char *buffer;
+ int length;
+ int offset;
+ int pos;
+};
+
+static void copy_mem_info(struct info_str *info, char *data, int len)
+{
+ if (info->pos + len > info->length)
+ len = info->length - info->pos;
+
+ if (info->pos + len < info->offset) {
+ info->pos += len;
+ return;
+ }
+ if (info->pos < info->offset) {
+ data += (info->offset - info->pos);
+ len -= (info->offset - info->pos);
+ }
+
+ if (len > 0) {
+ memcpy(info->buffer + info->pos, data, len);
+ info->pos += len;
+ }
+}
+
+static int copy_info(struct info_str *info, char *fmt, ...)
+{
+ va_list args;
+ char buf[81];
+ int len;
+
+ va_start(args, fmt);
+ len = vsprintf(buf, fmt, args);
+ va_end(args);
+
+ copy_mem_info(info, buf, len);
+ return len;
+}
+
+/*
+ * Copy formatted information into the input buffer.
+ */
+static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
+{
+ struct info_str info;
+
+ info.buffer = ptr;
+ info.length = len;
+ info.offset = offset;
+ info.pos = 0;
+
+ copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
+ "revision id 0x%x\n",
+ np->s.chip_name, np->device_id, np->revision_id);
+ copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
+ pci_name(np->s.device), IRQ_PRM(np->s.irq));
+ copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
+ (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
+ np->maxwide ? "Wide" : "Narrow",
+ np->minsync_dt ? ", DT capable" : "");
+
+ copy_info(&info, "Max. started commands %d, "
+ "max. commands per LUN %d\n",
+ SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
+
+ return info.pos > info.offset? info.pos - info.offset : 0;
+}
+#endif /* SYM_LINUX_USER_INFO_SUPPORT */
+
+/*
+ * Entry point of the scsi proc fs of the driver.
+ * - func = 0 means read (returns adapter infos)
+ * - func = 1 means write (not yet merget from sym53c8xx)
+ */
+static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
+ char **start, off_t offset, int length, int func)
+{
+ struct sym_hcb *np = sym_get_hcb(host);
+ int retv;
+
+ if (func) {
+#ifdef SYM_LINUX_USER_COMMAND_SUPPORT
+ retv = sym_user_command(np, buffer, length);
+#else
+ retv = -EINVAL;
+#endif
+ } else {
+ if (start)
+ *start = buffer;
+#ifdef SYM_LINUX_USER_INFO_SUPPORT
+ retv = sym_host_info(np, buffer, offset, length);
+#else
+ retv = -EINVAL;
+#endif
+ }
+
+ return retv;
+}
+#endif /* SYM_LINUX_PROC_INFO_SUPPORT */
+
+/*
+ * Free controller resources.
+ */
+static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
+{
+ /*
+ * Free O/S specific resources.
+ */
+ if (np->s.irq)
+ free_irq(np->s.irq, np);
+ if (np->s.ioaddr)
+ pci_iounmap(pdev, np->s.ioaddr);
+ if (np->s.ramaddr)
+ pci_iounmap(pdev, np->s.ramaddr);
+ /*
+ * Free O/S independent resources.
+ */
+ sym_hcb_free(np);
+
+ sym_mfree_dma(np, sizeof(*np), "HCB");
+}
+
+/*
+ * Ask/tell the system about DMA addressing.
+ */
+static int sym_setup_bus_dma_mask(struct sym_hcb *np)
+{
+#if SYM_CONF_DMA_ADDRESSING_MODE > 0
+#if SYM_CONF_DMA_ADDRESSING_MODE == 1
+#define DMA_DAC_MASK 0x000000ffffffffffULL /* 40-bit */
+#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
+#define DMA_DAC_MASK DMA_64BIT_MASK
+#endif
+ if ((np->features & FE_DAC) &&
+ !pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
+ np->use_dac = 1;
+ return 0;
+ }
+#endif
+
+ if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
+ return 0;
+
+ printf_warning("%s: No suitable DMA available\n", sym_name(np));
+ return -1;
+}
+
+/*
+ * Host attach and initialisations.
+ *
+ * Allocate host data and ncb structure.
+ * Remap MMIO region.
+ * Do chip initialization.
+ * If all is OK, install interrupt handling and
+ * start the timer daemon.
+ */
+static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
+ int unit, struct sym_device *dev)
+{
+ struct host_data *host_data;
+ struct sym_hcb *np = NULL;
+ struct Scsi_Host *instance = NULL;
+ struct pci_dev *pdev = dev->pdev;
+ unsigned long flags;
+ struct sym_fw *fw;
+
+ printk(KERN_INFO
+ "sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
+ unit, dev->chip.name, dev->chip.revision_id,
+ pci_name(pdev), IRQ_PRM(pdev->irq));
+
+ /*
+ * Get the firmware for this chip.
+ */
+ fw = sym_find_firmware(&dev->chip);
+ if (!fw)
+ goto attach_failed;
+
+ /*
+ * Allocate host_data structure
+ */
+ instance = scsi_host_alloc(tpnt, sizeof(*host_data));
+ if (!instance)
+ goto attach_failed;
+ host_data = (struct host_data *) instance->hostdata;
+
+ /*
+ * Allocate immediately the host control block,
+ * since we are only expecting to succeed. :)
+ * We keep track in the HCB of all the resources that
+ * are to be released on error.
+ */
+ np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
+ if (!np)
+ goto attach_failed;
+ np->s.device = pdev;
+ np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
+ host_data->ncb = np;
+ np->s.host = instance;
+
+ pci_set_drvdata(pdev, np);
+
+ /*
+ * Copy some useful infos to the HCB.
+ */
+ np->hcb_ba = vtobus(np);
+ np->verbose = sym_driver_setup.verbose;
+ np->s.device = pdev;
+ np->s.unit = unit;
+ np->device_id = dev->chip.device_id;
+ np->revision_id = dev->chip.revision_id;
+ np->features = dev->chip.features;
+ np->clock_divn = dev->chip.nr_divisor;
+ np->maxoffs = dev->chip.offset_max;
+ np->maxburst = dev->chip.burst_max;
+ np->myaddr = dev->host_id;
+
+ /*
+ * Edit its name.
+ */
+ strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
+ sprintf(np->s.inst_name, "sym%d", np->s.unit);
+
+ if (sym_setup_bus_dma_mask(np))
+ goto attach_failed;
+
+ /*
+ * Try to map the controller chip to
+ * virtual and physical memory.
+ */
+ np->mmio_ba = (u32)dev->mmio_base;
+ np->s.ioaddr = dev->s.ioaddr;
+ np->s.ramaddr = dev->s.ramaddr;
+ np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
+
+ /*
+ * Map on-chip RAM if present and supported.
+ */
+ if (!(np->features & FE_RAM))
+ dev->ram_base = 0;
+ if (dev->ram_base) {
+ np->ram_ba = (u32)dev->ram_base;
+ np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
+ }
+
+ if (sym_hcb_attach(instance, fw, dev->nvram))
+ goto attach_failed;
+
+ /*
+ * Install the interrupt handler.
+ * If we synchonize the C code with SCRIPTS on interrupt,
+ * we do not want to share the INTR line at all.
+ */
+ if (request_irq(pdev->irq, sym53c8xx_intr, SA_SHIRQ, NAME53C8XX, np)) {
+ printf_err("%s: request irq %d failure\n",
+ sym_name(np), pdev->irq);
+ goto attach_failed;
+ }
+ np->s.irq = pdev->irq;
+
+ /*
+ * After SCSI devices have been opened, we cannot
+ * reset the bus safely, so we do it here.
+ */
+ spin_lock_irqsave(instance->host_lock, flags);
+ if (sym_reset_scsi_bus(np, 0))
+ goto reset_failed;
+
+ /*
+ * Start the SCRIPTS.
+ */
+ sym_start_up (np, 1);
+
+ /*
+ * Start the timer daemon
+ */
+ init_timer(&np->s.timer);
+ np->s.timer.data = (unsigned long) np;
+ np->s.timer.function = sym53c8xx_timer;
+ np->s.lasttime=0;
+ sym_timer (np);
+
+ /*
+ * Fill Linux host instance structure
+ * and return success.
+ */
+ instance->max_channel = 0;
+ instance->this_id = np->myaddr;
+ instance->max_id = np->maxwide ? 16 : 8;
+ instance->max_lun = SYM_CONF_MAX_LUN;
+ instance->unique_id = pci_resource_start(pdev, 0);
+ instance->cmd_per_lun = SYM_CONF_MAX_TAG;
+ instance->can_queue = (SYM_CONF_MAX_START-2);
+ instance->sg_tablesize = SYM_CONF_MAX_SG;
+ instance->max_cmd_len = 16;
+ BUG_ON(sym2_transport_template == NULL);
+ instance->transportt = sym2_transport_template;
+
+ spin_unlock_irqrestore(instance->host_lock, flags);
+
+ return instance;
+
+ reset_failed:
+ printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
+ "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
+ spin_unlock_irqrestore(instance->host_lock, flags);
+ attach_failed:
+ if (!instance)
+ return NULL;
+ printf_info("%s: giving up ...\n", sym_name(np));
+ if (np)
+ sym_free_resources(np, pdev);
+ scsi_host_put(instance);
+
+ return NULL;
+ }
+
+
+/*
+ * Detect and try to read SYMBIOS and TEKRAM NVRAM.
+ */
+#if SYM_CONF_NVRAM_SUPPORT
+static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
+{
+ devp->nvram = nvp;
+ devp->device_id = devp->chip.device_id;
+ nvp->type = 0;
+
+ sym_read_nvram(devp, nvp);
+}
+#else
+static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
+{
+}
+#endif /* SYM_CONF_NVRAM_SUPPORT */
+
+static int __devinit sym_check_supported(struct sym_device *device)
+{
+ struct sym_chip *chip;
+ struct pci_dev *pdev = device->pdev;
+ u_char revision;
+ unsigned long io_port = pci_resource_start(pdev, 0);
+ int i;
+
+ /*
+ * If user excluded this chip, do not initialize it.
+ * I hate this code so much. Must kill it.
+ */
+ if (io_port) {
+ for (i = 0 ; i < 8 ; i++) {
+ if (sym_driver_setup.excludes[i] == io_port)
+ return -ENODEV;
+ }
+ }
+
+ /*
+ * Check if the chip is supported. Then copy the chip description
+ * to our device structure so we can make it match the actual device
+ * and options.
+ */
+ pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
+ chip = sym_lookup_chip_table(pdev->device, revision);
+ if (!chip) {
+ dev_info(&pdev->dev, "device not supported\n");
+ return -ENODEV;
+ }
+ memcpy(&device->chip, chip, sizeof(device->chip));
+ device->chip.revision_id = revision;
+
+ return 0;
+}
+
+/*
+ * Ignore Symbios chips controlled by various RAID controllers.
+ * These controllers set value 0x52414944 at RAM end - 16.
+ */
+static int __devinit sym_check_raid(struct sym_device *device)
+{
+ unsigned int ram_size, ram_val;
+
+ if (!device->s.ramaddr)
+ return 0;
+
+ if (device->chip.features & FE_RAM8K)
+ ram_size = 8192;
+ else
+ ram_size = 4096;
+
+ ram_val = readl(device->s.ramaddr + ram_size - 16);
+ if (ram_val != 0x52414944)
+ return 0;
+
+ dev_info(&device->pdev->dev,
+ "not initializing, driven by RAID controller.\n");
+ return -ENODEV;
+}
+
+static int __devinit sym_set_workarounds(struct sym_device *device)
+{
+ struct sym_chip *chip = &device->chip;
+ struct pci_dev *pdev = device->pdev;
+ u_short status_reg;
+
+ /*
+ * (ITEM 12 of a DEL about the 896 I haven't yet).
+ * We must ensure the chip will use WRITE AND INVALIDATE.
+ * The revision number limit is for now arbitrary.
+ */
+ if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
+ chip->features |= (FE_WRIE | FE_CLSE);
+ }
+
+ /* If the chip can do Memory Write Invalidate, enable it */
+ if (chip->features & FE_WRIE) {
+ if (pci_set_mwi(pdev))
+ return -ENODEV;
+ }
+
+ /*
+ * Work around for errant bit in 895A. The 66Mhz
+ * capable bit is set erroneously. Clear this bit.
+ * (Item 1 DEL 533)
+ *
+ * Make sure Config space and Features agree.
+ *
+ * Recall: writes are not normal to status register -
+ * write a 1 to clear and a 0 to leave unchanged.
+ * Can only reset bits.
+ */
+ pci_read_config_word(pdev, PCI_STATUS, &status_reg);
+ if (chip->features & FE_66MHZ) {
+ if (!(status_reg & PCI_STATUS_66MHZ))
+ chip->features &= ~FE_66MHZ;
+ } else {
+ if (status_reg & PCI_STATUS_66MHZ) {
+ status_reg = PCI_STATUS_66MHZ;
+ pci_write_config_word(pdev, PCI_STATUS, status_reg);
+ pci_read_config_word(pdev, PCI_STATUS, &status_reg);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Read and check the PCI configuration for any detected NCR
+ * boards and save data for attaching after all boards have
+ * been detected.
+ */
+static void __devinit
+sym_init_device(struct pci_dev *pdev, struct sym_device *device)
+{
+ int i;
+
+ device->host_id = SYM_SETUP_HOST_ID;
+ device->pdev = pdev;
+
+ i = pci_get_base_address(pdev, 1, &device->mmio_base);
+ pci_get_base_address(pdev, i, &device->ram_base);
+
+#ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
+ if (device->mmio_base)
+ device->s.ioaddr = pci_iomap(pdev, 1,
+ pci_resource_len(pdev, 1));
+#endif
+ if (!device->s.ioaddr)
+ device->s.ioaddr = pci_iomap(pdev, 0,
+ pci_resource_len(pdev, 0));
+ if (device->ram_base)
+ device->s.ramaddr = pci_iomap(pdev, i,
+ pci_resource_len(pdev, i));
+}
+
+/*
+ * The NCR PQS and PDS cards are constructed as a DEC bridge
+ * behind which sits a proprietary NCR memory controller and
+ * either four or two 53c875s as separate devices. We can tell
+ * if an 875 is part of a PQS/PDS or not since if it is, it will
+ * be on the same bus as the memory controller. In its usual
+ * mode of operation, the 875s are slaved to the memory
+ * controller for all transfers. To operate with the Linux
+ * driver, the memory controller is disabled and the 875s
+ * freed to function independently. The only wrinkle is that
+ * the preset SCSI ID (which may be zero) must be read in from
+ * a special configuration space register of the 875.
+ */
+static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
+{
+ int slot;
+ u8 tmp;
+
+ for (slot = 0; slot < 256; slot++) {
+ struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
+
+ if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
+ pci_dev_put(memc);
+ continue;
+ }
+
+ /* bit 1: allow individual 875 configuration */
+ pci_read_config_byte(memc, 0x44, &tmp);
+ if ((tmp & 0x2) == 0) {
+ tmp |= 0x2;
+ pci_write_config_byte(memc, 0x44, tmp);
+ }
+
+ /* bit 2: drive individual 875 interrupts to the bus */
+ pci_read_config_byte(memc, 0x45, &tmp);
+ if ((tmp & 0x4) == 0) {
+ tmp |= 0x4;
+ pci_write_config_byte(memc, 0x45, tmp);
+ }
+
+ pci_dev_put(memc);
+ break;
+ }
+
+ pci_read_config_byte(pdev, 0x84, &tmp);
+ sym_dev->host_id = tmp;
+}
+
+/*
+ * Called before unloading the module.
+ * Detach the host.
+ * We have to free resources and halt the NCR chip.
+ */
+static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
+{
+ printk("%s: detaching ...\n", sym_name(np));
+
+ del_timer_sync(&np->s.timer);
+
+ /*
+ * Reset NCR chip.
+ * We should use sym_soft_reset(), but we don't want to do
+ * so, since we may not be safe if interrupts occur.
+ */
+ printk("%s: resetting chip\n", sym_name(np));
+ OUTB(np, nc_istat, SRST);
+ udelay(10);
+ OUTB(np, nc_istat, 0);
+
+ sym_free_resources(np, pdev);
+
+ return 1;
+}
+
+/*
+ * Driver host template.
+ */
+static struct scsi_host_template sym2_template = {
+ .module = THIS_MODULE,
+ .name = "sym53c8xx",
+ .info = sym53c8xx_info,
+ .queuecommand = sym53c8xx_queue_command,
+ .slave_alloc = sym53c8xx_slave_alloc,
+ .slave_configure = sym53c8xx_slave_configure,
+ .slave_destroy = sym53c8xx_slave_destroy,
+ .eh_abort_handler = sym53c8xx_eh_abort_handler,
+ .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
+ .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler,
+ .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler,
+ .this_id = 7,
+ .use_clustering = DISABLE_CLUSTERING,
+#ifdef SYM_LINUX_PROC_INFO_SUPPORT
+ .proc_info = sym53c8xx_proc_info,
+ .proc_name = NAME53C8XX,
+#endif
+};
+
+static int attach_count;
+
+static int __devinit sym2_probe(struct pci_dev *pdev,
+ const struct pci_device_id *ent)
+{
+ struct sym_device sym_dev;
+ struct sym_nvram nvram;
+ struct Scsi_Host *instance;
+
+ memset(&sym_dev, 0, sizeof(sym_dev));
+ memset(&nvram, 0, sizeof(nvram));
+
+ if (pci_enable_device(pdev))
+ goto leave;
+
+ pci_set_master(pdev);
+
+ if (pci_request_regions(pdev, NAME53C8XX))
+ goto disable;
+
+ sym_init_device(pdev, &sym_dev);
+ if (sym_check_supported(&sym_dev))
+ goto free;
+
+ if (sym_check_raid(&sym_dev))
+ goto leave; /* Don't disable the device */
+
+ if (sym_set_workarounds(&sym_dev))
+ goto free;
+
+ sym_config_pqs(pdev, &sym_dev);
+
+ sym_get_nvram(&sym_dev, &nvram);
+
+ instance = sym_attach(&sym2_template, attach_count, &sym_dev);
+ if (!instance)
+ goto free;
+
+ if (scsi_add_host(instance, &pdev->dev))
+ goto detach;
+ scsi_scan_host(instance);
+
+ attach_count++;
+
+ return 0;
+
+ detach:
+ sym_detach(pci_get_drvdata(pdev), pdev);
+ free:
+ pci_release_regions(pdev);
+ disable:
+ pci_disable_device(pdev);
+ leave:
+ return -ENODEV;
+}
+
+static void __devexit sym2_remove(struct pci_dev *pdev)
+{
+ struct sym_hcb *np = pci_get_drvdata(pdev);
+ struct Scsi_Host *host = np->s.host;
+
+ scsi_remove_host(host);
+ scsi_host_put(host);
+
+ sym_detach(np, pdev);
+
+ pci_release_regions(pdev);
+ pci_disable_device(pdev);
+
+ attach_count--;
+}
+
+static void sym2_get_signalling(struct Scsi_Host *shost)
+{
+ struct sym_hcb *np = sym_get_hcb(shost);
+ enum spi_signal_type type;
+
+ switch (np->scsi_mode) {
+ case SMODE_SE:
+ type = SPI_SIGNAL_SE;
+ break;
+ case SMODE_LVD:
+ type = SPI_SIGNAL_LVD;
+ break;
+ case SMODE_HVD:
+ type = SPI_SIGNAL_HVD;
+ break;
+ default:
+ type = SPI_SIGNAL_UNKNOWN;
+ break;
+ }
+ spi_signalling(shost) = type;
+}
+
+static void sym2_set_offset(struct scsi_target *starget, int offset)
+{
+ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
+ struct sym_hcb *np = sym_get_hcb(shost);
+ struct sym_tcb *tp = &np->target[starget->id];
+
+ tp->tgoal.offset = offset;
+ tp->tgoal.check_nego = 1;
+}
+
+static void sym2_set_period(struct scsi_target *starget, int period)
+{
+ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
+ struct sym_hcb *np = sym_get_hcb(shost);
+ struct sym_tcb *tp = &np->target[starget->id];
+
+ /* have to have DT for these transfers */
+ if (period <= np->minsync)
+ tp->tgoal.dt = 1;
+
+ tp->tgoal.period = period;
+ tp->tgoal.check_nego = 1;
+}
+
+static void sym2_set_width(struct scsi_target *starget, int width)
+{
+ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
+ struct sym_hcb *np = sym_get_hcb(shost);
+ struct sym_tcb *tp = &np->target[starget->id];
+
+ /* It is illegal to have DT set on narrow transfers. If DT is
+ * clear, we must also clear IU and QAS. */
+ if (width == 0)
+ tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
+
+ tp->tgoal.width = width;
+ tp->tgoal.check_nego = 1;
+}
+
+static void sym2_set_dt(struct scsi_target *starget, int dt)
+{
+ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
+ struct sym_hcb *np = sym_get_hcb(shost);
+ struct sym_tcb *tp = &np->target[starget->id];
+
+ /* We must clear QAS and IU if DT is clear */
+ if (dt)
+ tp->tgoal.dt = 1;
+ else
+ tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
+ tp->tgoal.check_nego = 1;
+}
+
+static void sym2_set_iu(struct scsi_target *starget, int iu)
+{
+ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
+ struct sym_hcb *np = sym_get_hcb(shost);
+ struct sym_tcb *tp = &np->target[starget->id];
+
+ if (iu)
+ tp->tgoal.iu = tp->tgoal.dt = 1;
+ else
+ tp->tgoal.iu = 0;
+ tp->tgoal.check_nego = 1;
+}
+
+static void sym2_set_qas(struct scsi_target *starget, int qas)
+{
+ struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
+ struct sym_hcb *np = sym_get_hcb(shost);
+ struct sym_tcb *tp = &np->target[starget->id];
+
+ if (qas)
+ tp->tgoal.dt = tp->tgoal.qas = 1;
+ else
+ tp->tgoal.qas = 0;
+ tp->tgoal.check_nego = 1;
+}
+
+
+static struct spi_function_template sym2_transport_functions = {
+ .set_offset = sym2_set_offset,
+ .show_offset = 1,
+ .set_period = sym2_set_period,
+ .show_period = 1,
+ .set_width = sym2_set_width,
+ .show_width = 1,
+ .set_dt = sym2_set_dt,
+ .show_dt = 1,
+ .set_iu = sym2_set_iu,
+ .show_iu = 1,
+ .set_qas = sym2_set_qas,
+ .show_qas = 1,
+ .get_signalling = sym2_get_signalling,
+};
+
+static struct pci_device_id sym2_id_table[] __devinitdata = {
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
+ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
+ { 0, }
+};
+
+MODULE_DEVICE_TABLE(pci, sym2_id_table);
+
+static struct pci_driver sym2_driver = {
+ .name = NAME53C8XX,
+ .id_table = sym2_id_table,
+ .probe = sym2_probe,
+ .remove = __devexit_p(sym2_remove),
+};
+
+static int __init sym2_init(void)
+{
+ int error;
+
+ sym2_setup_params();
+ sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
+ if (!sym2_transport_template)
+ return -ENODEV;
+
+ error = pci_register_driver(&sym2_driver);
+ if (error)
+ spi_release_transport(sym2_transport_template);
+ return error;
+}
+
+static void __exit sym2_exit(void)
+{
+ pci_unregister_driver(&sym2_driver);
+ spi_release_transport(sym2_transport_template);
+}
+
+module_init(sym2_init);
+module_exit(sym2_exit);
diff --git a/drivers/scsi/sym53c8xx_2/sym_glue.h b/drivers/scsi/sym53c8xx_2/sym_glue.h
new file mode 100644
index 000000000000..e943f167fb51
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_glue.h
@@ -0,0 +1,300 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifndef SYM_GLUE_H
+#define SYM_GLUE_H
+
+#include <linux/config.h>
+#include <linux/delay.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/string.h>
+#include <linux/timer.h>
+#include <linux/types.h>
+
+#include <asm/io.h>
+#ifdef __sparc__
+# include <asm/irq.h>
+#endif
+
+#include <scsi/scsi.h>
+#include <scsi/scsi_cmnd.h>
+#include <scsi/scsi_device.h>
+#include <scsi/scsi_transport_spi.h>
+#include <scsi/scsi_host.h>
+
+#include "sym53c8xx.h"
+#include "sym_defs.h"
+#include "sym_misc.h"
+
+/*
+ * Configuration addendum for Linux.
+ */
+#define SYM_CONF_TIMER_INTERVAL ((HZ+1)/2)
+
+#define SYM_OPT_HANDLE_DIR_UNKNOWN
+#define SYM_OPT_HANDLE_DEVICE_QUEUEING
+#define SYM_OPT_LIMIT_COMMAND_REORDERING
+
+/*
+ * Print a message with severity.
+ */
+#define printf_emerg(args...) printk(KERN_EMERG args)
+#define printf_alert(args...) printk(KERN_ALERT args)
+#define printf_crit(args...) printk(KERN_CRIT args)
+#define printf_err(args...) printk(KERN_ERR args)
+#define printf_warning(args...) printk(KERN_WARNING args)
+#define printf_notice(args...) printk(KERN_NOTICE args)
+#define printf_info(args...) printk(KERN_INFO args)
+#define printf_debug(args...) printk(KERN_DEBUG args)
+#define printf(args...) printk(args)
+
+/*
+ * A 'read barrier' flushes any data that have been prefetched
+ * by the processor due to out of order execution. Such a barrier
+ * must notably be inserted prior to looking at data that have
+ * been DMAed, assuming that program does memory READs in proper
+ * order and that the device ensured proper ordering of WRITEs.
+ *
+ * A 'write barrier' prevents any previous WRITEs to pass further
+ * WRITEs. Such barriers must be inserted each time another agent
+ * relies on ordering of WRITEs.
+ *
+ * Note that, due to posting of PCI memory writes, we also must
+ * insert dummy PCI read transactions when some ordering involving
+ * both directions over the PCI does matter. PCI transactions are
+ * fully ordered in each direction.
+ */
+
+#define MEMORY_READ_BARRIER() rmb()
+#define MEMORY_WRITE_BARRIER() wmb()
+
+/*
+ * IO functions definition for big/little endian CPU support.
+ * For now, PCI chips are only supported in little endian addressing mode,
+ */
+
+#ifdef __BIG_ENDIAN
+
+#define readw_l2b readw
+#define readl_l2b readl
+#define writew_b2l writew
+#define writel_b2l writel
+
+#else /* little endian */
+
+#define readw_raw readw
+#define readl_raw readl
+#define writew_raw writew
+#define writel_raw writel
+
+#endif /* endian */
+
+#ifdef SYM_CONF_CHIP_BIG_ENDIAN
+#error "Chips in BIG ENDIAN addressing mode are not (yet) supported"
+#endif
+
+/*
+ * If the CPU and the chip use same endian-ness addressing,
+ * no byte reordering is needed for script patching.
+ * Macro cpu_to_scr() is to be used for script patching.
+ * Macro scr_to_cpu() is to be used for getting a DWORD
+ * from the script.
+ */
+
+#define cpu_to_scr(dw) cpu_to_le32(dw)
+#define scr_to_cpu(dw) le32_to_cpu(dw)
+
+/*
+ * Remap some status field values.
+ */
+#define CAM_REQ_CMP DID_OK
+#define CAM_SEL_TIMEOUT DID_NO_CONNECT
+#define CAM_CMD_TIMEOUT DID_TIME_OUT
+#define CAM_REQ_ABORTED DID_ABORT
+#define CAM_UNCOR_PARITY DID_PARITY
+#define CAM_SCSI_BUS_RESET DID_RESET
+#define CAM_REQUEUE_REQ DID_SOFT_ERROR
+#define CAM_UNEXP_BUSFREE DID_ERROR
+#define CAM_SCSI_BUSY DID_BUS_BUSY
+
+#define CAM_DEV_NOT_THERE DID_NO_CONNECT
+#define CAM_REQ_INVALID DID_ERROR
+#define CAM_REQ_TOO_BIG DID_ERROR
+
+#define CAM_RESRC_UNAVAIL DID_ERROR
+
+/*
+ * Remap data direction values.
+ */
+#define CAM_DIR_NONE DMA_NONE
+#define CAM_DIR_IN DMA_FROM_DEVICE
+#define CAM_DIR_OUT DMA_TO_DEVICE
+#define CAM_DIR_UNKNOWN DMA_BIDIRECTIONAL
+
+/*
+ * These ones are used as return code from
+ * error recovery handlers under Linux.
+ */
+#define SCSI_SUCCESS SUCCESS
+#define SCSI_FAILED FAILED
+
+/*
+ * System specific target data structure.
+ * None for now, under Linux.
+ */
+/* #define SYM_HAVE_STCB */
+
+/*
+ * System specific lun data structure.
+ */
+#define SYM_HAVE_SLCB
+struct sym_slcb {
+ u_short reqtags; /* Number of tags requested by user */
+ u_short scdev_depth; /* Queue depth set in select_queue_depth() */
+};
+
+/*
+ * System specific command data structure.
+ * Not needed under Linux.
+ */
+/* struct sym_sccb */
+
+/*
+ * System specific host data structure.
+ */
+struct sym_shcb {
+ /*
+ * Chip and controller indentification.
+ */
+ int unit;
+ char inst_name[16];
+ char chip_name[8];
+ struct pci_dev *device;
+
+ struct Scsi_Host *host;
+
+ void __iomem * ioaddr; /* MMIO kernel io address */
+ void __iomem * ramaddr; /* RAM kernel io address */
+ u_short io_ws; /* IO window size */
+ int irq; /* IRQ number */
+
+ struct timer_list timer; /* Timer handler link header */
+ u_long lasttime;
+ u_long settle_time; /* Resetting the SCSI BUS */
+ u_char settle_time_valid;
+};
+
+/*
+ * Return the name of the controller.
+ */
+#define sym_name(np) (np)->s.inst_name
+
+struct sym_nvram;
+
+/*
+ * The IO macros require a struct called 's' and are abused in sym_nvram.c
+ */
+struct sym_device {
+ struct pci_dev *pdev;
+ unsigned long mmio_base;
+ unsigned long ram_base;
+ struct {
+ void __iomem *ioaddr;
+ void __iomem *ramaddr;
+ } s;
+ struct sym_chip chip;
+ struct sym_nvram *nvram;
+ u_short device_id;
+ u_char host_id;
+};
+
+/*
+ * Driver host data structure.
+ */
+struct host_data {
+ struct sym_hcb *ncb;
+};
+
+static inline struct sym_hcb * sym_get_hcb(struct Scsi_Host *host)
+{
+ return ((struct host_data *)host->hostdata)->ncb;
+}
+
+#include "sym_fw.h"
+#include "sym_hipd.h"
+
+/*
+ * Set the status field of a CAM CCB.
+ */
+static __inline void
+sym_set_cam_status(struct scsi_cmnd *cmd, int status)
+{
+ cmd->result &= ~(0xff << 16);
+ cmd->result |= (status << 16);
+}
+
+/*
+ * Get the status field of a CAM CCB.
+ */
+static __inline int
+sym_get_cam_status(struct scsi_cmnd *cmd)
+{
+ return host_byte(cmd->result);
+}
+
+/*
+ * Build CAM result for a successful IO and for a failed IO.
+ */
+static __inline void sym_set_cam_result_ok(struct sym_ccb *cp, struct scsi_cmnd *cmd, int resid)
+{
+ cmd->resid = resid;
+ cmd->result = (((DID_OK) << 16) + ((cp->ssss_status) & 0x7f));
+}
+void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid);
+
+void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *ccb);
+#define sym_print_addr(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
+void sym_xpt_async_bus_reset(struct sym_hcb *np);
+void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target);
+int sym_setup_data_and_start (struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
+void sym_log_bus_error(struct sym_hcb *np);
+void sym_sniff_inquiry(struct sym_hcb *np, struct scsi_cmnd *cmd, int resid);
+
+#endif /* SYM_GLUE_H */
diff --git a/drivers/scsi/sym53c8xx_2/sym_hipd.c b/drivers/scsi/sym53c8xx_2/sym_hipd.c
new file mode 100644
index 000000000000..50a176b3888d
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_hipd.c
@@ -0,0 +1,5865 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include "sym_glue.h"
+#include "sym_nvram.h"
+
+#if 0
+#define SYM_DEBUG_GENERIC_SUPPORT
+#endif
+
+/*
+ * Needed function prototypes.
+ */
+static void sym_int_ma (struct sym_hcb *np);
+static void sym_int_sir (struct sym_hcb *np);
+static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
+static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
+static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
+static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
+static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
+static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
+
+/*
+ * Print a buffer in hexadecimal format with a ".\n" at end.
+ */
+static void sym_printl_hex(u_char *p, int n)
+{
+ while (n-- > 0)
+ printf (" %x", *p++);
+ printf (".\n");
+}
+
+/*
+ * Print out the content of a SCSI message.
+ */
+static int sym_show_msg (u_char * msg)
+{
+ u_char i;
+ printf ("%x",*msg);
+ if (*msg==M_EXTENDED) {
+ for (i=1;i<8;i++) {
+ if (i-1>msg[1]) break;
+ printf ("-%x",msg[i]);
+ }
+ return (i+1);
+ } else if ((*msg & 0xf0) == 0x20) {
+ printf ("-%x",msg[1]);
+ return (2);
+ }
+ return (1);
+}
+
+static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
+{
+ sym_print_addr(cp->cmd, "%s: ", label);
+
+ sym_show_msg(msg);
+ printf(".\n");
+}
+
+static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
+{
+ struct sym_tcb *tp = &np->target[target];
+ dev_info(&tp->sdev->sdev_target->dev, "%s: ", label);
+
+ sym_show_msg(msg);
+ printf(".\n");
+}
+
+/*
+ * Print something that tells about extended errors.
+ */
+void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
+{
+ if (x_status & XE_PARITY_ERR) {
+ sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
+ }
+ if (x_status & XE_EXTRA_DATA) {
+ sym_print_addr(cmd, "extraneous data discarded.\n");
+ }
+ if (x_status & XE_BAD_PHASE) {
+ sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
+ }
+ if (x_status & XE_SODL_UNRUN) {
+ sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
+ }
+ if (x_status & XE_SWIDE_OVRUN) {
+ sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
+ }
+}
+
+/*
+ * Return a string for SCSI BUS mode.
+ */
+static char *sym_scsi_bus_mode(int mode)
+{
+ switch(mode) {
+ case SMODE_HVD: return "HVD";
+ case SMODE_SE: return "SE";
+ case SMODE_LVD: return "LVD";
+ }
+ return "??";
+}
+
+/*
+ * Soft reset the chip.
+ *
+ * Raising SRST when the chip is running may cause
+ * problems on dual function chips (see below).
+ * On the other hand, LVD devices need some delay
+ * to settle and report actual BUS mode in STEST4.
+ */
+static void sym_chip_reset (struct sym_hcb *np)
+{
+ OUTB(np, nc_istat, SRST);
+ udelay(10);
+ OUTB(np, nc_istat, 0);
+ udelay(2000); /* For BUS MODE to settle */
+}
+
+/*
+ * Really soft reset the chip.:)
+ *
+ * Some 896 and 876 chip revisions may hang-up if we set
+ * the SRST (soft reset) bit at the wrong time when SCRIPTS
+ * are running.
+ * So, we need to abort the current operation prior to
+ * soft resetting the chip.
+ */
+static void sym_soft_reset (struct sym_hcb *np)
+{
+ u_char istat = 0;
+ int i;
+
+ if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
+ goto do_chip_reset;
+
+ OUTB(np, nc_istat, CABRT);
+ for (i = 100000 ; i ; --i) {
+ istat = INB(np, nc_istat);
+ if (istat & SIP) {
+ INW(np, nc_sist);
+ }
+ else if (istat & DIP) {
+ if (INB(np, nc_dstat) & ABRT)
+ break;
+ }
+ udelay(5);
+ }
+ OUTB(np, nc_istat, 0);
+ if (!i)
+ printf("%s: unable to abort current chip operation, "
+ "ISTAT=0x%02x.\n", sym_name(np), istat);
+do_chip_reset:
+ sym_chip_reset(np);
+}
+
+/*
+ * Start reset process.
+ *
+ * The interrupt handler will reinitialize the chip.
+ */
+static void sym_start_reset(struct sym_hcb *np)
+{
+ sym_reset_scsi_bus(np, 1);
+}
+
+int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
+{
+ u32 term;
+ int retv = 0;
+
+ sym_soft_reset(np); /* Soft reset the chip */
+ if (enab_int)
+ OUTW(np, nc_sien, RST);
+ /*
+ * Enable Tolerant, reset IRQD if present and
+ * properly set IRQ mode, prior to resetting the bus.
+ */
+ OUTB(np, nc_stest3, TE);
+ OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
+ OUTB(np, nc_scntl1, CRST);
+ udelay(200);
+
+ if (!SYM_SETUP_SCSI_BUS_CHECK)
+ goto out;
+ /*
+ * Check for no terminators or SCSI bus shorts to ground.
+ * Read SCSI data bus, data parity bits and control signals.
+ * We are expecting RESET to be TRUE and other signals to be
+ * FALSE.
+ */
+ term = INB(np, nc_sstat0);
+ term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
+ term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
+ ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
+ ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
+ INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
+
+ if (!np->maxwide)
+ term &= 0x3ffff;
+
+ if (term != (2<<7)) {
+ printf("%s: suspicious SCSI data while resetting the BUS.\n",
+ sym_name(np));
+ printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
+ "0x%lx, expecting 0x%lx\n",
+ sym_name(np),
+ (np->features & FE_WIDE) ? "dp1,d15-8," : "",
+ (u_long)term, (u_long)(2<<7));
+ if (SYM_SETUP_SCSI_BUS_CHECK == 1)
+ retv = 1;
+ }
+out:
+ OUTB(np, nc_scntl1, 0);
+ return retv;
+}
+
+/*
+ * Select SCSI clock frequency
+ */
+static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
+{
+ /*
+ * If multiplier not present or not selected, leave here.
+ */
+ if (np->multiplier <= 1) {
+ OUTB(np, nc_scntl3, scntl3);
+ return;
+ }
+
+ if (sym_verbose >= 2)
+ printf ("%s: enabling clock multiplier\n", sym_name(np));
+
+ OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
+ /*
+ * Wait for the LCKFRQ bit to be set if supported by the chip.
+ * Otherwise wait 50 micro-seconds (at least).
+ */
+ if (np->features & FE_LCKFRQ) {
+ int i = 20;
+ while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
+ udelay(20);
+ if (!i)
+ printf("%s: the chip cannot lock the frequency\n",
+ sym_name(np));
+ } else
+ udelay((50+10));
+ OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
+ OUTB(np, nc_scntl3, scntl3);
+ OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
+ OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
+}
+
+
+/*
+ * Determine the chip's clock frequency.
+ *
+ * This is essential for the negotiation of the synchronous
+ * transfer rate.
+ *
+ * Note: we have to return the correct value.
+ * THERE IS NO SAFE DEFAULT VALUE.
+ *
+ * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
+ * 53C860 and 53C875 rev. 1 support fast20 transfers but
+ * do not have a clock doubler and so are provided with a
+ * 80 MHz clock. All other fast20 boards incorporate a doubler
+ * and so should be delivered with a 40 MHz clock.
+ * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
+ * clock and provide a clock quadrupler (160 Mhz).
+ */
+
+/*
+ * calculate SCSI clock frequency (in KHz)
+ */
+static unsigned getfreq (struct sym_hcb *np, int gen)
+{
+ unsigned int ms = 0;
+ unsigned int f;
+
+ /*
+ * Measure GEN timer delay in order
+ * to calculate SCSI clock frequency
+ *
+ * This code will never execute too
+ * many loop iterations (if DELAY is
+ * reasonably correct). It could get
+ * too low a delay (too high a freq.)
+ * if the CPU is slow executing the
+ * loop for some reason (an NMI, for
+ * example). For this reason we will
+ * if multiple measurements are to be
+ * performed trust the higher delay
+ * (lower frequency returned).
+ */
+ OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
+ INW(np, nc_sist); /* clear pending scsi interrupt */
+ OUTB(np, nc_dien, 0); /* mask all dma interrupts */
+ INW(np, nc_sist); /* another one, just to be sure :) */
+ /*
+ * The C1010-33 core does not report GEN in SIST,
+ * if this interrupt is masked in SIEN.
+ * I don't know yet if the C1010-66 behaves the same way.
+ */
+ if (np->features & FE_C10) {
+ OUTW(np, nc_sien, GEN);
+ OUTB(np, nc_istat1, SIRQD);
+ }
+ OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
+ OUTB(np, nc_stime1, 0); /* disable general purpose timer */
+ OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
+ while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
+ udelay(1000/4); /* count in 1/4 of ms */
+ OUTB(np, nc_stime1, 0); /* disable general purpose timer */
+ /*
+ * Undo C1010-33 specific settings.
+ */
+ if (np->features & FE_C10) {
+ OUTW(np, nc_sien, 0);
+ OUTB(np, nc_istat1, 0);
+ }
+ /*
+ * set prescaler to divide by whatever 0 means
+ * 0 ought to choose divide by 2, but appears
+ * to set divide by 3.5 mode in my 53c810 ...
+ */
+ OUTB(np, nc_scntl3, 0);
+
+ /*
+ * adjust for prescaler, and convert into KHz
+ */
+ f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
+
+ /*
+ * The C1010-33 result is biased by a factor
+ * of 2/3 compared to earlier chips.
+ */
+ if (np->features & FE_C10)
+ f = (f * 2) / 3;
+
+ if (sym_verbose >= 2)
+ printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
+ sym_name(np), gen, ms/4, f);
+
+ return f;
+}
+
+static unsigned sym_getfreq (struct sym_hcb *np)
+{
+ u_int f1, f2;
+ int gen = 8;
+
+ getfreq (np, gen); /* throw away first result */
+ f1 = getfreq (np, gen);
+ f2 = getfreq (np, gen);
+ if (f1 > f2) f1 = f2; /* trust lower result */
+ return f1;
+}
+
+/*
+ * Get/probe chip SCSI clock frequency
+ */
+static void sym_getclock (struct sym_hcb *np, int mult)
+{
+ unsigned char scntl3 = np->sv_scntl3;
+ unsigned char stest1 = np->sv_stest1;
+ unsigned f1;
+
+ np->multiplier = 1;
+ f1 = 40000;
+ /*
+ * True with 875/895/896/895A with clock multiplier selected
+ */
+ if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
+ if (sym_verbose >= 2)
+ printf ("%s: clock multiplier found\n", sym_name(np));
+ np->multiplier = mult;
+ }
+
+ /*
+ * If multiplier not found or scntl3 not 7,5,3,
+ * reset chip and get frequency from general purpose timer.
+ * Otherwise trust scntl3 BIOS setting.
+ */
+ if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
+ OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
+ f1 = sym_getfreq (np);
+
+ if (sym_verbose)
+ printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
+
+ if (f1 < 45000) f1 = 40000;
+ else if (f1 < 55000) f1 = 50000;
+ else f1 = 80000;
+
+ if (f1 < 80000 && mult > 1) {
+ if (sym_verbose >= 2)
+ printf ("%s: clock multiplier assumed\n",
+ sym_name(np));
+ np->multiplier = mult;
+ }
+ } else {
+ if ((scntl3 & 7) == 3) f1 = 40000;
+ else if ((scntl3 & 7) == 5) f1 = 80000;
+ else f1 = 160000;
+
+ f1 /= np->multiplier;
+ }
+
+ /*
+ * Compute controller synchronous parameters.
+ */
+ f1 *= np->multiplier;
+ np->clock_khz = f1;
+}
+
+/*
+ * Get/probe PCI clock frequency
+ */
+static int sym_getpciclock (struct sym_hcb *np)
+{
+ int f = 0;
+
+ /*
+ * For now, we only need to know about the actual
+ * PCI BUS clock frequency for C1010-66 chips.
+ */
+#if 1
+ if (np->features & FE_66MHZ) {
+#else
+ if (1) {
+#endif
+ OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
+ f = sym_getfreq(np);
+ OUTB(np, nc_stest1, 0);
+ }
+ np->pciclk_khz = f;
+
+ return f;
+}
+
+/*
+ * SYMBIOS chip clock divisor table.
+ *
+ * Divisors are multiplied by 10,000,000 in order to make
+ * calculations more simple.
+ */
+#define _5M 5000000
+static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
+
+/*
+ * Get clock factor and sync divisor for a given
+ * synchronous factor period.
+ */
+static int
+sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
+{
+ u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
+ int div = np->clock_divn; /* Number of divisors supported */
+ u32 fak; /* Sync factor in sxfer */
+ u32 per; /* Period in tenths of ns */
+ u32 kpc; /* (per * clk) */
+ int ret;
+
+ /*
+ * Compute the synchronous period in tenths of nano-seconds
+ */
+ if (dt && sfac <= 9) per = 125;
+ else if (sfac <= 10) per = 250;
+ else if (sfac == 11) per = 303;
+ else if (sfac == 12) per = 500;
+ else per = 40 * sfac;
+ ret = per;
+
+ kpc = per * clk;
+ if (dt)
+ kpc <<= 1;
+
+ /*
+ * For earliest C10 revision 0, we cannot use extra
+ * clocks for the setting of the SCSI clocking.
+ * Note that this limits the lowest sync data transfer
+ * to 5 Mega-transfers per second and may result in
+ * using higher clock divisors.
+ */
+#if 1
+ if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
+ /*
+ * Look for the lowest clock divisor that allows an
+ * output speed not faster than the period.
+ */
+ while (div > 0) {
+ --div;
+ if (kpc > (div_10M[div] << 2)) {
+ ++div;
+ break;
+ }
+ }
+ fak = 0; /* No extra clocks */
+ if (div == np->clock_divn) { /* Are we too fast ? */
+ ret = -1;
+ }
+ *divp = div;
+ *fakp = fak;
+ return ret;
+ }
+#endif
+
+ /*
+ * Look for the greatest clock divisor that allows an
+ * input speed faster than the period.
+ */
+ while (div-- > 0)
+ if (kpc >= (div_10M[div] << 2)) break;
+
+ /*
+ * Calculate the lowest clock factor that allows an output
+ * speed not faster than the period, and the max output speed.
+ * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
+ * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
+ */
+ if (dt) {
+ fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
+ /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
+ } else {
+ fak = (kpc - 1) / div_10M[div] + 1 - 4;
+ /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
+ }
+
+ /*
+ * Check against our hardware limits, or bugs :).
+ */
+ if (fak > 2) {
+ fak = 2;
+ ret = -1;
+ }
+
+ /*
+ * Compute and return sync parameters.
+ */
+ *divp = div;
+ *fakp = fak;
+
+ return ret;
+}
+
+/*
+ * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
+ * 128 transfers. All chips support at least 16 transfers
+ * bursts. The 825A, 875 and 895 chips support bursts of up
+ * to 128 transfers and the 895A and 896 support bursts of up
+ * to 64 transfers. All other chips support up to 16
+ * transfers bursts.
+ *
+ * For PCI 32 bit data transfers each transfer is a DWORD.
+ * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
+ *
+ * We use log base 2 (burst length) as internal code, with
+ * value 0 meaning "burst disabled".
+ */
+
+/*
+ * Burst length from burst code.
+ */
+#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
+
+/*
+ * Burst code from io register bits.
+ */
+#define burst_code(dmode, ctest4, ctest5) \
+ (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
+
+/*
+ * Set initial io register bits from burst code.
+ */
+static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
+{
+ np->rv_ctest4 &= ~0x80;
+ np->rv_dmode &= ~(0x3 << 6);
+ np->rv_ctest5 &= ~0x4;
+
+ if (!bc) {
+ np->rv_ctest4 |= 0x80;
+ }
+ else {
+ --bc;
+ np->rv_dmode |= ((bc & 0x3) << 6);
+ np->rv_ctest5 |= (bc & 0x4);
+ }
+}
+
+
+/*
+ * Print out the list of targets that have some flag disabled by user.
+ */
+static void sym_print_targets_flag(struct sym_hcb *np, int mask, char *msg)
+{
+ int cnt;
+ int i;
+
+ for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ if (i == np->myaddr)
+ continue;
+ if (np->target[i].usrflags & mask) {
+ if (!cnt++)
+ printf("%s: %s disabled for targets",
+ sym_name(np), msg);
+ printf(" %d", i);
+ }
+ }
+ if (cnt)
+ printf(".\n");
+}
+
+/*
+ * Save initial settings of some IO registers.
+ * Assumed to have been set by BIOS.
+ * We cannot reset the chip prior to reading the
+ * IO registers, since informations will be lost.
+ * Since the SCRIPTS processor may be running, this
+ * is not safe on paper, but it seems to work quite
+ * well. :)
+ */
+static void sym_save_initial_setting (struct sym_hcb *np)
+{
+ np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
+ np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
+ np->sv_dmode = INB(np, nc_dmode) & 0xce;
+ np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
+ np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
+ np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
+ np->sv_gpcntl = INB(np, nc_gpcntl);
+ np->sv_stest1 = INB(np, nc_stest1);
+ np->sv_stest2 = INB(np, nc_stest2) & 0x20;
+ np->sv_stest4 = INB(np, nc_stest4);
+ if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
+ np->sv_scntl4 = INB(np, nc_scntl4);
+ np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
+ }
+ else
+ np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
+}
+
+/*
+ * Prepare io register values used by sym_start_up()
+ * according to selected and supported features.
+ */
+static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
+{
+ u_char burst_max;
+ u32 period;
+ int i;
+
+ /*
+ * Wide ?
+ */
+ np->maxwide = (np->features & FE_WIDE)? 1 : 0;
+
+ /*
+ * Guess the frequency of the chip's clock.
+ */
+ if (np->features & (FE_ULTRA3 | FE_ULTRA2))
+ np->clock_khz = 160000;
+ else if (np->features & FE_ULTRA)
+ np->clock_khz = 80000;
+ else
+ np->clock_khz = 40000;
+
+ /*
+ * Get the clock multiplier factor.
+ */
+ if (np->features & FE_QUAD)
+ np->multiplier = 4;
+ else if (np->features & FE_DBLR)
+ np->multiplier = 2;
+ else
+ np->multiplier = 1;
+
+ /*
+ * Measure SCSI clock frequency for chips
+ * it may vary from assumed one.
+ */
+ if (np->features & FE_VARCLK)
+ sym_getclock(np, np->multiplier);
+
+ /*
+ * Divisor to be used for async (timer pre-scaler).
+ */
+ i = np->clock_divn - 1;
+ while (--i >= 0) {
+ if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
+ ++i;
+ break;
+ }
+ }
+ np->rv_scntl3 = i+1;
+
+ /*
+ * The C1010 uses hardwired divisors for async.
+ * So, we just throw away, the async. divisor.:-)
+ */
+ if (np->features & FE_C10)
+ np->rv_scntl3 = 0;
+
+ /*
+ * Minimum synchronous period factor supported by the chip.
+ * Btw, 'period' is in tenths of nanoseconds.
+ */
+ period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
+
+ if (period <= 250) np->minsync = 10;
+ else if (period <= 303) np->minsync = 11;
+ else if (period <= 500) np->minsync = 12;
+ else np->minsync = (period + 40 - 1) / 40;
+
+ /*
+ * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
+ */
+ if (np->minsync < 25 &&
+ !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
+ np->minsync = 25;
+ else if (np->minsync < 12 &&
+ !(np->features & (FE_ULTRA2|FE_ULTRA3)))
+ np->minsync = 12;
+
+ /*
+ * Maximum synchronous period factor supported by the chip.
+ */
+ period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
+ np->maxsync = period > 2540 ? 254 : period / 10;
+
+ /*
+ * If chip is a C1010, guess the sync limits in DT mode.
+ */
+ if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
+ if (np->clock_khz == 160000) {
+ np->minsync_dt = 9;
+ np->maxsync_dt = 50;
+ np->maxoffs_dt = nvram->type ? 62 : 31;
+ }
+ }
+
+ /*
+ * 64 bit addressing (895A/896/1010) ?
+ */
+ if (np->features & FE_DAC) {
+#if SYM_CONF_DMA_ADDRESSING_MODE == 0
+ np->rv_ccntl1 |= (DDAC);
+#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
+ if (!np->use_dac)
+ np->rv_ccntl1 |= (DDAC);
+ else
+ np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
+#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
+ if (!np->use_dac)
+ np->rv_ccntl1 |= (DDAC);
+ else
+ np->rv_ccntl1 |= (0 | EXTIBMV);
+#endif
+ }
+
+ /*
+ * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
+ */
+ if (np->features & FE_NOPM)
+ np->rv_ccntl0 |= (ENPMJ);
+
+ /*
+ * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
+ * In dual channel mode, contention occurs if internal cycles
+ * are used. Disable internal cycles.
+ */
+ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
+ np->revision_id < 0x1)
+ np->rv_ccntl0 |= DILS;
+
+ /*
+ * Select burst length (dwords)
+ */
+ burst_max = SYM_SETUP_BURST_ORDER;
+ if (burst_max == 255)
+ burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
+ np->sv_ctest5);
+ if (burst_max > 7)
+ burst_max = 7;
+ if (burst_max > np->maxburst)
+ burst_max = np->maxburst;
+
+ /*
+ * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
+ * This chip and the 860 Rev 1 may wrongly use PCI cache line
+ * based transactions on LOAD/STORE instructions. So we have
+ * to prevent these chips from using such PCI transactions in
+ * this driver. The generic ncr driver that does not use
+ * LOAD/STORE instructions does not need this work-around.
+ */
+ if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
+ np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
+ (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
+ np->revision_id <= 0x1))
+ np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
+
+ /*
+ * Select all supported special features.
+ * If we are using on-board RAM for scripts, prefetch (PFEN)
+ * does not help, but burst op fetch (BOF) does.
+ * Disabling PFEN makes sure BOF will be used.
+ */
+ if (np->features & FE_ERL)
+ np->rv_dmode |= ERL; /* Enable Read Line */
+ if (np->features & FE_BOF)
+ np->rv_dmode |= BOF; /* Burst Opcode Fetch */
+ if (np->features & FE_ERMP)
+ np->rv_dmode |= ERMP; /* Enable Read Multiple */
+#if 1
+ if ((np->features & FE_PFEN) && !np->ram_ba)
+#else
+ if (np->features & FE_PFEN)
+#endif
+ np->rv_dcntl |= PFEN; /* Prefetch Enable */
+ if (np->features & FE_CLSE)
+ np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
+ if (np->features & FE_WRIE)
+ np->rv_ctest3 |= WRIE; /* Write and Invalidate */
+ if (np->features & FE_DFS)
+ np->rv_ctest5 |= DFS; /* Dma Fifo Size */
+
+ /*
+ * Select some other
+ */
+ np->rv_ctest4 |= MPEE; /* Master parity checking */
+ np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
+
+ /*
+ * Get parity checking, host ID and verbose mode from NVRAM
+ */
+ np->myaddr = 255;
+ sym_nvram_setup_host(shost, np, nvram);
+
+ /*
+ * Get SCSI addr of host adapter (set by bios?).
+ */
+ if (np->myaddr == 255) {
+ np->myaddr = INB(np, nc_scid) & 0x07;
+ if (!np->myaddr)
+ np->myaddr = SYM_SETUP_HOST_ID;
+ }
+
+ /*
+ * Prepare initial io register bits for burst length
+ */
+ sym_init_burst(np, burst_max);
+
+ /*
+ * Set SCSI BUS mode.
+ * - LVD capable chips (895/895A/896/1010) report the
+ * current BUS mode through the STEST4 IO register.
+ * - For previous generation chips (825/825A/875),
+ * user has to tell us how to check against HVD,
+ * since a 100% safe algorithm is not possible.
+ */
+ np->scsi_mode = SMODE_SE;
+ if (np->features & (FE_ULTRA2|FE_ULTRA3))
+ np->scsi_mode = (np->sv_stest4 & SMODE);
+ else if (np->features & FE_DIFF) {
+ if (SYM_SETUP_SCSI_DIFF == 1) {
+ if (np->sv_scntl3) {
+ if (np->sv_stest2 & 0x20)
+ np->scsi_mode = SMODE_HVD;
+ }
+ else if (nvram->type == SYM_SYMBIOS_NVRAM) {
+ if (!(INB(np, nc_gpreg) & 0x08))
+ np->scsi_mode = SMODE_HVD;
+ }
+ }
+ else if (SYM_SETUP_SCSI_DIFF == 2)
+ np->scsi_mode = SMODE_HVD;
+ }
+ if (np->scsi_mode == SMODE_HVD)
+ np->rv_stest2 |= 0x20;
+
+ /*
+ * Set LED support from SCRIPTS.
+ * Ignore this feature for boards known to use a
+ * specific GPIO wiring and for the 895A, 896
+ * and 1010 that drive the LED directly.
+ */
+ if ((SYM_SETUP_SCSI_LED ||
+ (nvram->type == SYM_SYMBIOS_NVRAM ||
+ (nvram->type == SYM_TEKRAM_NVRAM &&
+ np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
+ !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
+ np->features |= FE_LED0;
+
+ /*
+ * Set irq mode.
+ */
+ switch(SYM_SETUP_IRQ_MODE & 3) {
+ case 2:
+ np->rv_dcntl |= IRQM;
+ break;
+ case 1:
+ np->rv_dcntl |= (np->sv_dcntl & IRQM);
+ break;
+ default:
+ break;
+ }
+
+ /*
+ * Configure targets according to driver setup.
+ * If NVRAM present get targets setup from NVRAM.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ struct sym_tcb *tp = &np->target[i];
+
+ tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
+ tp->usrtags = SYM_SETUP_MAX_TAG;
+
+ sym_nvram_setup_target(np, i, nvram);
+
+ if (!tp->usrtags)
+ tp->usrflags &= ~SYM_TAGS_ENABLED;
+ }
+
+ /*
+ * Let user know about the settings.
+ */
+ printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
+ sym_nvram_type(nvram), np->myaddr,
+ (np->features & FE_ULTRA3) ? 80 :
+ (np->features & FE_ULTRA2) ? 40 :
+ (np->features & FE_ULTRA) ? 20 : 10,
+ sym_scsi_bus_mode(np->scsi_mode),
+ (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
+ /*
+ * Tell him more on demand.
+ */
+ if (sym_verbose) {
+ printf("%s: %s IRQ line driver%s\n",
+ sym_name(np),
+ np->rv_dcntl & IRQM ? "totem pole" : "open drain",
+ np->ram_ba ? ", using on-chip SRAM" : "");
+ printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
+ if (np->features & FE_NOPM)
+ printf("%s: handling phase mismatch from SCRIPTS.\n",
+ sym_name(np));
+ }
+ /*
+ * And still more.
+ */
+ if (sym_verbose >= 2) {
+ printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
+ "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
+ sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
+ np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
+
+ printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
+ "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
+ sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
+ np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
+ }
+ /*
+ * Let user be aware of targets that have some disable flags set.
+ */
+ sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
+ if (sym_verbose)
+ sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
+ "SCAN FOR LUNS");
+
+ return 0;
+}
+
+/*
+ * Test the pci bus snoop logic :-(
+ *
+ * Has to be called with interrupts disabled.
+ */
+#ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
+static int sym_regtest (struct sym_hcb *np)
+{
+ register volatile u32 data;
+ /*
+ * chip registers may NOT be cached.
+ * write 0xffffffff to a read only register area,
+ * and try to read it back.
+ */
+ data = 0xffffffff;
+ OUTL(np, nc_dstat, data);
+ data = INL(np, nc_dstat);
+#if 1
+ if (data == 0xffffffff) {
+#else
+ if ((data & 0xe2f0fffd) != 0x02000080) {
+#endif
+ printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
+ (unsigned) data);
+ return (0x10);
+ }
+ return (0);
+}
+#endif
+
+static int sym_snooptest (struct sym_hcb *np)
+{
+ u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
+ int i, err=0;
+#ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
+ err |= sym_regtest (np);
+ if (err) return (err);
+#endif
+restart_test:
+ /*
+ * Enable Master Parity Checking as we intend
+ * to enable it for normal operations.
+ */
+ OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
+ /*
+ * init
+ */
+ pc = SCRIPTZ_BA(np, snooptest);
+ host_wr = 1;
+ sym_wr = 2;
+ /*
+ * Set memory and register.
+ */
+ np->scratch = cpu_to_scr(host_wr);
+ OUTL(np, nc_temp, sym_wr);
+ /*
+ * Start script (exchange values)
+ */
+ OUTL(np, nc_dsa, np->hcb_ba);
+ OUTL_DSP(np, pc);
+ /*
+ * Wait 'til done (with timeout)
+ */
+ for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
+ if (INB(np, nc_istat) & (INTF|SIP|DIP))
+ break;
+ if (i>=SYM_SNOOP_TIMEOUT) {
+ printf ("CACHE TEST FAILED: timeout.\n");
+ return (0x20);
+ }
+ /*
+ * Check for fatal DMA errors.
+ */
+ dstat = INB(np, nc_dstat);
+#if 1 /* Band aiding for broken hardwares that fail PCI parity */
+ if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
+ printf ("%s: PCI DATA PARITY ERROR DETECTED - "
+ "DISABLING MASTER DATA PARITY CHECKING.\n",
+ sym_name(np));
+ np->rv_ctest4 &= ~MPEE;
+ goto restart_test;
+ }
+#endif
+ if (dstat & (MDPE|BF|IID)) {
+ printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
+ return (0x80);
+ }
+ /*
+ * Save termination position.
+ */
+ pc = INL(np, nc_dsp);
+ /*
+ * Read memory and register.
+ */
+ host_rd = scr_to_cpu(np->scratch);
+ sym_rd = INL(np, nc_scratcha);
+ sym_bk = INL(np, nc_temp);
+ /*
+ * Check termination position.
+ */
+ if (pc != SCRIPTZ_BA(np, snoopend)+8) {
+ printf ("CACHE TEST FAILED: script execution failed.\n");
+ printf ("start=%08lx, pc=%08lx, end=%08lx\n",
+ (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
+ (u_long) SCRIPTZ_BA(np, snoopend) +8);
+ return (0x40);
+ }
+ /*
+ * Show results.
+ */
+ if (host_wr != sym_rd) {
+ printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
+ (int) host_wr, (int) sym_rd);
+ err |= 1;
+ }
+ if (host_rd != sym_wr) {
+ printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
+ (int) sym_wr, (int) host_rd);
+ err |= 2;
+ }
+ if (sym_bk != sym_wr) {
+ printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
+ (int) sym_wr, (int) sym_bk);
+ err |= 4;
+ }
+
+ return (err);
+}
+
+/*
+ * log message for real hard errors
+ *
+ * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
+ * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
+ *
+ * exception register:
+ * ds: dstat
+ * si: sist
+ *
+ * SCSI bus lines:
+ * so: control lines as driven by chip.
+ * si: control lines as seen by chip.
+ * sd: scsi data lines as seen by chip.
+ *
+ * wide/fastmode:
+ * sx: sxfer (see the manual)
+ * s3: scntl3 (see the manual)
+ * s4: scntl4 (see the manual)
+ *
+ * current script command:
+ * dsp: script address (relative to start of script).
+ * dbc: first word of script command.
+ *
+ * First 24 register of the chip:
+ * r0..rf
+ */
+static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
+{
+ u32 dsp;
+ int script_ofs;
+ int script_size;
+ char *script_name;
+ u_char *script_base;
+ int i;
+
+ dsp = INL(np, nc_dsp);
+
+ if (dsp > np->scripta_ba &&
+ dsp <= np->scripta_ba + np->scripta_sz) {
+ script_ofs = dsp - np->scripta_ba;
+ script_size = np->scripta_sz;
+ script_base = (u_char *) np->scripta0;
+ script_name = "scripta";
+ }
+ else if (np->scriptb_ba < dsp &&
+ dsp <= np->scriptb_ba + np->scriptb_sz) {
+ script_ofs = dsp - np->scriptb_ba;
+ script_size = np->scriptb_sz;
+ script_base = (u_char *) np->scriptb0;
+ script_name = "scriptb";
+ } else {
+ script_ofs = dsp;
+ script_size = 0;
+ script_base = NULL;
+ script_name = "mem";
+ }
+
+ printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
+ sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
+ (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
+ (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
+ (unsigned)INB(np, nc_scntl3),
+ (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
+ script_name, script_ofs, (unsigned)INL(np, nc_dbc));
+
+ if (((script_ofs & 3) == 0) &&
+ (unsigned)script_ofs < script_size) {
+ printf ("%s: script cmd = %08x\n", sym_name(np),
+ scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
+ }
+
+ printf ("%s: regdump:", sym_name(np));
+ for (i=0; i<24;i++)
+ printf (" %02x", (unsigned)INB_OFF(np, i));
+ printf (".\n");
+
+ /*
+ * PCI BUS error.
+ */
+ if (dstat & (MDPE|BF))
+ sym_log_bus_error(np);
+}
+
+static struct sym_chip sym_dev_table[] = {
+ {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
+ FE_ERL}
+ ,
+#ifdef SYM_DEBUG_GENERIC_SUPPORT
+ {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
+ FE_BOF}
+ ,
+#else
+ {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
+ FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
+ ,
+#endif
+ {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
+ FE_BOF|FE_ERL}
+ ,
+ {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
+ FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
+ ,
+ {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
+ FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
+ ,
+ {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
+ FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
+ ,
+ {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF|FE_VARCLK}
+ ,
+ {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF|FE_VARCLK}
+ ,
+ {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF|FE_VARCLK}
+ ,
+ {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
+ FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DIFF|FE_VARCLK}
+ ,
+#ifdef SYM_DEBUG_GENERIC_SUPPORT
+ {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
+ FE_RAM|FE_LCKFRQ}
+ ,
+#else
+ {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_LCKFRQ}
+ ,
+#endif
+ {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
+ ,
+ {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
+ ,
+ {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
+ ,
+ {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
+ FE_C10}
+ ,
+ {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
+ FE_C10|FE_U3EN}
+ ,
+ {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
+ FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
+ FE_C10|FE_U3EN}
+ ,
+ {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
+ FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
+ FE_RAM|FE_IO256|FE_LEDC}
+};
+
+#define sym_num_devs \
+ (sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
+
+/*
+ * Look up the chip table.
+ *
+ * Return a pointer to the chip entry if found,
+ * zero otherwise.
+ */
+struct sym_chip *
+sym_lookup_chip_table (u_short device_id, u_char revision)
+{
+ struct sym_chip *chip;
+ int i;
+
+ for (i = 0; i < sym_num_devs; i++) {
+ chip = &sym_dev_table[i];
+ if (device_id != chip->device_id)
+ continue;
+ if (revision > chip->revision_id)
+ continue;
+ return chip;
+ }
+
+ return NULL;
+}
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+/*
+ * Lookup the 64 bit DMA segments map.
+ * This is only used if the direct mapping
+ * has been unsuccessful.
+ */
+int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
+{
+ int i;
+
+ if (!np->use_dac)
+ goto weird;
+
+ /* Look up existing mappings */
+ for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
+ if (h == np->dmap_bah[i])
+ return i;
+ }
+ /* If direct mapping is free, get it */
+ if (!np->dmap_bah[s])
+ goto new;
+ /* Collision -> lookup free mappings */
+ for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
+ if (!np->dmap_bah[s])
+ goto new;
+ }
+weird:
+ panic("sym: ran out of 64 bit DMA segment registers");
+ return -1;
+new:
+ np->dmap_bah[s] = h;
+ np->dmap_dirty = 1;
+ return s;
+}
+
+/*
+ * Update IO registers scratch C..R so they will be
+ * in sync. with queued CCB expectations.
+ */
+static void sym_update_dmap_regs(struct sym_hcb *np)
+{
+ int o, i;
+
+ if (!np->dmap_dirty)
+ return;
+ o = offsetof(struct sym_reg, nc_scrx[0]);
+ for (i = 0; i < SYM_DMAP_SIZE; i++) {
+ OUTL_OFF(np, o, np->dmap_bah[i]);
+ o += 4;
+ }
+ np->dmap_dirty = 0;
+}
+#endif
+
+/* Enforce all the fiddly SPI rules and the chip limitations */
+static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
+ struct sym_trans *goal)
+{
+ if (!spi_support_wide(starget))
+ goal->width = 0;
+
+ if (!spi_support_sync(starget)) {
+ goal->iu = 0;
+ goal->dt = 0;
+ goal->qas = 0;
+ goal->period = 0;
+ goal->offset = 0;
+ return;
+ }
+
+ if (spi_support_dt(starget)) {
+ if (spi_support_dt_only(starget))
+ goal->dt = 1;
+
+ if (goal->offset == 0)
+ goal->dt = 0;
+ } else {
+ goal->dt = 0;
+ }
+
+ /* Some targets fail to properly negotiate DT in SE mode */
+ if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
+ goal->dt = 0;
+
+ if (goal->dt) {
+ /* all DT transfers must be wide */
+ goal->width = 1;
+ if (goal->offset > np->maxoffs_dt)
+ goal->offset = np->maxoffs_dt;
+ if (goal->period < np->minsync_dt)
+ goal->period = np->minsync_dt;
+ if (goal->period > np->maxsync_dt)
+ goal->period = np->maxsync_dt;
+ } else {
+ goal->iu = goal->qas = 0;
+ if (goal->offset > np->maxoffs)
+ goal->offset = np->maxoffs;
+ if (goal->period < np->minsync)
+ goal->period = np->minsync;
+ if (goal->period > np->maxsync)
+ goal->period = np->maxsync;
+ }
+}
+
+/*
+ * Prepare the next negotiation message if needed.
+ *
+ * Fill in the part of message buffer that contains the
+ * negotiation and the nego_status field of the CCB.
+ * Returns the size of the message in bytes.
+ */
+static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
+{
+ struct sym_tcb *tp = &np->target[cp->target];
+ struct scsi_target *starget = tp->sdev->sdev_target;
+ struct sym_trans *goal = &tp->tgoal;
+ int msglen = 0;
+ int nego;
+
+ sym_check_goals(np, starget, goal);
+
+ /*
+ * Many devices implement PPR in a buggy way, so only use it if we
+ * really want to.
+ */
+ if (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)) {
+ nego = NS_PPR;
+ } else if (spi_width(starget) != goal->width) {
+ nego = NS_WIDE;
+ } else if (spi_period(starget) != goal->period ||
+ spi_offset(starget) != goal->offset) {
+ nego = NS_SYNC;
+ } else {
+ goal->check_nego = 0;
+ nego = 0;
+ }
+
+ switch (nego) {
+ case NS_SYNC:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 3;
+ msgptr[msglen++] = M_X_SYNC_REQ;
+ msgptr[msglen++] = goal->period;
+ msgptr[msglen++] = goal->offset;
+ break;
+ case NS_WIDE:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 2;
+ msgptr[msglen++] = M_X_WIDE_REQ;
+ msgptr[msglen++] = goal->width;
+ break;
+ case NS_PPR:
+ msgptr[msglen++] = M_EXTENDED;
+ msgptr[msglen++] = 6;
+ msgptr[msglen++] = M_X_PPR_REQ;
+ msgptr[msglen++] = goal->period;
+ msgptr[msglen++] = 0;
+ msgptr[msglen++] = goal->offset;
+ msgptr[msglen++] = goal->width;
+ msgptr[msglen++] = (goal->iu ? PPR_OPT_IU : 0) |
+ (goal->dt ? PPR_OPT_DT : 0) |
+ (goal->qas ? PPR_OPT_QAS : 0);
+ break;
+ }
+
+ cp->nego_status = nego;
+
+ if (nego) {
+ tp->nego_cp = cp; /* Keep track a nego will be performed */
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, cp->target,
+ nego == NS_SYNC ? "sync msgout" :
+ nego == NS_WIDE ? "wide msgout" :
+ "ppr msgout", msgptr);
+ }
+ }
+
+ return msglen;
+}
+
+/*
+ * Insert a job into the start queue.
+ */
+void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
+{
+ u_short qidx;
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If the previously queued CCB is not yet done,
+ * set the IARB hint. The SCRIPTS will go with IARB
+ * for this job when starting the previous one.
+ * We leave devices a chance to win arbitration by
+ * not using more than 'iarb_max' consecutive
+ * immediate arbitrations.
+ */
+ if (np->last_cp && np->iarb_count < np->iarb_max) {
+ np->last_cp->host_flags |= HF_HINT_IARB;
+ ++np->iarb_count;
+ }
+ else
+ np->iarb_count = 0;
+ np->last_cp = cp;
+#endif
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ /*
+ * Make SCRIPTS aware of the 64 bit DMA
+ * segment registers not being up-to-date.
+ */
+ if (np->dmap_dirty)
+ cp->host_xflags |= HX_DMAP_DIRTY;
+#endif
+
+ /*
+ * Insert first the idle task and then our job.
+ * The MBs should ensure proper ordering.
+ */
+ qidx = np->squeueput + 2;
+ if (qidx >= MAX_QUEUE*2) qidx = 0;
+
+ np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
+ MEMORY_WRITE_BARRIER();
+ np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
+
+ np->squeueput = qidx;
+
+ if (DEBUG_FLAGS & DEBUG_QUEUE)
+ printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
+
+ /*
+ * Script processor may be waiting for reselect.
+ * Wake it up.
+ */
+ MEMORY_WRITE_BARRIER();
+ OUTB(np, nc_istat, SIGP|np->istat_sem);
+}
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+/*
+ * Start next ready-to-start CCBs.
+ */
+void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
+{
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp;
+
+ /*
+ * Paranoia, as usual. :-)
+ */
+ assert(!lp->started_tags || !lp->started_no_tag);
+
+ /*
+ * Try to start as many commands as asked by caller.
+ * Prevent from having both tagged and untagged
+ * commands queued to the device at the same time.
+ */
+ while (maxn--) {
+ qp = sym_remque_head(&lp->waiting_ccbq);
+ if (!qp)
+ break;
+ cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
+ if (cp->tag != NO_TAG) {
+ if (lp->started_no_tag ||
+ lp->started_tags >= lp->started_max) {
+ sym_insque_head(qp, &lp->waiting_ccbq);
+ break;
+ }
+ lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA(np, resel_tag));
+ ++lp->started_tags;
+ } else {
+ if (lp->started_no_tag || lp->started_tags) {
+ sym_insque_head(qp, &lp->waiting_ccbq);
+ break;
+ }
+ lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
+ ++lp->started_no_tag;
+ }
+ cp->started = 1;
+ sym_insque_tail(qp, &lp->started_ccbq);
+ sym_put_start_queue(np, cp);
+ }
+}
+#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
+
+/*
+ * The chip may have completed jobs. Look at the DONE QUEUE.
+ *
+ * On paper, memory read barriers may be needed here to
+ * prevent out of order LOADs by the CPU from having
+ * prefetched stale data prior to DMA having occurred.
+ */
+static int sym_wakeup_done (struct sym_hcb *np)
+{
+ struct sym_ccb *cp;
+ int i, n;
+ u32 dsa;
+
+ n = 0;
+ i = np->dqueueget;
+
+ /* MEMORY_READ_BARRIER(); */
+ while (1) {
+ dsa = scr_to_cpu(np->dqueue[i]);
+ if (!dsa)
+ break;
+ np->dqueue[i] = 0;
+ if ((i = i+2) >= MAX_QUEUE*2)
+ i = 0;
+
+ cp = sym_ccb_from_dsa(np, dsa);
+ if (cp) {
+ MEMORY_READ_BARRIER();
+ sym_complete_ok (np, cp);
+ ++n;
+ }
+ else
+ printf ("%s: bad DSA (%x) in done queue.\n",
+ sym_name(np), (u_int) dsa);
+ }
+ np->dqueueget = i;
+
+ return n;
+}
+
+/*
+ * Complete all CCBs queued to the COMP queue.
+ *
+ * These CCBs are assumed:
+ * - Not to be referenced either by devices or
+ * SCRIPTS-related queues and datas.
+ * - To have to be completed with an error condition
+ * or requeued.
+ *
+ * The device queue freeze count is incremented
+ * for each CCB that does not prevent this.
+ * This function is called when all CCBs involved
+ * in error handling/recovery have been reaped.
+ */
+static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
+{
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp;
+
+ while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
+ struct scsi_cmnd *cmd;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+ /* Leave quiet CCBs waiting for resources */
+ if (cp->host_status == HS_WAIT)
+ continue;
+ cmd = cp->cmd;
+ if (cam_status)
+ sym_set_cam_status(cmd, cam_status);
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (sym_get_cam_status(cmd) == CAM_REQUEUE_REQ) {
+ struct sym_tcb *tp = &np->target[cp->target];
+ struct sym_lcb *lp = sym_lp(tp, cp->lun);
+ if (lp) {
+ sym_remque(&cp->link2_ccbq);
+ sym_insque_tail(&cp->link2_ccbq,
+ &lp->waiting_ccbq);
+ if (cp->started) {
+ if (cp->tag != NO_TAG)
+ --lp->started_tags;
+ else
+ --lp->started_no_tag;
+ }
+ }
+ cp->started = 0;
+ continue;
+ }
+#endif
+ sym_free_ccb(np, cp);
+ sym_xpt_done(np, cmd);
+ }
+}
+
+/*
+ * Complete all active CCBs with error.
+ * Used on CHIP/SCSI RESET.
+ */
+static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
+{
+ /*
+ * Move all active CCBs to the COMP queue
+ * and flush this queue.
+ */
+ sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
+ sym_que_init(&np->busy_ccbq);
+ sym_flush_comp_queue(np, cam_status);
+}
+
+/*
+ * Start chip.
+ *
+ * 'reason' means:
+ * 0: initialisation.
+ * 1: SCSI BUS RESET delivered or received.
+ * 2: SCSI BUS MODE changed.
+ */
+void sym_start_up (struct sym_hcb *np, int reason)
+{
+ int i;
+ u32 phys;
+
+ /*
+ * Reset chip if asked, otherwise just clear fifos.
+ */
+ if (reason == 1)
+ sym_soft_reset(np);
+ else {
+ OUTB(np, nc_stest3, TE|CSF);
+ OUTONB(np, nc_ctest3, CLF);
+ }
+
+ /*
+ * Clear Start Queue
+ */
+ phys = np->squeue_ba;
+ for (i = 0; i < MAX_QUEUE*2; i += 2) {
+ np->squeue[i] = cpu_to_scr(np->idletask_ba);
+ np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
+ }
+ np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
+
+ /*
+ * Start at first entry.
+ */
+ np->squeueput = 0;
+
+ /*
+ * Clear Done Queue
+ */
+ phys = np->dqueue_ba;
+ for (i = 0; i < MAX_QUEUE*2; i += 2) {
+ np->dqueue[i] = 0;
+ np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
+ }
+ np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
+
+ /*
+ * Start at first entry.
+ */
+ np->dqueueget = 0;
+
+ /*
+ * Install patches in scripts.
+ * This also let point to first position the start
+ * and done queue pointers used from SCRIPTS.
+ */
+ np->fw_patch(np);
+
+ /*
+ * Wakeup all pending jobs.
+ */
+ sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
+
+ /*
+ * Init chip.
+ */
+ OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
+ udelay(2000); /* The 895 needs time for the bus mode to settle */
+
+ OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
+ /* full arb., ena parity, par->ATN */
+ OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
+
+ sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
+
+ OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
+ OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
+ OUTB(np, nc_istat , SIGP ); /* Signal Process */
+ OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
+ OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
+
+ OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
+ OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
+ OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
+
+ /* Extended Sreq/Sack filtering not supported on the C10 */
+ if (np->features & FE_C10)
+ OUTB(np, nc_stest2, np->rv_stest2);
+ else
+ OUTB(np, nc_stest2, EXT|np->rv_stest2);
+
+ OUTB(np, nc_stest3, TE); /* TolerANT enable */
+ OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
+
+ /*
+ * For now, disable AIP generation on C1010-66.
+ */
+ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
+ OUTB(np, nc_aipcntl1, DISAIP);
+
+ /*
+ * C10101 rev. 0 errata.
+ * Errant SGE's when in narrow. Write bits 4 & 5 of
+ * STEST1 register to disable SGE. We probably should do
+ * that from SCRIPTS for each selection/reselection, but
+ * I just don't want. :)
+ */
+ if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
+ np->revision_id < 1)
+ OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
+
+ /*
+ * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
+ * Disable overlapped arbitration for some dual function devices,
+ * regardless revision id (kind of post-chip-design feature. ;-))
+ */
+ if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
+ OUTB(np, nc_ctest0, (1<<5));
+ else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
+ np->rv_ccntl0 |= DPR;
+
+ /*
+ * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
+ * and/or hardware phase mismatch, since only such chips
+ * seem to support those IO registers.
+ */
+ if (np->features & (FE_DAC|FE_NOPM)) {
+ OUTB(np, nc_ccntl0, np->rv_ccntl0);
+ OUTB(np, nc_ccntl1, np->rv_ccntl1);
+ }
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ /*
+ * Set up scratch C and DRS IO registers to map the 32 bit
+ * DMA address range our data structures are located in.
+ */
+ if (np->use_dac) {
+ np->dmap_bah[0] = 0; /* ??? */
+ OUTL(np, nc_scrx[0], np->dmap_bah[0]);
+ OUTL(np, nc_drs, np->dmap_bah[0]);
+ }
+#endif
+
+ /*
+ * If phase mismatch handled by scripts (895A/896/1010),
+ * set PM jump addresses.
+ */
+ if (np->features & FE_NOPM) {
+ OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
+ OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
+ }
+
+ /*
+ * Enable GPIO0 pin for writing if LED support from SCRIPTS.
+ * Also set GPIO5 and clear GPIO6 if hardware LED control.
+ */
+ if (np->features & FE_LED0)
+ OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
+ else if (np->features & FE_LEDC)
+ OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
+
+ /*
+ * enable ints
+ */
+ OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
+ OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
+
+ /*
+ * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
+ * Try to eat the spurious SBMC interrupt that may occur when
+ * we reset the chip but not the SCSI BUS (at initialization).
+ */
+ if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
+ OUTONW(np, nc_sien, SBMC);
+ if (reason == 0) {
+ mdelay(100);
+ INW(np, nc_sist);
+ }
+ np->scsi_mode = INB(np, nc_stest4) & SMODE;
+ }
+
+ /*
+ * Fill in target structure.
+ * Reinitialize usrsync.
+ * Reinitialize usrwide.
+ * Prepare sync negotiation according to actual SCSI bus mode.
+ */
+ for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
+ struct sym_tcb *tp = &np->target[i];
+
+ tp->to_reset = 0;
+ tp->head.sval = 0;
+ tp->head.wval = np->rv_scntl3;
+ tp->head.uval = 0;
+ }
+
+ /*
+ * Download SCSI SCRIPTS to on-chip RAM if present,
+ * and start script processor.
+ * We do the download preferently from the CPU.
+ * For platforms that may not support PCI memory mapping,
+ * we use simple SCRIPTS that performs MEMORY MOVEs.
+ */
+ phys = SCRIPTA_BA(np, init);
+ if (np->ram_ba) {
+ if (sym_verbose >= 2)
+ printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
+ memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
+ if (np->ram_ws == 8192) {
+ memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
+ phys = scr_to_cpu(np->scr_ram_seg);
+ OUTL(np, nc_mmws, phys);
+ OUTL(np, nc_mmrs, phys);
+ OUTL(np, nc_sfs, phys);
+ phys = SCRIPTB_BA(np, start64);
+ }
+ }
+
+ np->istat_sem = 0;
+
+ OUTL(np, nc_dsa, np->hcb_ba);
+ OUTL_DSP(np, phys);
+
+ /*
+ * Notify the XPT about the RESET condition.
+ */
+ if (reason != 0)
+ sym_xpt_async_bus_reset(np);
+}
+
+/*
+ * Switch trans mode for current job and its target.
+ */
+static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
+ u_char per, u_char wide, u_char div, u_char fak)
+{
+ SYM_QUEHEAD *qp;
+ u_char sval, wval, uval;
+ struct sym_tcb *tp = &np->target[target];
+
+ assert(target == (INB(np, nc_sdid) & 0x0f));
+
+ sval = tp->head.sval;
+ wval = tp->head.wval;
+ uval = tp->head.uval;
+
+#if 0
+ printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
+ sval, wval, uval, np->rv_scntl3);
+#endif
+ /*
+ * Set the offset.
+ */
+ if (!(np->features & FE_C10))
+ sval = (sval & ~0x1f) | ofs;
+ else
+ sval = (sval & ~0x3f) | ofs;
+
+ /*
+ * Set the sync divisor and extra clock factor.
+ */
+ if (ofs != 0) {
+ wval = (wval & ~0x70) | ((div+1) << 4);
+ if (!(np->features & FE_C10))
+ sval = (sval & ~0xe0) | (fak << 5);
+ else {
+ uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
+ if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
+ if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
+ }
+ }
+
+ /*
+ * Set the bus width.
+ */
+ wval = wval & ~EWS;
+ if (wide != 0)
+ wval |= EWS;
+
+ /*
+ * Set misc. ultra enable bits.
+ */
+ if (np->features & FE_C10) {
+ uval = uval & ~(U3EN|AIPCKEN);
+ if (opts) {
+ assert(np->features & FE_U3EN);
+ uval |= U3EN;
+ }
+ } else {
+ wval = wval & ~ULTRA;
+ if (per <= 12) wval |= ULTRA;
+ }
+
+ /*
+ * Stop there if sync parameters are unchanged.
+ */
+ if (tp->head.sval == sval &&
+ tp->head.wval == wval &&
+ tp->head.uval == uval)
+ return;
+ tp->head.sval = sval;
+ tp->head.wval = wval;
+ tp->head.uval = uval;
+
+ /*
+ * Disable extended Sreq/Sack filtering if per < 50.
+ * Not supported on the C1010.
+ */
+ if (per < 50 && !(np->features & FE_C10))
+ OUTOFFB(np, nc_stest2, EXT);
+
+ /*
+ * set actual value and sync_status
+ */
+ OUTB(np, nc_sxfer, tp->head.sval);
+ OUTB(np, nc_scntl3, tp->head.wval);
+
+ if (np->features & FE_C10) {
+ OUTB(np, nc_scntl4, tp->head.uval);
+ }
+
+ /*
+ * patch ALL busy ccbs of this target.
+ */
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ struct sym_ccb *cp;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->target != target)
+ continue;
+ cp->phys.select.sel_scntl3 = tp->head.wval;
+ cp->phys.select.sel_sxfer = tp->head.sval;
+ if (np->features & FE_C10) {
+ cp->phys.select.sel_scntl4 = tp->head.uval;
+ }
+ }
+}
+
+/*
+ * We received a WDTR.
+ * Let everything be aware of the changes.
+ */
+static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
+{
+ struct sym_tcb *tp = &np->target[target];
+ struct scsi_target *starget = tp->sdev->sdev_target;
+
+ if (spi_width(starget) == wide)
+ return;
+
+ sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
+
+ tp->tgoal.width = wide;
+ spi_offset(starget) = 0;
+ spi_period(starget) = 0;
+ spi_width(starget) = wide;
+ spi_iu(starget) = 0;
+ spi_dt(starget) = 0;
+ spi_qas(starget) = 0;
+
+ if (sym_verbose >= 3)
+ spi_display_xfer_agreement(starget);
+}
+
+/*
+ * We received a SDTR.
+ * Let everything be aware of the changes.
+ */
+static void
+sym_setsync(struct sym_hcb *np, int target,
+ u_char ofs, u_char per, u_char div, u_char fak)
+{
+ struct sym_tcb *tp = &np->target[target];
+ struct scsi_target *starget = tp->sdev->sdev_target;
+ u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
+
+ sym_settrans(np, target, 0, ofs, per, wide, div, fak);
+
+ spi_period(starget) = per;
+ spi_offset(starget) = ofs;
+ spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
+
+ if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
+ tp->tgoal.period = per;
+ tp->tgoal.offset = ofs;
+ tp->tgoal.check_nego = 0;
+ }
+
+ spi_display_xfer_agreement(starget);
+}
+
+/*
+ * We received a PPR.
+ * Let everything be aware of the changes.
+ */
+static void
+sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
+ u_char per, u_char wide, u_char div, u_char fak)
+{
+ struct sym_tcb *tp = &np->target[target];
+ struct scsi_target *starget = tp->sdev->sdev_target;
+
+ sym_settrans(np, target, opts, ofs, per, wide, div, fak);
+
+ spi_width(starget) = tp->tgoal.width = wide;
+ spi_period(starget) = tp->tgoal.period = per;
+ spi_offset(starget) = tp->tgoal.offset = ofs;
+ spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
+ spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
+ spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
+ tp->tgoal.check_nego = 0;
+
+ spi_display_xfer_agreement(starget);
+}
+
+/*
+ * generic recovery from scsi interrupt
+ *
+ * The doc says that when the chip gets an SCSI interrupt,
+ * it tries to stop in an orderly fashion, by completing
+ * an instruction fetch that had started or by flushing
+ * the DMA fifo for a write to memory that was executing.
+ * Such a fashion is not enough to know if the instruction
+ * that was just before the current DSP value has been
+ * executed or not.
+ *
+ * There are some small SCRIPTS sections that deal with
+ * the start queue and the done queue that may break any
+ * assomption from the C code if we are interrupted
+ * inside, so we reset if this happens. Btw, since these
+ * SCRIPTS sections are executed while the SCRIPTS hasn't
+ * started SCSI operations, it is very unlikely to happen.
+ *
+ * All the driver data structures are supposed to be
+ * allocated from the same 4 GB memory window, so there
+ * is a 1 to 1 relationship between DSA and driver data
+ * structures. Since we are careful :) to invalidate the
+ * DSA when we complete a command or when the SCRIPTS
+ * pushes a DSA into a queue, we can trust it when it
+ * points to a CCB.
+ */
+static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
+{
+ u32 dsp = INL(np, nc_dsp);
+ u32 dsa = INL(np, nc_dsa);
+ struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
+
+ /*
+ * If we haven't been interrupted inside the SCRIPTS
+ * critical pathes, we can safely restart the SCRIPTS
+ * and trust the DSA value if it matches a CCB.
+ */
+ if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
+ dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
+ (!(dsp > SCRIPTA_BA(np, ungetjob) &&
+ dsp < SCRIPTA_BA(np, reselect) + 1)) &&
+ (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
+ dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
+ (!(dsp > SCRIPTA_BA(np, done) &&
+ dsp < SCRIPTA_BA(np, done_end) + 1))) {
+ OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
+ OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
+ /*
+ * If we have a CCB, let the SCRIPTS call us back for
+ * the handling of the error with SCRATCHA filled with
+ * STARTPOS. This way, we will be able to freeze the
+ * device queue and requeue awaiting IOs.
+ */
+ if (cp) {
+ cp->host_status = hsts;
+ OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
+ }
+ /*
+ * Otherwise just restart the SCRIPTS.
+ */
+ else {
+ OUTL(np, nc_dsa, 0xffffff);
+ OUTL_DSP(np, SCRIPTA_BA(np, start));
+ }
+ }
+ else
+ goto reset_all;
+
+ return;
+
+reset_all:
+ sym_start_reset(np);
+}
+
+/*
+ * chip exception handler for selection timeout
+ */
+static void sym_int_sto (struct sym_hcb *np)
+{
+ u32 dsp = INL(np, nc_dsp);
+
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
+
+ if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
+ sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
+ else
+ sym_start_reset(np);
+}
+
+/*
+ * chip exception handler for unexpected disconnect
+ */
+static void sym_int_udc (struct sym_hcb *np)
+{
+ printf ("%s: unexpected disconnect\n", sym_name(np));
+ sym_recover_scsi_int(np, HS_UNEXPECTED);
+}
+
+/*
+ * chip exception handler for SCSI bus mode change
+ *
+ * spi2-r12 11.2.3 says a transceiver mode change must
+ * generate a reset event and a device that detects a reset
+ * event shall initiate a hard reset. It says also that a
+ * device that detects a mode change shall set data transfer
+ * mode to eight bit asynchronous, etc...
+ * So, just reinitializing all except chip should be enough.
+ */
+static void sym_int_sbmc (struct sym_hcb *np)
+{
+ u_char scsi_mode = INB(np, nc_stest4) & SMODE;
+
+ /*
+ * Notify user.
+ */
+ printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
+ sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
+
+ /*
+ * Should suspend command processing for a few seconds and
+ * reinitialize all except the chip.
+ */
+ sym_start_up (np, 2);
+}
+
+/*
+ * chip exception handler for SCSI parity error.
+ *
+ * When the chip detects a SCSI parity error and is
+ * currently executing a (CH)MOV instruction, it does
+ * not interrupt immediately, but tries to finish the
+ * transfer of the current scatter entry before
+ * interrupting. The following situations may occur:
+ *
+ * - The complete scatter entry has been transferred
+ * without the device having changed phase.
+ * The chip will then interrupt with the DSP pointing
+ * to the instruction that follows the MOV.
+ *
+ * - A phase mismatch occurs before the MOV finished
+ * and phase errors are to be handled by the C code.
+ * The chip will then interrupt with both PAR and MA
+ * conditions set.
+ *
+ * - A phase mismatch occurs before the MOV finished and
+ * phase errors are to be handled by SCRIPTS.
+ * The chip will load the DSP with the phase mismatch
+ * JUMP address and interrupt the host processor.
+ */
+static void sym_int_par (struct sym_hcb *np, u_short sist)
+{
+ u_char hsts = INB(np, HS_PRT);
+ u32 dsp = INL(np, nc_dsp);
+ u32 dbc = INL(np, nc_dbc);
+ u32 dsa = INL(np, nc_dsa);
+ u_char sbcl = INB(np, nc_sbcl);
+ u_char cmd = dbc >> 24;
+ int phase = cmd & 7;
+ struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
+
+ printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
+ sym_name(np), hsts, dbc, sbcl);
+
+ /*
+ * Check that the chip is connected to the SCSI BUS.
+ */
+ if (!(INB(np, nc_scntl1) & ISCON)) {
+ sym_recover_scsi_int(np, HS_UNEXPECTED);
+ return;
+ }
+
+ /*
+ * If the nexus is not clearly identified, reset the bus.
+ * We will try to do better later.
+ */
+ if (!cp)
+ goto reset_all;
+
+ /*
+ * Check instruction was a MOV, direction was INPUT and
+ * ATN is asserted.
+ */
+ if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
+ goto reset_all;
+
+ /*
+ * Keep track of the parity error.
+ */
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_PARITY_ERR;
+
+ /*
+ * Prepare the message to send to the device.
+ */
+ np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
+
+ /*
+ * If the old phase was DATA IN phase, we have to deal with
+ * the 3 situations described above.
+ * For other input phases (MSG IN and STATUS), the device
+ * must resend the whole thing that failed parity checking
+ * or signal error. So, jumping to dispatcher should be OK.
+ */
+ if (phase == 1 || phase == 5) {
+ /* Phase mismatch handled by SCRIPTS */
+ if (dsp == SCRIPTB_BA(np, pm_handle))
+ OUTL_DSP(np, dsp);
+ /* Phase mismatch handled by the C code */
+ else if (sist & MA)
+ sym_int_ma (np);
+ /* No phase mismatch occurred */
+ else {
+ sym_set_script_dp (np, cp, dsp);
+ OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
+ }
+ }
+ else if (phase == 7) /* We definitely cannot handle parity errors */
+#if 1 /* in message-in phase due to the relection */
+ goto reset_all; /* path and various message anticipations. */
+#else
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+#endif
+ else
+ OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
+ return;
+
+reset_all:
+ sym_start_reset(np);
+ return;
+}
+
+/*
+ * chip exception handler for phase errors.
+ *
+ * We have to construct a new transfer descriptor,
+ * to transfer the rest of the current block.
+ */
+static void sym_int_ma (struct sym_hcb *np)
+{
+ u32 dbc;
+ u32 rest;
+ u32 dsp;
+ u32 dsa;
+ u32 nxtdsp;
+ u32 *vdsp;
+ u32 oadr, olen;
+ u32 *tblp;
+ u32 newcmd;
+ u_int delta;
+ u_char cmd;
+ u_char hflags, hflags0;
+ struct sym_pmc *pm;
+ struct sym_ccb *cp;
+
+ dsp = INL(np, nc_dsp);
+ dbc = INL(np, nc_dbc);
+ dsa = INL(np, nc_dsa);
+
+ cmd = dbc >> 24;
+ rest = dbc & 0xffffff;
+ delta = 0;
+
+ /*
+ * locate matching cp if any.
+ */
+ cp = sym_ccb_from_dsa(np, dsa);
+
+ /*
+ * Donnot take into account dma fifo and various buffers in
+ * INPUT phase since the chip flushes everything before
+ * raising the MA interrupt for interrupted INPUT phases.
+ * For DATA IN phase, we will check for the SWIDE later.
+ */
+ if ((cmd & 7) != 1 && (cmd & 7) != 5) {
+ u_char ss0, ss2;
+
+ if (np->features & FE_DFBC)
+ delta = INW(np, nc_dfbc);
+ else {
+ u32 dfifo;
+
+ /*
+ * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
+ */
+ dfifo = INL(np, nc_dfifo);
+
+ /*
+ * Calculate remaining bytes in DMA fifo.
+ * (CTEST5 = dfifo >> 16)
+ */
+ if (dfifo & (DFS << 16))
+ delta = ((((dfifo >> 8) & 0x300) |
+ (dfifo & 0xff)) - rest) & 0x3ff;
+ else
+ delta = ((dfifo & 0xff) - rest) & 0x7f;
+ }
+
+ /*
+ * The data in the dma fifo has not been transfered to
+ * the target -> add the amount to the rest
+ * and clear the data.
+ * Check the sstat2 register in case of wide transfer.
+ */
+ rest += delta;
+ ss0 = INB(np, nc_sstat0);
+ if (ss0 & OLF) rest++;
+ if (!(np->features & FE_C10))
+ if (ss0 & ORF) rest++;
+ if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
+ ss2 = INB(np, nc_sstat2);
+ if (ss2 & OLF1) rest++;
+ if (!(np->features & FE_C10))
+ if (ss2 & ORF1) rest++;
+ }
+
+ /*
+ * Clear fifos.
+ */
+ OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
+ OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
+ }
+
+ /*
+ * log the information
+ */
+ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
+ printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
+ (unsigned) rest, (unsigned) delta);
+
+ /*
+ * try to find the interrupted script command,
+ * and the address at which to continue.
+ */
+ vdsp = NULL;
+ nxtdsp = 0;
+ if (dsp > np->scripta_ba &&
+ dsp <= np->scripta_ba + np->scripta_sz) {
+ vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
+ nxtdsp = dsp;
+ }
+ else if (dsp > np->scriptb_ba &&
+ dsp <= np->scriptb_ba + np->scriptb_sz) {
+ vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
+ nxtdsp = dsp;
+ }
+
+ /*
+ * log the information
+ */
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
+ cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
+ }
+
+ if (!vdsp) {
+ printf ("%s: interrupted SCRIPT address not found.\n",
+ sym_name (np));
+ goto reset_all;
+ }
+
+ if (!cp) {
+ printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
+ sym_name (np));
+ goto reset_all;
+ }
+
+ /*
+ * get old startaddress and old length.
+ */
+ oadr = scr_to_cpu(vdsp[1]);
+
+ if (cmd & 0x10) { /* Table indirect */
+ tblp = (u32 *) ((char*) &cp->phys + oadr);
+ olen = scr_to_cpu(tblp[0]);
+ oadr = scr_to_cpu(tblp[1]);
+ } else {
+ tblp = (u32 *) 0;
+ olen = scr_to_cpu(vdsp[0]) & 0xffffff;
+ }
+
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
+ (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
+ tblp,
+ (unsigned) olen,
+ (unsigned) oadr);
+ }
+
+ /*
+ * check cmd against assumed interrupted script command.
+ * If dt data phase, the MOVE instruction hasn't bit 4 of
+ * the phase.
+ */
+ if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
+ sym_print_addr(cp->cmd,
+ "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
+ cmd, scr_to_cpu(vdsp[0]) >> 24);
+
+ goto reset_all;
+ }
+
+ /*
+ * if old phase not dataphase, leave here.
+ */
+ if (cmd & 2) {
+ sym_print_addr(cp->cmd,
+ "phase change %x-%x %d@%08x resid=%d.\n",
+ cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
+ (unsigned)oadr, (unsigned)rest);
+ goto unexpected_phase;
+ }
+
+ /*
+ * Choose the correct PM save area.
+ *
+ * Look at the PM_SAVE SCRIPT if you want to understand
+ * this stuff. The equivalent code is implemented in
+ * SCRIPTS for the 895A, 896 and 1010 that are able to
+ * handle PM from the SCRIPTS processor.
+ */
+ hflags0 = INB(np, HF_PRT);
+ hflags = hflags0;
+
+ if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
+ if (hflags & HF_IN_PM0)
+ nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
+ else if (hflags & HF_IN_PM1)
+ nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
+
+ if (hflags & HF_DP_SAVED)
+ hflags ^= HF_ACT_PM;
+ }
+
+ if (!(hflags & HF_ACT_PM)) {
+ pm = &cp->phys.pm0;
+ newcmd = SCRIPTA_BA(np, pm0_data);
+ }
+ else {
+ pm = &cp->phys.pm1;
+ newcmd = SCRIPTA_BA(np, pm1_data);
+ }
+
+ hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
+ if (hflags != hflags0)
+ OUTB(np, HF_PRT, hflags);
+
+ /*
+ * fillin the phase mismatch context
+ */
+ pm->sg.addr = cpu_to_scr(oadr + olen - rest);
+ pm->sg.size = cpu_to_scr(rest);
+ pm->ret = cpu_to_scr(nxtdsp);
+
+ /*
+ * If we have a SWIDE,
+ * - prepare the address to write the SWIDE from SCRIPTS,
+ * - compute the SCRIPTS address to restart from,
+ * - move current data pointer context by one byte.
+ */
+ nxtdsp = SCRIPTA_BA(np, dispatch);
+ if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
+ (INB(np, nc_scntl2) & WSR)) {
+ u32 tmp;
+
+ /*
+ * Set up the table indirect for the MOVE
+ * of the residual byte and adjust the data
+ * pointer context.
+ */
+ tmp = scr_to_cpu(pm->sg.addr);
+ cp->phys.wresid.addr = cpu_to_scr(tmp);
+ pm->sg.addr = cpu_to_scr(tmp + 1);
+ tmp = scr_to_cpu(pm->sg.size);
+ cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
+ pm->sg.size = cpu_to_scr(tmp - 1);
+
+ /*
+ * If only the residual byte is to be moved,
+ * no PM context is needed.
+ */
+ if ((tmp&0xffffff) == 1)
+ newcmd = pm->ret;
+
+ /*
+ * Prepare the address of SCRIPTS that will
+ * move the residual byte to memory.
+ */
+ nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
+ }
+
+ if (DEBUG_FLAGS & DEBUG_PHASE) {
+ sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
+ hflags0, hflags, newcmd,
+ (unsigned)scr_to_cpu(pm->sg.addr),
+ (unsigned)scr_to_cpu(pm->sg.size),
+ (unsigned)scr_to_cpu(pm->ret));
+ }
+
+ /*
+ * Restart the SCRIPTS processor.
+ */
+ sym_set_script_dp (np, cp, newcmd);
+ OUTL_DSP(np, nxtdsp);
+ return;
+
+ /*
+ * Unexpected phase changes that occurs when the current phase
+ * is not a DATA IN or DATA OUT phase are due to error conditions.
+ * Such event may only happen when the SCRIPTS is using a
+ * multibyte SCSI MOVE.
+ *
+ * Phase change Some possible cause
+ *
+ * COMMAND --> MSG IN SCSI parity error detected by target.
+ * COMMAND --> STATUS Bad command or refused by target.
+ * MSG OUT --> MSG IN Message rejected by target.
+ * MSG OUT --> COMMAND Bogus target that discards extended
+ * negotiation messages.
+ *
+ * The code below does not care of the new phase and so
+ * trusts the target. Why to annoy it ?
+ * If the interrupted phase is COMMAND phase, we restart at
+ * dispatcher.
+ * If a target does not get all the messages after selection,
+ * the code assumes blindly that the target discards extended
+ * messages and clears the negotiation status.
+ * If the target does not want all our response to negotiation,
+ * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
+ * bloat for such a should_not_happen situation).
+ * In all other situation, we reset the BUS.
+ * Are these assumptions reasonnable ? (Wait and see ...)
+ */
+unexpected_phase:
+ dsp -= 8;
+ nxtdsp = 0;
+
+ switch (cmd & 7) {
+ case 2: /* COMMAND phase */
+ nxtdsp = SCRIPTA_BA(np, dispatch);
+ break;
+#if 0
+ case 3: /* STATUS phase */
+ nxtdsp = SCRIPTA_BA(np, dispatch);
+ break;
+#endif
+ case 6: /* MSG OUT phase */
+ /*
+ * If the device may want to use untagged when we want
+ * tagged, we prepare an IDENTIFY without disc. granted,
+ * since we will not be able to handle reselect.
+ * Otherwise, we just don't care.
+ */
+ if (dsp == SCRIPTA_BA(np, send_ident)) {
+ if (cp->tag != NO_TAG && olen - rest <= 3) {
+ cp->host_status = HS_BUSY;
+ np->msgout[0] = IDENTIFY(0, cp->lun);
+ nxtdsp = SCRIPTB_BA(np, ident_break_atn);
+ }
+ else
+ nxtdsp = SCRIPTB_BA(np, ident_break);
+ }
+ else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
+ dsp == SCRIPTB_BA(np, send_sdtr) ||
+ dsp == SCRIPTB_BA(np, send_ppr)) {
+ nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
+ if (dsp == SCRIPTB_BA(np, send_ppr)) {
+ struct scsi_device *dev = cp->cmd->device;
+ dev->ppr = 0;
+ }
+ }
+ break;
+#if 0
+ case 7: /* MSG IN phase */
+ nxtdsp = SCRIPTA_BA(np, clrack);
+ break;
+#endif
+ }
+
+ if (nxtdsp) {
+ OUTL_DSP(np, nxtdsp);
+ return;
+ }
+
+reset_all:
+ sym_start_reset(np);
+}
+
+/*
+ * chip interrupt handler
+ *
+ * In normal situations, interrupt conditions occur one at
+ * a time. But when something bad happens on the SCSI BUS,
+ * the chip may raise several interrupt flags before
+ * stopping and interrupting the CPU. The additionnal
+ * interrupt flags are stacked in some extra registers
+ * after the SIP and/or DIP flag has been raised in the
+ * ISTAT. After the CPU has read the interrupt condition
+ * flag from SIST or DSTAT, the chip unstacks the other
+ * interrupt flags and sets the corresponding bits in
+ * SIST or DSTAT. Since the chip starts stacking once the
+ * SIP or DIP flag is set, there is a small window of time
+ * where the stacking does not occur.
+ *
+ * Typically, multiple interrupt conditions may happen in
+ * the following situations:
+ *
+ * - SCSI parity error + Phase mismatch (PAR|MA)
+ * When an parity error is detected in input phase
+ * and the device switches to msg-in phase inside a
+ * block MOV.
+ * - SCSI parity error + Unexpected disconnect (PAR|UDC)
+ * When a stupid device does not want to handle the
+ * recovery of an SCSI parity error.
+ * - Some combinations of STO, PAR, UDC, ...
+ * When using non compliant SCSI stuff, when user is
+ * doing non compliant hot tampering on the BUS, when
+ * something really bad happens to a device, etc ...
+ *
+ * The heuristic suggested by SYMBIOS to handle
+ * multiple interrupts is to try unstacking all
+ * interrupts conditions and to handle them on some
+ * priority based on error severity.
+ * This will work when the unstacking has been
+ * successful, but we cannot be 100 % sure of that,
+ * since the CPU may have been faster to unstack than
+ * the chip is able to stack. Hmmm ... But it seems that
+ * such a situation is very unlikely to happen.
+ *
+ * If this happen, for example STO caught by the CPU
+ * then UDC happenning before the CPU have restarted
+ * the SCRIPTS, the driver may wrongly complete the
+ * same command on UDC, since the SCRIPTS didn't restart
+ * and the DSA still points to the same command.
+ * We avoid this situation by setting the DSA to an
+ * invalid value when the CCB is completed and before
+ * restarting the SCRIPTS.
+ *
+ * Another issue is that we need some section of our
+ * recovery procedures to be somehow uninterruptible but
+ * the SCRIPTS processor does not provides such a
+ * feature. For this reason, we handle recovery preferently
+ * from the C code and check against some SCRIPTS critical
+ * sections from the C code.
+ *
+ * Hopefully, the interrupt handling of the driver is now
+ * able to resist to weird BUS error conditions, but donnot
+ * ask me for any guarantee that it will never fail. :-)
+ * Use at your own decision and risk.
+ */
+
+void sym_interrupt (struct sym_hcb *np)
+{
+ u_char istat, istatc;
+ u_char dstat;
+ u_short sist;
+
+ /*
+ * interrupt on the fly ?
+ * (SCRIPTS may still be running)
+ *
+ * A `dummy read' is needed to ensure that the
+ * clear of the INTF flag reaches the device
+ * and that posted writes are flushed to memory
+ * before the scanning of the DONE queue.
+ * Note that SCRIPTS also (dummy) read to memory
+ * prior to deliver the INTF interrupt condition.
+ */
+ istat = INB(np, nc_istat);
+ if (istat & INTF) {
+ OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
+ istat = INB(np, nc_istat); /* DUMMY READ */
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
+ sym_wakeup_done(np);
+ }
+
+ if (!(istat & (SIP|DIP)))
+ return;
+
+#if 0 /* We should never get this one */
+ if (istat & CABRT)
+ OUTB(np, nc_istat, CABRT);
+#endif
+
+ /*
+ * PAR and MA interrupts may occur at the same time,
+ * and we need to know of both in order to handle
+ * this situation properly. We try to unstack SCSI
+ * interrupts for that reason. BTW, I dislike a LOT
+ * such a loop inside the interrupt routine.
+ * Even if DMA interrupt stacking is very unlikely to
+ * happen, we also try unstacking these ones, since
+ * this has no performance impact.
+ */
+ sist = 0;
+ dstat = 0;
+ istatc = istat;
+ do {
+ if (istatc & SIP)
+ sist |= INW(np, nc_sist);
+ if (istatc & DIP)
+ dstat |= INB(np, nc_dstat);
+ istatc = INB(np, nc_istat);
+ istat |= istatc;
+ } while (istatc & (SIP|DIP));
+
+ if (DEBUG_FLAGS & DEBUG_TINY)
+ printf ("<%d|%x:%x|%x:%x>",
+ (int)INB(np, nc_scr0),
+ dstat,sist,
+ (unsigned)INL(np, nc_dsp),
+ (unsigned)INL(np, nc_dbc));
+ /*
+ * On paper, a memory read barrier may be needed here to
+ * prevent out of order LOADs by the CPU from having
+ * prefetched stale data prior to DMA having occurred.
+ * And since we are paranoid ... :)
+ */
+ MEMORY_READ_BARRIER();
+
+ /*
+ * First, interrupts we want to service cleanly.
+ *
+ * Phase mismatch (MA) is the most frequent interrupt
+ * for chip earlier than the 896 and so we have to service
+ * it as quickly as possible.
+ * A SCSI parity error (PAR) may be combined with a phase
+ * mismatch condition (MA).
+ * Programmed interrupts (SIR) are used to call the C code
+ * from SCRIPTS.
+ * The single step interrupt (SSI) is not used in this
+ * driver.
+ */
+ if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
+ !(dstat & (MDPE|BF|ABRT|IID))) {
+ if (sist & PAR) sym_int_par (np, sist);
+ else if (sist & MA) sym_int_ma (np);
+ else if (dstat & SIR) sym_int_sir (np);
+ else if (dstat & SSI) OUTONB_STD();
+ else goto unknown_int;
+ return;
+ }
+
+ /*
+ * Now, interrupts that donnot happen in normal
+ * situations and that we may need to recover from.
+ *
+ * On SCSI RESET (RST), we reset everything.
+ * On SCSI BUS MODE CHANGE (SBMC), we complete all
+ * active CCBs with RESET status, prepare all devices
+ * for negotiating again and restart the SCRIPTS.
+ * On STO and UDC, we complete the CCB with the corres-
+ * ponding status and restart the SCRIPTS.
+ */
+ if (sist & RST) {
+ printf("%s: SCSI BUS reset detected.\n", sym_name(np));
+ sym_start_up (np, 1);
+ return;
+ }
+
+ OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
+ OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
+
+ if (!(sist & (GEN|HTH|SGE)) &&
+ !(dstat & (MDPE|BF|ABRT|IID))) {
+ if (sist & SBMC) sym_int_sbmc (np);
+ else if (sist & STO) sym_int_sto (np);
+ else if (sist & UDC) sym_int_udc (np);
+ else goto unknown_int;
+ return;
+ }
+
+ /*
+ * Now, interrupts we are not able to recover cleanly.
+ *
+ * Log message for hard errors.
+ * Reset everything.
+ */
+
+ sym_log_hard_error(np, sist, dstat);
+
+ if ((sist & (GEN|HTH|SGE)) ||
+ (dstat & (MDPE|BF|ABRT|IID))) {
+ sym_start_reset(np);
+ return;
+ }
+
+unknown_int:
+ /*
+ * We just miss the cause of the interrupt. :(
+ * Print a message. The timeout will do the real work.
+ */
+ printf( "%s: unknown interrupt(s) ignored, "
+ "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
+ sym_name(np), istat, dstat, sist);
+}
+
+/*
+ * Dequeue from the START queue all CCBs that match
+ * a given target/lun/task condition (-1 means all),
+ * and move them from the BUSY queue to the COMP queue
+ * with CAM_REQUEUE_REQ status condition.
+ * This function is used during error handling/recovery.
+ * It is called with SCRIPTS not running.
+ */
+static int
+sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
+{
+ int j;
+ struct sym_ccb *cp;
+
+ /*
+ * Make sure the starting index is within range.
+ */
+ assert((i >= 0) && (i < 2*MAX_QUEUE));
+
+ /*
+ * Walk until end of START queue and dequeue every job
+ * that matches the target/lun/task condition.
+ */
+ j = i;
+ while (i != np->squeueput) {
+ cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
+ assert(cp);
+#ifdef SYM_CONF_IARB_SUPPORT
+ /* Forget hints for IARB, they may be no longer relevant */
+ cp->host_flags &= ~HF_HINT_IARB;
+#endif
+ if ((target == -1 || cp->target == target) &&
+ (lun == -1 || cp->lun == lun) &&
+ (task == -1 || cp->tag == task)) {
+ sym_set_cam_status(cp->cmd, CAM_REQUEUE_REQ);
+ sym_remque(&cp->link_ccbq);
+ sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
+ }
+ else {
+ if (i != j)
+ np->squeue[j] = np->squeue[i];
+ if ((j += 2) >= MAX_QUEUE*2) j = 0;
+ }
+ if ((i += 2) >= MAX_QUEUE*2) i = 0;
+ }
+ if (i != j) /* Copy back the idle task if needed */
+ np->squeue[j] = np->squeue[i];
+ np->squeueput = j; /* Update our current start queue pointer */
+
+ return (i - j) / 2;
+}
+
+/*
+ * chip handler for bad SCSI status condition
+ *
+ * In case of bad SCSI status, we unqueue all the tasks
+ * currently queued to the controller but not yet started
+ * and then restart the SCRIPTS processor immediately.
+ *
+ * QUEUE FULL and BUSY conditions are handled the same way.
+ * Basically all the not yet started tasks are requeued in
+ * device queue and the queue is frozen until a completion.
+ *
+ * For CHECK CONDITION and COMMAND TERMINATED status, we use
+ * the CCB of the failed command to prepare a REQUEST SENSE
+ * SCSI command and queue it to the controller queue.
+ *
+ * SCRATCHA is assumed to have been loaded with STARTPOS
+ * before the SCRIPTS called the C code.
+ */
+static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
+{
+ u32 startp;
+ u_char s_status = cp->ssss_status;
+ u_char h_flags = cp->host_flags;
+ int msglen;
+ int i;
+
+ /*
+ * Compute the index of the next job to start from SCRIPTS.
+ */
+ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
+
+ /*
+ * The last CCB queued used for IARB hint may be
+ * no longer relevant. Forget it.
+ */
+#ifdef SYM_CONF_IARB_SUPPORT
+ if (np->last_cp)
+ np->last_cp = 0;
+#endif
+
+ /*
+ * Now deal with the SCSI status.
+ */
+ switch(s_status) {
+ case S_BUSY:
+ case S_QUEUE_FULL:
+ if (sym_verbose >= 2) {
+ sym_print_addr(cp->cmd, "%s\n",
+ s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
+ }
+ default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
+ sym_complete_error (np, cp);
+ break;
+ case S_TERMINATED:
+ case S_CHECK_COND:
+ /*
+ * If we get an SCSI error when requesting sense, give up.
+ */
+ if (h_flags & HF_SENSE) {
+ sym_complete_error (np, cp);
+ break;
+ }
+
+ /*
+ * Dequeue all queued CCBs for that device not yet started,
+ * and restart the SCRIPTS processor immediately.
+ */
+ sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
+ OUTL_DSP(np, SCRIPTA_BA(np, start));
+
+ /*
+ * Save some info of the actual IO.
+ * Compute the data residual.
+ */
+ cp->sv_scsi_status = cp->ssss_status;
+ cp->sv_xerr_status = cp->xerr_status;
+ cp->sv_resid = sym_compute_residual(np, cp);
+
+ /*
+ * Prepare all needed data structures for
+ * requesting sense data.
+ */
+
+ cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
+ msglen = 1;
+
+ /*
+ * If we are currently using anything different from
+ * async. 8 bit data transfers with that target,
+ * start a negotiation, since the device may want
+ * to report us a UNIT ATTENTION condition due to
+ * a cause we currently ignore, and we donnot want
+ * to be stuck with WIDE and/or SYNC data transfer.
+ *
+ * cp->nego_status is filled by sym_prepare_nego().
+ */
+ cp->nego_status = 0;
+ msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
+ /*
+ * Message table indirect structure.
+ */
+ cp->phys.smsg.addr = cpu_to_scr(CCB_BA(cp, scsi_smsg2));
+ cp->phys.smsg.size = cpu_to_scr(msglen);
+
+ /*
+ * sense command
+ */
+ cp->phys.cmd.addr = cpu_to_scr(CCB_BA(cp, sensecmd));
+ cp->phys.cmd.size = cpu_to_scr(6);
+
+ /*
+ * patch requested size into sense command
+ */
+ cp->sensecmd[0] = REQUEST_SENSE;
+ cp->sensecmd[1] = 0;
+ if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
+ cp->sensecmd[1] = cp->lun << 5;
+ cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
+ cp->data_len = SYM_SNS_BBUF_LEN;
+
+ /*
+ * sense data
+ */
+ memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
+ cp->phys.sense.addr = cpu_to_scr(CCB_BA(cp, sns_bbuf));
+ cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
+
+ /*
+ * requeue the command.
+ */
+ startp = SCRIPTB_BA(np, sdata_in);
+
+ cp->phys.head.savep = cpu_to_scr(startp);
+ cp->phys.head.lastp = cpu_to_scr(startp);
+ cp->startp = cpu_to_scr(startp);
+ cp->goalp = cpu_to_scr(startp + 16);
+
+ cp->host_xflags = 0;
+ cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
+ cp->ssss_status = S_ILLEGAL;
+ cp->host_flags = (HF_SENSE|HF_DATA_IN);
+ cp->xerr_status = 0;
+ cp->extra_bytes = 0;
+
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
+
+ /*
+ * Requeue the command.
+ */
+ sym_put_start_queue(np, cp);
+
+ /*
+ * Give back to upper layer everything we have dequeued.
+ */
+ sym_flush_comp_queue(np, 0);
+ break;
+ }
+}
+
+/*
+ * After a device has accepted some management message
+ * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
+ * a device signals a UNIT ATTENTION condition, some
+ * tasks are thrown away by the device. We are required
+ * to reflect that on our tasks list since the device
+ * will never complete these tasks.
+ *
+ * This function move from the BUSY queue to the COMP
+ * queue all disconnected CCBs for a given target that
+ * match the following criteria:
+ * - lun=-1 means any logical UNIT otherwise a given one.
+ * - task=-1 means any task, otherwise a given one.
+ */
+int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
+{
+ SYM_QUEHEAD qtmp, *qp;
+ int i = 0;
+ struct sym_ccb *cp;
+
+ /*
+ * Move the entire BUSY queue to our temporary queue.
+ */
+ sym_que_init(&qtmp);
+ sym_que_splice(&np->busy_ccbq, &qtmp);
+ sym_que_init(&np->busy_ccbq);
+
+ /*
+ * Put all CCBs that matches our criteria into
+ * the COMP queue and put back other ones into
+ * the BUSY queue.
+ */
+ while ((qp = sym_remque_head(&qtmp)) != 0) {
+ struct scsi_cmnd *cmd;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ cmd = cp->cmd;
+ if (cp->host_status != HS_DISCONNECT ||
+ cp->target != target ||
+ (lun != -1 && cp->lun != lun) ||
+ (task != -1 &&
+ (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+ continue;
+ }
+ sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
+
+ /* Preserve the software timeout condition */
+ if (sym_get_cam_status(cmd) != CAM_CMD_TIMEOUT)
+ sym_set_cam_status(cmd, cam_status);
+ ++i;
+#if 0
+printf("XXXX TASK @%p CLEARED\n", cp);
+#endif
+ }
+ return i;
+}
+
+/*
+ * chip handler for TASKS recovery
+ *
+ * We cannot safely abort a command, while the SCRIPTS
+ * processor is running, since we just would be in race
+ * with it.
+ *
+ * As long as we have tasks to abort, we keep the SEM
+ * bit set in the ISTAT. When this bit is set, the
+ * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
+ * each time it enters the scheduler.
+ *
+ * If we have to reset a target, clear tasks of a unit,
+ * or to perform the abort of a disconnected job, we
+ * restart the SCRIPTS for selecting the target. Once
+ * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
+ * If it loses arbitration, the SCRIPTS will interrupt again
+ * the next time it will enter its scheduler, and so on ...
+ *
+ * On SIR_TARGET_SELECTED, we scan for the more
+ * appropriate thing to do:
+ *
+ * - If nothing, we just sent a M_ABORT message to the
+ * target to get rid of the useless SCSI bus ownership.
+ * According to the specs, no tasks shall be affected.
+ * - If the target is to be reset, we send it a M_RESET
+ * message.
+ * - If a logical UNIT is to be cleared , we send the
+ * IDENTIFY(lun) + M_ABORT.
+ * - If an untagged task is to be aborted, we send the
+ * IDENTIFY(lun) + M_ABORT.
+ * - If a tagged task is to be aborted, we send the
+ * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
+ *
+ * Once our 'kiss of death' :) message has been accepted
+ * by the target, the SCRIPTS interrupts again
+ * (SIR_ABORT_SENT). On this interrupt, we complete
+ * all the CCBs that should have been aborted by the
+ * target according to our message.
+ */
+static void sym_sir_task_recovery(struct sym_hcb *np, int num)
+{
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp;
+ struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
+ struct scsi_target *starget;
+ int target=-1, lun=-1, task;
+ int i, k;
+
+ switch(num) {
+ /*
+ * The SCRIPTS processor stopped before starting
+ * the next command in order to allow us to perform
+ * some task recovery.
+ */
+ case SIR_SCRIPT_STOPPED:
+ /*
+ * Do we have any target to reset or unit to clear ?
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ tp = &np->target[i];
+ if (tp->to_reset ||
+ (tp->lun0p && tp->lun0p->to_clear)) {
+ target = i;
+ break;
+ }
+ if (!tp->lunmp)
+ continue;
+ for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
+ if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
+ target = i;
+ break;
+ }
+ }
+ if (target != -1)
+ break;
+ }
+
+ /*
+ * If not, walk the busy queue for any
+ * disconnected CCB to be aborted.
+ */
+ if (target == -1) {
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
+ if (cp->host_status != HS_DISCONNECT)
+ continue;
+ if (cp->to_abort) {
+ target = cp->target;
+ break;
+ }
+ }
+ }
+
+ /*
+ * If some target is to be selected,
+ * prepare and start the selection.
+ */
+ if (target != -1) {
+ tp = &np->target[target];
+ np->abrt_sel.sel_id = target;
+ np->abrt_sel.sel_scntl3 = tp->head.wval;
+ np->abrt_sel.sel_sxfer = tp->head.sval;
+ OUTL(np, nc_dsa, np->hcb_ba);
+ OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
+ return;
+ }
+
+ /*
+ * Now look for a CCB to abort that haven't started yet.
+ * Btw, the SCRIPTS processor is still stopped, so
+ * we are not in race.
+ */
+ i = 0;
+ cp = NULL;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->host_status != HS_BUSY &&
+ cp->host_status != HS_NEGOTIATE)
+ continue;
+ if (!cp->to_abort)
+ continue;
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If we are using IMMEDIATE ARBITRATION, we donnot
+ * want to cancel the last queued CCB, since the
+ * SCRIPTS may have anticipated the selection.
+ */
+ if (cp == np->last_cp) {
+ cp->to_abort = 0;
+ continue;
+ }
+#endif
+ i = 1; /* Means we have found some */
+ break;
+ }
+ if (!i) {
+ /*
+ * We are done, so we donnot need
+ * to synchronize with the SCRIPTS anylonger.
+ * Remove the SEM flag from the ISTAT.
+ */
+ np->istat_sem = 0;
+ OUTB(np, nc_istat, SIGP);
+ break;
+ }
+ /*
+ * Compute index of next position in the start
+ * queue the SCRIPTS intends to start and dequeue
+ * all CCBs for that device that haven't been started.
+ */
+ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
+ i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
+
+ /*
+ * Make sure at least our IO to abort has been dequeued.
+ */
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ assert(i && sym_get_cam_status(cp->cmd) == CAM_REQUEUE_REQ);
+#else
+ sym_remque(&cp->link_ccbq);
+ sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
+#endif
+ /*
+ * Keep track in cam status of the reason of the abort.
+ */
+ if (cp->to_abort == 2)
+ sym_set_cam_status(cp->cmd, CAM_CMD_TIMEOUT);
+ else
+ sym_set_cam_status(cp->cmd, CAM_REQ_ABORTED);
+
+ /*
+ * Complete with error everything that we have dequeued.
+ */
+ sym_flush_comp_queue(np, 0);
+ break;
+ /*
+ * The SCRIPTS processor has selected a target
+ * we may have some manual recovery to perform for.
+ */
+ case SIR_TARGET_SELECTED:
+ target = INB(np, nc_sdid) & 0xf;
+ tp = &np->target[target];
+
+ np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
+
+ /*
+ * If the target is to be reset, prepare a
+ * M_RESET message and clear the to_reset flag
+ * since we donnot expect this operation to fail.
+ */
+ if (tp->to_reset) {
+ np->abrt_msg[0] = M_RESET;
+ np->abrt_tbl.size = 1;
+ tp->to_reset = 0;
+ break;
+ }
+
+ /*
+ * Otherwise, look for some logical unit to be cleared.
+ */
+ if (tp->lun0p && tp->lun0p->to_clear)
+ lun = 0;
+ else if (tp->lunmp) {
+ for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
+ if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
+ lun = k;
+ break;
+ }
+ }
+ }
+
+ /*
+ * If a logical unit is to be cleared, prepare
+ * an IDENTIFY(lun) + ABORT MESSAGE.
+ */
+ if (lun != -1) {
+ struct sym_lcb *lp = sym_lp(tp, lun);
+ lp->to_clear = 0; /* We don't expect to fail here */
+ np->abrt_msg[0] = IDENTIFY(0, lun);
+ np->abrt_msg[1] = M_ABORT;
+ np->abrt_tbl.size = 2;
+ break;
+ }
+
+ /*
+ * Otherwise, look for some disconnected job to
+ * abort for this target.
+ */
+ i = 0;
+ cp = NULL;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp->host_status != HS_DISCONNECT)
+ continue;
+ if (cp->target != target)
+ continue;
+ if (!cp->to_abort)
+ continue;
+ i = 1; /* Means we have some */
+ break;
+ }
+
+ /*
+ * If we have none, probably since the device has
+ * completed the command before we won abitration,
+ * send a M_ABORT message without IDENTIFY.
+ * According to the specs, the device must just
+ * disconnect the BUS and not abort any task.
+ */
+ if (!i) {
+ np->abrt_msg[0] = M_ABORT;
+ np->abrt_tbl.size = 1;
+ break;
+ }
+
+ /*
+ * We have some task to abort.
+ * Set the IDENTIFY(lun)
+ */
+ np->abrt_msg[0] = IDENTIFY(0, cp->lun);
+
+ /*
+ * If we want to abort an untagged command, we
+ * will send a IDENTIFY + M_ABORT.
+ * Otherwise (tagged command), we will send
+ * a IDENTITFY + task attributes + ABORT TAG.
+ */
+ if (cp->tag == NO_TAG) {
+ np->abrt_msg[1] = M_ABORT;
+ np->abrt_tbl.size = 2;
+ } else {
+ np->abrt_msg[1] = cp->scsi_smsg[1];
+ np->abrt_msg[2] = cp->scsi_smsg[2];
+ np->abrt_msg[3] = M_ABORT_TAG;
+ np->abrt_tbl.size = 4;
+ }
+ /*
+ * Keep track of software timeout condition, since the
+ * peripheral driver may not count retries on abort
+ * conditions not due to timeout.
+ */
+ if (cp->to_abort == 2)
+ sym_set_cam_status(cp->cmd, CAM_CMD_TIMEOUT);
+ cp->to_abort = 0; /* We donnot expect to fail here */
+ break;
+
+ /*
+ * The target has accepted our message and switched
+ * to BUS FREE phase as we expected.
+ */
+ case SIR_ABORT_SENT:
+ target = INB(np, nc_sdid) & 0xf;
+ tp = &np->target[target];
+ starget = tp->sdev->sdev_target;
+
+ /*
+ ** If we didn't abort anything, leave here.
+ */
+ if (np->abrt_msg[0] == M_ABORT)
+ break;
+
+ /*
+ * If we sent a M_RESET, then a hardware reset has
+ * been performed by the target.
+ * - Reset everything to async 8 bit
+ * - Tell ourself to negotiate next time :-)
+ * - Prepare to clear all disconnected CCBs for
+ * this target from our task list (lun=task=-1)
+ */
+ lun = -1;
+ task = -1;
+ if (np->abrt_msg[0] == M_RESET) {
+ tp->head.sval = 0;
+ tp->head.wval = np->rv_scntl3;
+ tp->head.uval = 0;
+ spi_period(starget) = 0;
+ spi_offset(starget) = 0;
+ spi_width(starget) = 0;
+ spi_iu(starget) = 0;
+ spi_dt(starget) = 0;
+ spi_qas(starget) = 0;
+ tp->tgoal.check_nego = 1;
+ }
+
+ /*
+ * Otherwise, check for the LUN and TASK(s)
+ * concerned by the cancelation.
+ * If it is not ABORT_TAG then it is CLEAR_QUEUE
+ * or an ABORT message :-)
+ */
+ else {
+ lun = np->abrt_msg[0] & 0x3f;
+ if (np->abrt_msg[1] == M_ABORT_TAG)
+ task = np->abrt_msg[2];
+ }
+
+ /*
+ * Complete all the CCBs the device should have
+ * aborted due to our 'kiss of death' message.
+ */
+ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
+ sym_dequeue_from_squeue(np, i, target, lun, -1);
+ sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
+ sym_flush_comp_queue(np, 0);
+
+ /*
+ * If we sent a BDR, make upper layer aware of that.
+ */
+ if (np->abrt_msg[0] == M_RESET)
+ sym_xpt_async_sent_bdr(np, target);
+ break;
+ }
+
+ /*
+ * Print to the log the message we intend to send.
+ */
+ if (num == SIR_TARGET_SELECTED) {
+ dev_info(&tp->sdev->sdev_target->dev, "control msgout:");
+ sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
+ np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
+ }
+
+ /*
+ * Let the SCRIPTS processor continue.
+ */
+ OUTONB_STD();
+}
+
+/*
+ * Gerard's alchemy:) that deals with with the data
+ * pointer for both MDP and the residual calculation.
+ *
+ * I didn't want to bloat the code by more than 200
+ * lines for the handling of both MDP and the residual.
+ * This has been achieved by using a data pointer
+ * representation consisting in an index in the data
+ * array (dp_sg) and a negative offset (dp_ofs) that
+ * have the following meaning:
+ *
+ * - dp_sg = SYM_CONF_MAX_SG
+ * we are at the end of the data script.
+ * - dp_sg < SYM_CONF_MAX_SG
+ * dp_sg points to the next entry of the scatter array
+ * we want to transfer.
+ * - dp_ofs < 0
+ * dp_ofs represents the residual of bytes of the
+ * previous entry scatter entry we will send first.
+ * - dp_ofs = 0
+ * no residual to send first.
+ *
+ * The function sym_evaluate_dp() accepts an arbitray
+ * offset (basically from the MDP message) and returns
+ * the corresponding values of dp_sg and dp_ofs.
+ */
+
+static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
+{
+ u32 dp_scr;
+ int dp_ofs, dp_sg, dp_sgmin;
+ int tmp;
+ struct sym_pmc *pm;
+
+ /*
+ * Compute the resulted data pointer in term of a script
+ * address within some DATA script and a signed byte offset.
+ */
+ dp_scr = scr;
+ dp_ofs = *ofs;
+ if (dp_scr == SCRIPTA_BA(np, pm0_data))
+ pm = &cp->phys.pm0;
+ else if (dp_scr == SCRIPTA_BA(np, pm1_data))
+ pm = &cp->phys.pm1;
+ else
+ pm = NULL;
+
+ if (pm) {
+ dp_scr = scr_to_cpu(pm->ret);
+ dp_ofs -= scr_to_cpu(pm->sg.size);
+ }
+
+ /*
+ * If we are auto-sensing, then we are done.
+ */
+ if (cp->host_flags & HF_SENSE) {
+ *ofs = dp_ofs;
+ return 0;
+ }
+
+ /*
+ * Deduce the index of the sg entry.
+ * Keep track of the index of the first valid entry.
+ * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
+ * end of the data.
+ */
+ tmp = scr_to_cpu(sym_goalp(cp));
+ dp_sg = SYM_CONF_MAX_SG;
+ if (dp_scr != tmp)
+ dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
+ dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
+
+ /*
+ * Move to the sg entry the data pointer belongs to.
+ *
+ * If we are inside the data area, we expect result to be:
+ *
+ * Either,
+ * dp_ofs = 0 and dp_sg is the index of the sg entry
+ * the data pointer belongs to (or the end of the data)
+ * Or,
+ * dp_ofs < 0 and dp_sg is the index of the sg entry
+ * the data pointer belongs to + 1.
+ */
+ if (dp_ofs < 0) {
+ int n;
+ while (dp_sg > dp_sgmin) {
+ --dp_sg;
+ tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ n = dp_ofs + (tmp & 0xffffff);
+ if (n > 0) {
+ ++dp_sg;
+ break;
+ }
+ dp_ofs = n;
+ }
+ }
+ else if (dp_ofs > 0) {
+ while (dp_sg < SYM_CONF_MAX_SG) {
+ tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ dp_ofs -= (tmp & 0xffffff);
+ ++dp_sg;
+ if (dp_ofs <= 0)
+ break;
+ }
+ }
+
+ /*
+ * Make sure the data pointer is inside the data area.
+ * If not, return some error.
+ */
+ if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
+ goto out_err;
+ else if (dp_sg > SYM_CONF_MAX_SG ||
+ (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
+ goto out_err;
+
+ /*
+ * Save the extreme pointer if needed.
+ */
+ if (dp_sg > cp->ext_sg ||
+ (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
+ cp->ext_sg = dp_sg;
+ cp->ext_ofs = dp_ofs;
+ }
+
+ /*
+ * Return data.
+ */
+ *ofs = dp_ofs;
+ return dp_sg;
+
+out_err:
+ return -1;
+}
+
+/*
+ * chip handler for MODIFY DATA POINTER MESSAGE
+ *
+ * We also call this function on IGNORE WIDE RESIDUE
+ * messages that do not match a SWIDE full condition.
+ * Btw, we assume in that situation that such a message
+ * is equivalent to a MODIFY DATA POINTER (offset=-1).
+ */
+
+static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
+{
+ int dp_ofs = ofs;
+ u32 dp_scr = sym_get_script_dp (np, cp);
+ u32 dp_ret;
+ u32 tmp;
+ u_char hflags;
+ int dp_sg;
+ struct sym_pmc *pm;
+
+ /*
+ * Not supported for auto-sense.
+ */
+ if (cp->host_flags & HF_SENSE)
+ goto out_reject;
+
+ /*
+ * Apply our alchemy:) (see comments in sym_evaluate_dp()),
+ * to the resulted data pointer.
+ */
+ dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
+ if (dp_sg < 0)
+ goto out_reject;
+
+ /*
+ * And our alchemy:) allows to easily calculate the data
+ * script address we want to return for the next data phase.
+ */
+ dp_ret = cpu_to_scr(sym_goalp(cp));
+ dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
+
+ /*
+ * If offset / scatter entry is zero we donnot need
+ * a context for the new current data pointer.
+ */
+ if (dp_ofs == 0) {
+ dp_scr = dp_ret;
+ goto out_ok;
+ }
+
+ /*
+ * Get a context for the new current data pointer.
+ */
+ hflags = INB(np, HF_PRT);
+
+ if (hflags & HF_DP_SAVED)
+ hflags ^= HF_ACT_PM;
+
+ if (!(hflags & HF_ACT_PM)) {
+ pm = &cp->phys.pm0;
+ dp_scr = SCRIPTA_BA(np, pm0_data);
+ }
+ else {
+ pm = &cp->phys.pm1;
+ dp_scr = SCRIPTA_BA(np, pm1_data);
+ }
+
+ hflags &= ~(HF_DP_SAVED);
+
+ OUTB(np, HF_PRT, hflags);
+
+ /*
+ * Set up the new current data pointer.
+ * ofs < 0 there, and for the next data phase, we
+ * want to transfer part of the data of the sg entry
+ * corresponding to index dp_sg-1 prior to returning
+ * to the main data script.
+ */
+ pm->ret = cpu_to_scr(dp_ret);
+ tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
+ tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
+ pm->sg.addr = cpu_to_scr(tmp);
+ pm->sg.size = cpu_to_scr(-dp_ofs);
+
+out_ok:
+ sym_set_script_dp (np, cp, dp_scr);
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ return;
+
+out_reject:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+}
+
+
+/*
+ * chip calculation of the data residual.
+ *
+ * As I used to say, the requirement of data residual
+ * in SCSI is broken, useless and cannot be achieved
+ * without huge complexity.
+ * But most OSes and even the official CAM require it.
+ * When stupidity happens to be so widely spread inside
+ * a community, it gets hard to convince.
+ *
+ * Anyway, I don't care, since I am not going to use
+ * any software that considers this data residual as
+ * a relevant information. :)
+ */
+
+int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
+{
+ int dp_sg, dp_sgmin, resid = 0;
+ int dp_ofs = 0;
+
+ /*
+ * Check for some data lost or just thrown away.
+ * We are not required to be quite accurate in this
+ * situation. Btw, if we are odd for output and the
+ * device claims some more data, it may well happen
+ * than our residual be zero. :-)
+ */
+ if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
+ if (cp->xerr_status & XE_EXTRA_DATA)
+ resid -= cp->extra_bytes;
+ if (cp->xerr_status & XE_SODL_UNRUN)
+ ++resid;
+ if (cp->xerr_status & XE_SWIDE_OVRUN)
+ --resid;
+ }
+
+ /*
+ * If all data has been transferred,
+ * there is no residual.
+ */
+ if (cp->phys.head.lastp == sym_goalp(cp))
+ return resid;
+
+ /*
+ * If no data transfer occurs, or if the data
+ * pointer is weird, return full residual.
+ */
+ if (cp->startp == cp->phys.head.lastp ||
+ sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
+ &dp_ofs) < 0) {
+ return cp->data_len;
+ }
+
+ /*
+ * If we were auto-sensing, then we are done.
+ */
+ if (cp->host_flags & HF_SENSE) {
+ return -dp_ofs;
+ }
+
+ /*
+ * We are now full comfortable in the computation
+ * of the data residual (2's complement).
+ */
+ dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
+ resid = -cp->ext_ofs;
+ for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
+ u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
+ resid += (tmp & 0xffffff);
+ }
+
+ /*
+ * Hopefully, the result is not too wrong.
+ */
+ return resid;
+}
+
+/*
+ * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
+ *
+ * When we try to negotiate, we append the negotiation message
+ * to the identify and (maybe) simple tag message.
+ * The host status field is set to HS_NEGOTIATE to mark this
+ * situation.
+ *
+ * If the target doesn't answer this message immediately
+ * (as required by the standard), the SIR_NEGO_FAILED interrupt
+ * will be raised eventually.
+ * The handler removes the HS_NEGOTIATE status, and sets the
+ * negotiated value to the default (async / nowide).
+ *
+ * If we receive a matching answer immediately, we check it
+ * for validity, and set the values.
+ *
+ * If we receive a Reject message immediately, we assume the
+ * negotiation has failed, and fall back to standard values.
+ *
+ * If we receive a negotiation message while not in HS_NEGOTIATE
+ * state, it's a target initiated negotiation. We prepare a
+ * (hopefully) valid answer, set our parameters, and send back
+ * this answer to the target.
+ *
+ * If the target doesn't fetch the answer (no message out phase),
+ * we assume the negotiation has failed, and fall back to default
+ * settings (SIR_NEGO_PROTO interrupt).
+ *
+ * When we set the values, we adjust them in all ccbs belonging
+ * to this target, in the controller's register, and in the "phys"
+ * field of the controller's struct sym_hcb.
+ */
+
+/*
+ * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
+ */
+static int
+sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
+{
+ int target = cp->target;
+ u_char chg, ofs, per, fak, div;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "sync msgin", np->msgin);
+ }
+
+ /*
+ * Get requested values.
+ */
+ chg = 0;
+ per = np->msgin[3];
+ ofs = np->msgin[4];
+
+ /*
+ * Check values against our limits.
+ */
+ if (ofs) {
+ if (ofs > np->maxoffs)
+ {chg = 1; ofs = np->maxoffs;}
+ }
+
+ if (ofs) {
+ if (per < np->minsync)
+ {chg = 1; per = np->minsync;}
+ }
+
+ /*
+ * Get new chip synchronous parameters value.
+ */
+ div = fak = 0;
+ if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
+ goto reject_it;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_addr(cp->cmd,
+ "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
+ ofs, per, div, fak, chg);
+ }
+
+ /*
+ * If it was an answer we want to change,
+ * then it isn't acceptable. Reject it.
+ */
+ if (!req && chg)
+ goto reject_it;
+
+ /*
+ * Apply new values.
+ */
+ sym_setsync (np, target, ofs, per, div, fak);
+
+ /*
+ * It was an answer. We are done.
+ */
+ if (!req)
+ return 0;
+
+ /*
+ * It was a request. Prepare an answer message.
+ */
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 3;
+ np->msgout[2] = M_X_SYNC_REQ;
+ np->msgout[3] = per;
+ np->msgout[4] = ofs;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "sync msgout", np->msgout);
+ }
+
+ np->msgin [0] = M_NOOP;
+
+ return 0;
+
+reject_it:
+ sym_setsync (np, target, 0, 0, 0, 0);
+ return -1;
+}
+
+static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ int req = 1;
+ int result;
+
+ /*
+ * Request or answer ?
+ */
+ if (INB(np, HS_PRT) == HS_NEGOTIATE) {
+ OUTB(np, HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_SYNC)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * Check and apply new values.
+ */
+ result = sym_sync_nego_check(np, req, cp);
+ if (result) /* Not acceptable, reject it */
+ goto reject_it;
+ if (req) { /* Was a request, send response. */
+ cp->nego_status = NS_SYNC;
+ OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
+ }
+ else /* Was a response, we are done. */
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ return;
+
+reject_it:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+}
+
+/*
+ * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
+ */
+static int
+sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
+{
+ struct sym_tcb *tp = &np->target[target];
+ unsigned char fak, div;
+ int dt, chg = 0;
+
+ unsigned char per = np->msgin[3];
+ unsigned char ofs = np->msgin[5];
+ unsigned char wide = np->msgin[6];
+ unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
+ }
+
+ /*
+ * Check values against our limits.
+ */
+ if (wide > np->maxwide) {
+ chg = 1;
+ wide = np->maxwide;
+ }
+ if (!wide || !(np->features & FE_U3EN))
+ opts = 0;
+
+ if (opts != (np->msgin[7] & PPR_OPT_MASK))
+ chg = 1;
+
+ dt = opts & PPR_OPT_DT;
+
+ if (ofs) {
+ unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
+ if (ofs > maxoffs) {
+ chg = 1;
+ ofs = maxoffs;
+ }
+ }
+
+ if (ofs) {
+ unsigned char minsync = dt ? np->minsync_dt : np->minsync;
+ if (per < minsync) {
+ chg = 1;
+ per = minsync;
+ }
+ }
+
+ /*
+ * Get new chip synchronous parameters value.
+ */
+ div = fak = 0;
+ if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
+ goto reject_it;
+
+ /*
+ * If it was an answer we want to change,
+ * then it isn't acceptable. Reject it.
+ */
+ if (!req && chg)
+ goto reject_it;
+
+ /*
+ * Apply new values.
+ */
+ sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
+
+ /*
+ * It was an answer. We are done.
+ */
+ if (!req)
+ return 0;
+
+ /*
+ * It was a request. Prepare an answer message.
+ */
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 6;
+ np->msgout[2] = M_X_PPR_REQ;
+ np->msgout[3] = per;
+ np->msgout[4] = 0;
+ np->msgout[5] = ofs;
+ np->msgout[6] = wide;
+ np->msgout[7] = opts;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
+ }
+
+ np->msgin [0] = M_NOOP;
+
+ return 0;
+
+reject_it:
+ sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
+ /*
+ * If it is a device response that should result in
+ * ST, we may want to try a legacy negotiation later.
+ */
+ if (!req && !opts) {
+ tp->tgoal.period = per;
+ tp->tgoal.offset = ofs;
+ tp->tgoal.width = wide;
+ tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
+ tp->tgoal.check_nego = 1;
+ }
+ return -1;
+}
+
+static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ int req = 1;
+ int result;
+
+ /*
+ * Request or answer ?
+ */
+ if (INB(np, HS_PRT) == HS_NEGOTIATE) {
+ OUTB(np, HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_PPR)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * Check and apply new values.
+ */
+ result = sym_ppr_nego_check(np, req, cp->target);
+ if (result) /* Not acceptable, reject it */
+ goto reject_it;
+ if (req) { /* Was a request, send response. */
+ cp->nego_status = NS_PPR;
+ OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
+ }
+ else /* Was a response, we are done. */
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ return;
+
+reject_it:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+}
+
+/*
+ * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
+ */
+static int
+sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
+{
+ int target = cp->target;
+ u_char chg, wide;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "wide msgin", np->msgin);
+ }
+
+ /*
+ * Get requested values.
+ */
+ chg = 0;
+ wide = np->msgin[3];
+
+ /*
+ * Check values against our limits.
+ */
+ if (wide > np->maxwide) {
+ chg = 1;
+ wide = np->maxwide;
+ }
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
+ wide, chg);
+ }
+
+ /*
+ * If it was an answer we want to change,
+ * then it isn't acceptable. Reject it.
+ */
+ if (!req && chg)
+ goto reject_it;
+
+ /*
+ * Apply new values.
+ */
+ sym_setwide (np, target, wide);
+
+ /*
+ * It was an answer. We are done.
+ */
+ if (!req)
+ return 0;
+
+ /*
+ * It was a request. Prepare an answer message.
+ */
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 2;
+ np->msgout[2] = M_X_WIDE_REQ;
+ np->msgout[3] = wide;
+
+ np->msgin [0] = M_NOOP;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, target, "wide msgout", np->msgout);
+ }
+
+ return 0;
+
+reject_it:
+ return -1;
+}
+
+static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ int req = 1;
+ int result;
+
+ /*
+ * Request or answer ?
+ */
+ if (INB(np, HS_PRT) == HS_NEGOTIATE) {
+ OUTB(np, HS_PRT, HS_BUSY);
+ if (cp->nego_status && cp->nego_status != NS_WIDE)
+ goto reject_it;
+ req = 0;
+ }
+
+ /*
+ * Check and apply new values.
+ */
+ result = sym_wide_nego_check(np, req, cp);
+ if (result) /* Not acceptable, reject it */
+ goto reject_it;
+ if (req) { /* Was a request, send response. */
+ cp->nego_status = NS_WIDE;
+ OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
+ } else { /* Was a response. */
+ /*
+ * Negotiate for SYNC immediately after WIDE response.
+ * This allows to negotiate for both WIDE and SYNC on
+ * a single SCSI command (Suggested by Justin Gibbs).
+ */
+ if (tp->tgoal.offset) {
+ np->msgout[0] = M_EXTENDED;
+ np->msgout[1] = 3;
+ np->msgout[2] = M_X_SYNC_REQ;
+ np->msgout[3] = tp->tgoal.period;
+ np->msgout[4] = tp->tgoal.offset;
+
+ if (DEBUG_FLAGS & DEBUG_NEGO) {
+ sym_print_nego_msg(np, cp->target,
+ "sync msgout", np->msgout);
+ }
+
+ cp->nego_status = NS_SYNC;
+ OUTB(np, HS_PRT, HS_NEGOTIATE);
+ OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
+ return;
+ } else
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ }
+
+ return;
+
+reject_it:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+}
+
+/*
+ * Reset DT, SYNC or WIDE to default settings.
+ *
+ * Called when a negotiation does not succeed either
+ * on rejection or on protocol error.
+ *
+ * A target that understands a PPR message should never
+ * reject it, and messing with it is very unlikely.
+ * So, if a PPR makes problems, we may just want to
+ * try a legacy negotiation later.
+ */
+static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ switch (cp->nego_status) {
+ case NS_PPR:
+#if 0
+ sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
+#else
+ if (tp->tgoal.period < np->minsync)
+ tp->tgoal.period = np->minsync;
+ if (tp->tgoal.offset > np->maxoffs)
+ tp->tgoal.offset = np->maxoffs;
+ tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
+ tp->tgoal.check_nego = 1;
+#endif
+ break;
+ case NS_SYNC:
+ sym_setsync (np, cp->target, 0, 0, 0, 0);
+ break;
+ case NS_WIDE:
+ sym_setwide (np, cp->target, 0);
+ break;
+ }
+ np->msgin [0] = M_NOOP;
+ np->msgout[0] = M_NOOP;
+ cp->nego_status = 0;
+}
+
+/*
+ * chip handler for MESSAGE REJECT received in response to
+ * PPR, WIDE or SYNCHRONOUS negotiation.
+ */
+static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
+{
+ sym_nego_default(np, tp, cp);
+ OUTB(np, HS_PRT, HS_BUSY);
+}
+
+/*
+ * chip exception handler for programmed interrupts.
+ */
+static void sym_int_sir (struct sym_hcb *np)
+{
+ u_char num = INB(np, nc_dsps);
+ u32 dsa = INL(np, nc_dsa);
+ struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
+ u_char target = INB(np, nc_sdid) & 0x0f;
+ struct sym_tcb *tp = &np->target[target];
+ int tmp;
+
+ if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
+
+ switch (num) {
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ /*
+ * SCRIPTS tell us that we may have to update
+ * 64 bit DMA segment registers.
+ */
+ case SIR_DMAP_DIRTY:
+ sym_update_dmap_regs(np);
+ goto out;
+#endif
+ /*
+ * Command has been completed with error condition
+ * or has been auto-sensed.
+ */
+ case SIR_COMPLETE_ERROR:
+ sym_complete_error(np, cp);
+ return;
+ /*
+ * The C code is currently trying to recover from something.
+ * Typically, user want to abort some command.
+ */
+ case SIR_SCRIPT_STOPPED:
+ case SIR_TARGET_SELECTED:
+ case SIR_ABORT_SENT:
+ sym_sir_task_recovery(np, num);
+ return;
+ /*
+ * The device didn't go to MSG OUT phase after having
+ * been selected with ATN. We donnot want to handle
+ * that.
+ */
+ case SIR_SEL_ATN_NO_MSG_OUT:
+ printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * The device didn't switch to MSG IN phase after
+ * having reseleted the initiator.
+ */
+ case SIR_RESEL_NO_MSG_IN:
+ printf ("%s:%d: No MSG IN phase after reselection.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * After reselection, the device sent a message that wasn't
+ * an IDENTIFY.
+ */
+ case SIR_RESEL_NO_IDENTIFY:
+ printf ("%s:%d: No IDENTIFY after reselection.\n",
+ sym_name (np), target);
+ goto out_stuck;
+ /*
+ * The device reselected a LUN we donnot know about.
+ */
+ case SIR_RESEL_BAD_LUN:
+ np->msgout[0] = M_RESET;
+ goto out;
+ /*
+ * The device reselected for an untagged nexus and we
+ * haven't any.
+ */
+ case SIR_RESEL_BAD_I_T_L:
+ np->msgout[0] = M_ABORT;
+ goto out;
+ /*
+ * The device reselected for a tagged nexus that we donnot
+ * have.
+ */
+ case SIR_RESEL_BAD_I_T_L_Q:
+ np->msgout[0] = M_ABORT_TAG;
+ goto out;
+ /*
+ * The SCRIPTS let us know that the device has grabbed
+ * our message and will abort the job.
+ */
+ case SIR_RESEL_ABORTED:
+ np->lastmsg = np->msgout[0];
+ np->msgout[0] = M_NOOP;
+ printf ("%s:%d: message %x sent on bad reselection.\n",
+ sym_name (np), target, np->lastmsg);
+ goto out;
+ /*
+ * The SCRIPTS let us know that a message has been
+ * successfully sent to the device.
+ */
+ case SIR_MSG_OUT_DONE:
+ np->lastmsg = np->msgout[0];
+ np->msgout[0] = M_NOOP;
+ /* Should we really care of that */
+ if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
+ if (cp) {
+ cp->xerr_status &= ~XE_PARITY_ERR;
+ if (!cp->xerr_status)
+ OUTOFFB(np, HF_PRT, HF_EXT_ERR);
+ }
+ }
+ goto out;
+ /*
+ * The device didn't send a GOOD SCSI status.
+ * We may have some work to do prior to allow
+ * the SCRIPTS processor to continue.
+ */
+ case SIR_BAD_SCSI_STATUS:
+ if (!cp)
+ goto out;
+ sym_sir_bad_scsi_status(np, num, cp);
+ return;
+ /*
+ * We are asked by the SCRIPTS to prepare a
+ * REJECT message.
+ */
+ case SIR_REJECT_TO_SEND:
+ sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
+ np->msgout[0] = M_REJECT;
+ goto out;
+ /*
+ * We have been ODD at the end of a DATA IN
+ * transfer and the device didn't send a
+ * IGNORE WIDE RESIDUE message.
+ * It is a data overrun condition.
+ */
+ case SIR_SWIDE_OVERRUN:
+ if (cp) {
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_SWIDE_OVRUN;
+ }
+ goto out;
+ /*
+ * We have been ODD at the end of a DATA OUT
+ * transfer.
+ * It is a data underrun condition.
+ */
+ case SIR_SODL_UNDERRUN:
+ if (cp) {
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_SODL_UNRUN;
+ }
+ goto out;
+ /*
+ * The device wants us to tranfer more data than
+ * expected or in the wrong direction.
+ * The number of extra bytes is in scratcha.
+ * It is a data overrun condition.
+ */
+ case SIR_DATA_OVERRUN:
+ if (cp) {
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_EXTRA_DATA;
+ cp->extra_bytes += INL(np, nc_scratcha);
+ }
+ goto out;
+ /*
+ * The device switched to an illegal phase (4/5).
+ */
+ case SIR_BAD_PHASE:
+ if (cp) {
+ OUTONB(np, HF_PRT, HF_EXT_ERR);
+ cp->xerr_status |= XE_BAD_PHASE;
+ }
+ goto out;
+ /*
+ * We received a message.
+ */
+ case SIR_MSG_RECEIVED:
+ if (!cp)
+ goto out_stuck;
+ switch (np->msgin [0]) {
+ /*
+ * We received an extended message.
+ * We handle MODIFY DATA POINTER, SDTR, WDTR
+ * and reject all other extended messages.
+ */
+ case M_EXTENDED:
+ switch (np->msgin [2]) {
+ case M_X_MODIFY_DP:
+ if (DEBUG_FLAGS & DEBUG_POINTER)
+ sym_print_msg(cp,"modify DP",np->msgin);
+ tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
+ (np->msgin[5]<<8) + (np->msgin[6]);
+ sym_modify_dp(np, tp, cp, tmp);
+ return;
+ case M_X_SYNC_REQ:
+ sym_sync_nego(np, tp, cp);
+ return;
+ case M_X_PPR_REQ:
+ sym_ppr_nego(np, tp, cp);
+ return;
+ case M_X_WIDE_REQ:
+ sym_wide_nego(np, tp, cp);
+ return;
+ default:
+ goto out_reject;
+ }
+ break;
+ /*
+ * We received a 1/2 byte message not handled from SCRIPTS.
+ * We are only expecting MESSAGE REJECT and IGNORE WIDE
+ * RESIDUE messages that haven't been anticipated by
+ * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
+ * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
+ */
+ case M_IGN_RESIDUE:
+ if (DEBUG_FLAGS & DEBUG_POINTER)
+ sym_print_msg(cp,"ign wide residue", np->msgin);
+ if (cp->host_flags & HF_SENSE)
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ else
+ sym_modify_dp(np, tp, cp, -1);
+ return;
+ case M_REJECT:
+ if (INB(np, HS_PRT) == HS_NEGOTIATE)
+ sym_nego_rejected(np, tp, cp);
+ else {
+ sym_print_addr(cp->cmd,
+ "M_REJECT received (%x:%x).\n",
+ scr_to_cpu(np->lastmsg), np->msgout[0]);
+ }
+ goto out_clrack;
+ break;
+ default:
+ goto out_reject;
+ }
+ break;
+ /*
+ * We received an unknown message.
+ * Ignore all MSG IN phases and reject it.
+ */
+ case SIR_MSG_WEIRD:
+ sym_print_msg(cp, "WEIRD message received", np->msgin);
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
+ return;
+ /*
+ * Negotiation failed.
+ * Target does not send us the reply.
+ * Remove the HS_NEGOTIATE status.
+ */
+ case SIR_NEGO_FAILED:
+ OUTB(np, HS_PRT, HS_BUSY);
+ /*
+ * Negotiation failed.
+ * Target does not want answer message.
+ */
+ case SIR_NEGO_PROTO:
+ sym_nego_default(np, tp, cp);
+ goto out;
+ }
+
+out:
+ OUTONB_STD();
+ return;
+out_reject:
+ OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
+ return;
+out_clrack:
+ OUTL_DSP(np, SCRIPTA_BA(np, clrack));
+ return;
+out_stuck:
+ return;
+}
+
+/*
+ * Acquire a control block
+ */
+struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
+{
+ u_char tn = cmd->device->id;
+ u_char ln = cmd->device->lun;
+ struct sym_tcb *tp = &np->target[tn];
+ struct sym_lcb *lp = sym_lp(tp, ln);
+ u_short tag = NO_TAG;
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp = NULL;
+
+ /*
+ * Look for a free CCB
+ */
+ if (sym_que_empty(&np->free_ccbq))
+ sym_alloc_ccb(np);
+ qp = sym_remque_head(&np->free_ccbq);
+ if (!qp)
+ goto out;
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * If the LCB is not yet available and the LUN
+ * has been probed ok, try to allocate the LCB.
+ */
+ if (!lp && sym_is_bit(tp->lun_map, ln)) {
+ lp = sym_alloc_lcb(np, tn, ln);
+ if (!lp)
+ goto out_free;
+ }
+#endif
+
+ /*
+ * If the LCB is not available here, then the
+ * logical unit is not yet discovered. For those
+ * ones only accept 1 SCSI IO per logical unit,
+ * since we cannot allow disconnections.
+ */
+ if (!lp) {
+ if (!sym_is_bit(tp->busy0_map, ln))
+ sym_set_bit(tp->busy0_map, ln);
+ else
+ goto out_free;
+ } else {
+ /*
+ * If we have been asked for a tagged command.
+ */
+ if (tag_order) {
+ /*
+ * Debugging purpose.
+ */
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ assert(lp->busy_itl == 0);
+#endif
+ /*
+ * Allocate resources for tags if not yet.
+ */
+ if (!lp->cb_tags) {
+ sym_alloc_lcb_tags(np, tn, ln);
+ if (!lp->cb_tags)
+ goto out_free;
+ }
+ /*
+ * Get a tag for this SCSI IO and set up
+ * the CCB bus address for reselection,
+ * and count it for this LUN.
+ * Toggle reselect path to tagged.
+ */
+ if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
+ tag = lp->cb_tags[lp->ia_tag];
+ if (++lp->ia_tag == SYM_CONF_MAX_TASK)
+ lp->ia_tag = 0;
+ ++lp->busy_itlq;
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA(np, resel_tag));
+#endif
+#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
+ cp->tags_si = lp->tags_si;
+ ++lp->tags_sum[cp->tags_si];
+ ++lp->tags_since;
+#endif
+ }
+ else
+ goto out_free;
+ }
+ /*
+ * This command will not be tagged.
+ * If we already have either a tagged or untagged
+ * one, refuse to overlap this untagged one.
+ */
+ else {
+ /*
+ * Debugging purpose.
+ */
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
+#endif
+ /*
+ * Count this nexus for this LUN.
+ * Set up the CCB bus address for reselection.
+ * Toggle reselect path to untagged.
+ */
+ ++lp->busy_itl;
+#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (lp->busy_itl == 1) {
+ lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
+ }
+ else
+ goto out_free;
+#endif
+ }
+ }
+ /*
+ * Put the CCB into the busy queue.
+ */
+ sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (lp) {
+ sym_remque(&cp->link2_ccbq);
+ sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
+ }
+
+#endif
+ /*
+ * Remember all informations needed to free this CCB.
+ */
+ cp->to_abort = 0;
+ cp->tag = tag;
+ cp->order = tag_order;
+ cp->target = tn;
+ cp->lun = ln;
+
+ if (DEBUG_FLAGS & DEBUG_TAGS) {
+ sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
+ }
+
+out:
+ return cp;
+out_free:
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+ return NULL;
+}
+
+/*
+ * Release one control block
+ */
+void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
+{
+ struct sym_tcb *tp = &np->target[cp->target];
+ struct sym_lcb *lp = sym_lp(tp, cp->lun);
+
+ if (DEBUG_FLAGS & DEBUG_TAGS) {
+ sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
+ cp, cp->tag);
+ }
+
+ /*
+ * If LCB available,
+ */
+ if (lp) {
+ /*
+ * If tagged, release the tag, set the relect path
+ */
+ if (cp->tag != NO_TAG) {
+#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
+ --lp->tags_sum[cp->tags_si];
+#endif
+ /*
+ * Free the tag value.
+ */
+ lp->cb_tags[lp->if_tag] = cp->tag;
+ if (++lp->if_tag == SYM_CONF_MAX_TASK)
+ lp->if_tag = 0;
+ /*
+ * Make the reselect path invalid,
+ * and uncount this CCB.
+ */
+ lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
+ --lp->busy_itlq;
+ } else { /* Untagged */
+ /*
+ * Make the reselect path invalid,
+ * and uncount this CCB.
+ */
+ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
+ --lp->busy_itl;
+ }
+ /*
+ * If no JOB active, make the LUN reselect path invalid.
+ */
+ if (lp->busy_itlq == 0 && lp->busy_itl == 0)
+ lp->head.resel_sa =
+ cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
+ }
+ /*
+ * Otherwise, we only accept 1 IO per LUN.
+ * Clear the bit that keeps track of this IO.
+ */
+ else
+ sym_clr_bit(tp->busy0_map, cp->lun);
+
+ /*
+ * We donnot queue more than 1 ccb per target
+ * with negotiation at any time. If this ccb was
+ * used for negotiation, clear this info in the tcb.
+ */
+ if (cp == tp->nego_cp)
+ tp->nego_cp = NULL;
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If we just complete the last queued CCB,
+ * clear this info that is no longer relevant.
+ */
+ if (cp == np->last_cp)
+ np->last_cp = 0;
+#endif
+
+ /*
+ * Make this CCB available.
+ */
+ cp->cmd = NULL;
+ cp->host_status = HS_IDLE;
+ sym_remque(&cp->link_ccbq);
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (lp) {
+ sym_remque(&cp->link2_ccbq);
+ sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
+ if (cp->started) {
+ if (cp->tag != NO_TAG)
+ --lp->started_tags;
+ else
+ --lp->started_no_tag;
+ }
+ }
+ cp->started = 0;
+#endif
+}
+
+/*
+ * Allocate a CCB from memory and initialize its fixed part.
+ */
+static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
+{
+ struct sym_ccb *cp = NULL;
+ int hcode;
+
+ /*
+ * Prevent from allocating more CCBs than we can
+ * queue to the controller.
+ */
+ if (np->actccbs >= SYM_CONF_MAX_START)
+ return NULL;
+
+ /*
+ * Allocate memory for this CCB.
+ */
+ cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
+ if (!cp)
+ goto out_free;
+
+ /*
+ * Count it.
+ */
+ np->actccbs++;
+
+ /*
+ * Compute the bus address of this ccb.
+ */
+ cp->ccb_ba = vtobus(cp);
+
+ /*
+ * Insert this ccb into the hashed list.
+ */
+ hcode = CCB_HASH_CODE(cp->ccb_ba);
+ cp->link_ccbh = np->ccbh[hcode];
+ np->ccbh[hcode] = cp;
+
+ /*
+ * Initialyze the start and restart actions.
+ */
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
+
+ /*
+ * Initilialyze some other fields.
+ */
+ cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
+
+ /*
+ * Chain into free ccb queue.
+ */
+ sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
+
+ /*
+ * Chain into optionnal lists.
+ */
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
+#endif
+ return cp;
+out_free:
+ if (cp)
+ sym_mfree_dma(cp, sizeof(*cp), "CCB");
+ return NULL;
+}
+
+/*
+ * Look up a CCB from a DSA value.
+ */
+static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
+{
+ int hcode;
+ struct sym_ccb *cp;
+
+ hcode = CCB_HASH_CODE(dsa);
+ cp = np->ccbh[hcode];
+ while (cp) {
+ if (cp->ccb_ba == dsa)
+ break;
+ cp = cp->link_ccbh;
+ }
+
+ return cp;
+}
+
+/*
+ * Target control block initialisation.
+ * Nothing important to do at the moment.
+ */
+static void sym_init_tcb (struct sym_hcb *np, u_char tn)
+{
+#if 0 /* Hmmm... this checking looks paranoid. */
+ /*
+ * Check some alignments required by the chip.
+ */
+ assert (((offsetof(struct sym_reg, nc_sxfer) ^
+ offsetof(struct sym_tcb, head.sval)) &3) == 0);
+ assert (((offsetof(struct sym_reg, nc_scntl3) ^
+ offsetof(struct sym_tcb, head.wval)) &3) == 0);
+#endif
+}
+
+/*
+ * Lun control block allocation and initialization.
+ */
+struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
+{
+ struct sym_tcb *tp = &np->target[tn];
+ struct sym_lcb *lp = sym_lp(tp, ln);
+
+ /*
+ * Already done, just return.
+ */
+ if (lp)
+ return lp;
+
+ /*
+ * Donnot allow LUN control block
+ * allocation for not probed LUNs.
+ */
+ if (!sym_is_bit(tp->lun_map, ln))
+ return NULL;
+
+ /*
+ * Initialize the target control block if not yet.
+ */
+ sym_init_tcb (np, tn);
+
+ /*
+ * Allocate the LCB bus address array.
+ * Compute the bus address of this table.
+ */
+ if (ln && !tp->luntbl) {
+ int i;
+
+ tp->luntbl = sym_calloc_dma(256, "LUNTBL");
+ if (!tp->luntbl)
+ goto fail;
+ for (i = 0 ; i < 64 ; i++)
+ tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
+ tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
+ }
+
+ /*
+ * Allocate the table of pointers for LUN(s) > 0, if needed.
+ */
+ if (ln && !tp->lunmp) {
+ tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
+ GFP_KERNEL);
+ if (!tp->lunmp)
+ goto fail;
+ }
+
+ /*
+ * Allocate the lcb.
+ * Make it available to the chip.
+ */
+ lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
+ if (!lp)
+ goto fail;
+ if (ln) {
+ tp->lunmp[ln] = lp;
+ tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
+ }
+ else {
+ tp->lun0p = lp;
+ tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
+ }
+
+ /*
+ * Let the itl task point to error handling.
+ */
+ lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
+
+ /*
+ * Set the reselect pattern to our default. :)
+ */
+ lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
+
+ /*
+ * Set user capabilities.
+ */
+ lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * Initialize device queueing.
+ */
+ sym_que_init(&lp->waiting_ccbq);
+ sym_que_init(&lp->started_ccbq);
+ lp->started_max = SYM_CONF_MAX_TASK;
+ lp->started_limit = SYM_CONF_MAX_TASK;
+#endif
+ /*
+ * If we are busy, count the IO.
+ */
+ if (sym_is_bit(tp->busy0_map, ln)) {
+ lp->busy_itl = 1;
+ sym_clr_bit(tp->busy0_map, ln);
+ }
+fail:
+ return lp;
+}
+
+/*
+ * Allocate LCB resources for tagged command queuing.
+ */
+static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
+{
+ struct sym_tcb *tp = &np->target[tn];
+ struct sym_lcb *lp = sym_lp(tp, ln);
+ int i;
+
+ /*
+ * If LCB not available, try to allocate it.
+ */
+ if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
+ goto fail;
+
+ /*
+ * Allocate the task table and and the tag allocation
+ * circular buffer. We want both or none.
+ */
+ lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
+ if (!lp->itlq_tbl)
+ goto fail;
+ lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_KERNEL);
+ if (!lp->cb_tags) {
+ sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
+ lp->itlq_tbl = NULL;
+ goto fail;
+ }
+
+ /*
+ * Initialize the task table with invalid entries.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
+ lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
+
+ /*
+ * Fill up the tag buffer with tag numbers.
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
+ lp->cb_tags[i] = i;
+
+ /*
+ * Make the task table available to SCRIPTS,
+ * And accept tagged commands now.
+ */
+ lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
+
+ return;
+fail:
+ return;
+}
+
+/*
+ * Queue a SCSI IO to the controller.
+ */
+int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
+{
+ struct scsi_device *sdev = cmd->device;
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ u_char *msgptr;
+ u_int msglen;
+ int can_disconnect;
+
+ /*
+ * Keep track of the IO in our CCB.
+ */
+ cp->cmd = cmd;
+
+ /*
+ * Retrieve the target descriptor.
+ */
+ tp = &np->target[cp->target];
+
+ /*
+ * Retrieve the lun descriptor.
+ */
+ lp = sym_lp(tp, sdev->lun);
+
+ can_disconnect = (cp->tag != NO_TAG) ||
+ (lp && (lp->curr_flags & SYM_DISC_ENABLED));
+
+ msgptr = cp->scsi_smsg;
+ msglen = 0;
+ msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
+
+ /*
+ * Build the tag message if present.
+ */
+ if (cp->tag != NO_TAG) {
+ u_char order = cp->order;
+
+ switch(order) {
+ case M_ORDERED_TAG:
+ break;
+ case M_HEAD_TAG:
+ break;
+ default:
+ order = M_SIMPLE_TAG;
+ }
+#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
+ /*
+ * Avoid too much reordering of SCSI commands.
+ * The algorithm tries to prevent completion of any
+ * tagged command from being delayed against more
+ * than 3 times the max number of queued commands.
+ */
+ if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
+ lp->tags_si = !(lp->tags_si);
+ if (lp->tags_sum[lp->tags_si]) {
+ order = M_ORDERED_TAG;
+ if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
+ sym_print_addr(cmd,
+ "ordered tag forced.\n");
+ }
+ }
+ lp->tags_since = 0;
+ }
+#endif
+ msgptr[msglen++] = order;
+
+ /*
+ * For less than 128 tags, actual tags are numbered
+ * 1,3,5,..2*MAXTAGS+1,since we may have to deal
+ * with devices that have problems with #TAG 0 or too
+ * great #TAG numbers. For more tags (up to 256),
+ * we use directly our tag number.
+ */
+#if SYM_CONF_MAX_TASK > (512/4)
+ msgptr[msglen++] = cp->tag;
+#else
+ msgptr[msglen++] = (cp->tag << 1) + 1;
+#endif
+ }
+
+ /*
+ * Build a negotiation message if needed.
+ * (nego_status is filled by sym_prepare_nego())
+ */
+ cp->nego_status = 0;
+ if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
+ msglen += sym_prepare_nego(np, cp, msgptr + msglen);
+ }
+
+ /*
+ * Startqueue
+ */
+ cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
+ cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
+
+ /*
+ * select
+ */
+ cp->phys.select.sel_id = cp->target;
+ cp->phys.select.sel_scntl3 = tp->head.wval;
+ cp->phys.select.sel_sxfer = tp->head.sval;
+ cp->phys.select.sel_scntl4 = tp->head.uval;
+
+ /*
+ * message
+ */
+ cp->phys.smsg.addr = cpu_to_scr(CCB_BA(cp, scsi_smsg));
+ cp->phys.smsg.size = cpu_to_scr(msglen);
+
+ /*
+ * status
+ */
+ cp->host_xflags = 0;
+ cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
+ cp->ssss_status = S_ILLEGAL;
+ cp->xerr_status = 0;
+ cp->host_flags = 0;
+ cp->extra_bytes = 0;
+
+ /*
+ * extreme data pointer.
+ * shall be positive, so -1 is lower than lowest.:)
+ */
+ cp->ext_sg = -1;
+ cp->ext_ofs = 0;
+
+ /*
+ * Build the CDB and DATA descriptor block
+ * and start the IO.
+ */
+ return sym_setup_data_and_start(np, cmd, cp);
+}
+
+/*
+ * Reset a SCSI target (all LUNs of this target).
+ */
+int sym_reset_scsi_target(struct sym_hcb *np, int target)
+{
+ struct sym_tcb *tp;
+
+ if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
+ return -1;
+
+ tp = &np->target[target];
+ tp->to_reset = 1;
+
+ np->istat_sem = SEM;
+ OUTB(np, nc_istat, SIGP|SEM);
+
+ return 0;
+}
+
+/*
+ * Abort a SCSI IO.
+ */
+static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
+{
+ /*
+ * Check that the IO is active.
+ */
+ if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
+ return -1;
+
+ /*
+ * If a previous abort didn't succeed in time,
+ * perform a BUS reset.
+ */
+ if (cp->to_abort) {
+ sym_reset_scsi_bus(np, 1);
+ return 0;
+ }
+
+ /*
+ * Mark the CCB for abort and allow time for.
+ */
+ cp->to_abort = timed_out ? 2 : 1;
+
+ /*
+ * Tell the SCRIPTS processor to stop and synchronize with us.
+ */
+ np->istat_sem = SEM;
+ OUTB(np, nc_istat, SIGP|SEM);
+ return 0;
+}
+
+int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
+{
+ struct sym_ccb *cp;
+ SYM_QUEHEAD *qp;
+
+ /*
+ * Look up our CCB control block.
+ */
+ cp = NULL;
+ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
+ struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ if (cp2->cmd == cmd) {
+ cp = cp2;
+ break;
+ }
+ }
+
+ return sym_abort_ccb(np, cp, timed_out);
+}
+
+/*
+ * Complete execution of a SCSI command with extented
+ * error, SCSI status error, or having been auto-sensed.
+ *
+ * The SCRIPTS processor is not running there, so we
+ * can safely access IO registers and remove JOBs from
+ * the START queue.
+ * SCRATCHA is assumed to have been loaded with STARTPOS
+ * before the SCRIPTS called the C code.
+ */
+void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
+{
+ struct scsi_device *sdev;
+ struct scsi_cmnd *cmd;
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ int resid;
+ int i;
+
+ /*
+ * Paranoid check. :)
+ */
+ if (!cp || !cp->cmd)
+ return;
+
+ cmd = cp->cmd;
+ sdev = cmd->device;
+ if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
+ dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
+ cp->host_status, cp->ssss_status, cp->host_flags);
+ }
+
+ /*
+ * Get target and lun pointers.
+ */
+ tp = &np->target[cp->target];
+ lp = sym_lp(tp, sdev->lun);
+
+ /*
+ * Check for extended errors.
+ */
+ if (cp->xerr_status) {
+ if (sym_verbose)
+ sym_print_xerr(cmd, cp->xerr_status);
+ if (cp->host_status == HS_COMPLETE)
+ cp->host_status = HS_COMP_ERR;
+ }
+
+ /*
+ * Calculate the residual.
+ */
+ resid = sym_compute_residual(np, cp);
+
+ if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
+ resid = 0; /* throw them away. :) */
+ cp->sv_resid = 0;
+ }
+#ifdef DEBUG_2_0_X
+if (resid)
+ printf("XXXX RESID= %d - 0x%x\n", resid, resid);
+#endif
+
+ /*
+ * Dequeue all queued CCBs for that device
+ * not yet started by SCRIPTS.
+ */
+ i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
+ i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
+
+ /*
+ * Restart the SCRIPTS processor.
+ */
+ OUTL_DSP(np, SCRIPTA_BA(np, start));
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ if (cp->host_status == HS_COMPLETE &&
+ cp->ssss_status == S_QUEUE_FULL) {
+ if (!lp || lp->started_tags - i < 2)
+ goto weirdness;
+ /*
+ * Decrease queue depth as needed.
+ */
+ lp->started_max = lp->started_tags - i - 1;
+ lp->num_sgood = 0;
+
+ if (sym_verbose >= 2) {
+ sym_print_addr(cmd, " queue depth is now %d\n",
+ lp->started_max);
+ }
+
+ /*
+ * Repair the CCB.
+ */
+ cp->host_status = HS_BUSY;
+ cp->ssss_status = S_ILLEGAL;
+
+ /*
+ * Let's requeue it to device.
+ */
+ sym_set_cam_status(cmd, CAM_REQUEUE_REQ);
+ goto finish;
+ }
+weirdness:
+#endif
+ /*
+ * Build result in CAM ccb.
+ */
+ sym_set_cam_result_error(np, cp, resid);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+finish:
+#endif
+ /*
+ * Add this one to the COMP queue.
+ */
+ sym_remque(&cp->link_ccbq);
+ sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
+
+ /*
+ * Complete all those commands with either error
+ * or requeue condition.
+ */
+ sym_flush_comp_queue(np, 0);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * Donnot start more than 1 command after an error.
+ */
+ if (lp)
+ sym_start_next_ccbs(np, lp, 1);
+#endif
+}
+
+/*
+ * Complete execution of a successful SCSI command.
+ *
+ * Only successful commands go to the DONE queue,
+ * since we need to have the SCRIPTS processor
+ * stopped on any error condition.
+ * The SCRIPTS processor is running while we are
+ * completing successful commands.
+ */
+void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
+{
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ struct scsi_cmnd *cmd;
+ int resid;
+
+ /*
+ * Paranoid check. :)
+ */
+ if (!cp || !cp->cmd)
+ return;
+ assert (cp->host_status == HS_COMPLETE);
+
+ /*
+ * Get user command.
+ */
+ cmd = cp->cmd;
+
+ /*
+ * Get target and lun pointers.
+ */
+ tp = &np->target[cp->target];
+ lp = sym_lp(tp, cp->lun);
+
+ /*
+ * Assume device discovered on first success.
+ */
+ if (!lp)
+ sym_set_bit(tp->lun_map, cp->lun);
+
+ /*
+ * If all data have been transferred, given than no
+ * extended error did occur, there is no residual.
+ */
+ resid = 0;
+ if (cp->phys.head.lastp != sym_goalp(cp))
+ resid = sym_compute_residual(np, cp);
+
+ /*
+ * Wrong transfer residuals may be worse than just always
+ * returning zero. User can disable this feature in
+ * sym53c8xx.h. Residual support is enabled by default.
+ */
+ if (!SYM_SETUP_RESIDUAL_SUPPORT)
+ resid = 0;
+#ifdef DEBUG_2_0_X
+if (resid)
+ printf("XXXX RESID= %d - 0x%x\n", resid, resid);
+#endif
+
+ /*
+ * Build result in CAM ccb.
+ */
+ sym_set_cam_result_ok(cp, cmd, resid);
+
+#ifdef SYM_OPT_SNIFF_INQUIRY
+ /*
+ * On standard INQUIRY response (EVPD and CmDt
+ * not set), sniff out device capabilities.
+ */
+ if (cp->cdb_buf[0] == INQUIRY && !(cp->cdb_buf[1] & 0x3))
+ sym_sniff_inquiry(np, cmd, resid);
+#endif
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * If max number of started ccbs had been reduced,
+ * increase it if 200 good status received.
+ */
+ if (lp && lp->started_max < lp->started_limit) {
+ ++lp->num_sgood;
+ if (lp->num_sgood >= 200) {
+ lp->num_sgood = 0;
+ ++lp->started_max;
+ if (sym_verbose >= 2) {
+ sym_print_addr(cmd, " queue depth is now %d\n",
+ lp->started_max);
+ }
+ }
+ }
+#endif
+
+ /*
+ * Free our CCB.
+ */
+ sym_free_ccb (np, cp);
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * Requeue a couple of awaiting scsi commands.
+ */
+ if (lp && !sym_que_empty(&lp->waiting_ccbq))
+ sym_start_next_ccbs(np, lp, 2);
+#endif
+ /*
+ * Complete the command.
+ */
+ sym_xpt_done(np, cmd);
+}
+
+/*
+ * Soft-attach the controller.
+ */
+int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
+{
+ struct sym_hcb *np = sym_get_hcb(shost);
+ int i;
+
+ /*
+ * Get some info about the firmware.
+ */
+ np->scripta_sz = fw->a_size;
+ np->scriptb_sz = fw->b_size;
+ np->scriptz_sz = fw->z_size;
+ np->fw_setup = fw->setup;
+ np->fw_patch = fw->patch;
+ np->fw_name = fw->name;
+
+ /*
+ * Save setting of some IO registers, so we will
+ * be able to probe specific implementations.
+ */
+ sym_save_initial_setting (np);
+
+ /*
+ * Reset the chip now, since it has been reported
+ * that SCSI clock calibration may not work properly
+ * if the chip is currently active.
+ */
+ sym_chip_reset(np);
+
+ /*
+ * Prepare controller and devices settings, according
+ * to chip features, user set-up and driver set-up.
+ */
+ sym_prepare_setting(shost, np, nvram);
+
+ /*
+ * Check the PCI clock frequency.
+ * Must be performed after prepare_setting since it destroys
+ * STEST1 that is used to probe for the clock doubler.
+ */
+ i = sym_getpciclock(np);
+ if (i > 37000 && !(np->features & FE_66MHZ))
+ printf("%s: PCI BUS clock seems too high: %u KHz.\n",
+ sym_name(np), i);
+
+ /*
+ * Allocate the start queue.
+ */
+ np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
+ if (!np->squeue)
+ goto attach_failed;
+ np->squeue_ba = vtobus(np->squeue);
+
+ /*
+ * Allocate the done queue.
+ */
+ np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
+ if (!np->dqueue)
+ goto attach_failed;
+ np->dqueue_ba = vtobus(np->dqueue);
+
+ /*
+ * Allocate the target bus address array.
+ */
+ np->targtbl = sym_calloc_dma(256, "TARGTBL");
+ if (!np->targtbl)
+ goto attach_failed;
+ np->targtbl_ba = vtobus(np->targtbl);
+
+ /*
+ * Allocate SCRIPTS areas.
+ */
+ np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
+ np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
+ np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
+ if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
+ goto attach_failed;
+
+ /*
+ * Allocate the array of lists of CCBs hashed by DSA.
+ */
+ np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
+ if (!np->ccbh)
+ goto attach_failed;
+
+ /*
+ * Initialyze the CCB free and busy queues.
+ */
+ sym_que_init(&np->free_ccbq);
+ sym_que_init(&np->busy_ccbq);
+ sym_que_init(&np->comp_ccbq);
+
+ /*
+ * Initialization for optional handling
+ * of device queueing.
+ */
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ sym_que_init(&np->dummy_ccbq);
+#endif
+ /*
+ * Allocate some CCB. We need at least ONE.
+ */
+ if (!sym_alloc_ccb(np))
+ goto attach_failed;
+
+ /*
+ * Calculate BUS addresses where we are going
+ * to load the SCRIPTS.
+ */
+ np->scripta_ba = vtobus(np->scripta0);
+ np->scriptb_ba = vtobus(np->scriptb0);
+ np->scriptz_ba = vtobus(np->scriptz0);
+
+ if (np->ram_ba) {
+ np->scripta_ba = np->ram_ba;
+ if (np->features & FE_RAM8K) {
+ np->ram_ws = 8192;
+ np->scriptb_ba = np->scripta_ba + 4096;
+#if 0 /* May get useful for 64 BIT PCI addressing */
+ np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
+#endif
+ }
+ else
+ np->ram_ws = 4096;
+ }
+
+ /*
+ * Copy scripts to controller instance.
+ */
+ memcpy(np->scripta0, fw->a_base, np->scripta_sz);
+ memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
+ memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
+
+ /*
+ * Setup variable parts in scripts and compute
+ * scripts bus addresses used from the C code.
+ */
+ np->fw_setup(np, fw);
+
+ /*
+ * Bind SCRIPTS with physical addresses usable by the
+ * SCRIPTS processor (as seen from the BUS = BUS addresses).
+ */
+ sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
+ sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
+ sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
+
+#ifdef SYM_CONF_IARB_SUPPORT
+ /*
+ * If user wants IARB to be set when we win arbitration
+ * and have other jobs, compute the max number of consecutive
+ * settings of IARB hints before we leave devices a chance to
+ * arbitrate for reselection.
+ */
+#ifdef SYM_SETUP_IARB_MAX
+ np->iarb_max = SYM_SETUP_IARB_MAX;
+#else
+ np->iarb_max = 4;
+#endif
+#endif
+
+ /*
+ * Prepare the idle and invalid task actions.
+ */
+ np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
+ np->idletask_ba = vtobus(&np->idletask);
+
+ np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
+ np->notask_ba = vtobus(&np->notask);
+
+ np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
+ np->bad_itl_ba = vtobus(&np->bad_itl);
+
+ np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
+ np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
+ np->bad_itlq_ba = vtobus(&np->bad_itlq);
+
+ /*
+ * Allocate and prepare the lun JUMP table that is used
+ * for a target prior the probing of devices (bad lun table).
+ * A private table will be allocated for the target on the
+ * first INQUIRY response received.
+ */
+ np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
+ if (!np->badluntbl)
+ goto attach_failed;
+
+ np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
+ for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
+ np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
+
+ /*
+ * Prepare the bus address array that contains the bus
+ * address of each target control block.
+ * For now, assume all logical units are wrong. :)
+ */
+ for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
+ np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
+ np->target[i].head.luntbl_sa =
+ cpu_to_scr(vtobus(np->badluntbl));
+ np->target[i].head.lun0_sa =
+ cpu_to_scr(vtobus(&np->badlun_sa));
+ }
+
+ /*
+ * Now check the cache handling of the pci chipset.
+ */
+ if (sym_snooptest (np)) {
+ printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
+ goto attach_failed;
+ }
+
+ /*
+ * Sigh! we are done.
+ */
+ return 0;
+
+attach_failed:
+ return -ENXIO;
+}
+
+/*
+ * Free everything that has been allocated for this device.
+ */
+void sym_hcb_free(struct sym_hcb *np)
+{
+ SYM_QUEHEAD *qp;
+ struct sym_ccb *cp;
+ struct sym_tcb *tp;
+ struct sym_lcb *lp;
+ int target, lun;
+
+ if (np->scriptz0)
+ sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
+ if (np->scriptb0)
+ sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
+ if (np->scripta0)
+ sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
+ if (np->squeue)
+ sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
+ if (np->dqueue)
+ sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
+
+ if (np->actccbs) {
+ while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
+ cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
+ sym_mfree_dma(cp, sizeof(*cp), "CCB");
+ }
+ }
+ kfree(np->ccbh);
+
+ if (np->badluntbl)
+ sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
+
+ for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
+ tp = &np->target[target];
+ for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
+ lp = sym_lp(tp, lun);
+ if (!lp)
+ continue;
+ if (lp->itlq_tbl)
+ sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
+ "ITLQ_TBL");
+ kfree(lp->cb_tags);
+ sym_mfree_dma(lp, sizeof(*lp), "LCB");
+ }
+#if SYM_CONF_MAX_LUN > 1
+ kfree(tp->lunmp);
+#endif
+ }
+ if (np->targtbl)
+ sym_mfree_dma(np->targtbl, 256, "TARGTBL");
+}
diff --git a/drivers/scsi/sym53c8xx_2/sym_hipd.h b/drivers/scsi/sym53c8xx_2/sym_hipd.h
new file mode 100644
index 000000000000..a95cbe4b8e39
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_hipd.h
@@ -0,0 +1,1304 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifndef SYM_HIPD_H
+#define SYM_HIPD_H
+
+/*
+ * Generic driver options.
+ *
+ * They may be defined in platform specific headers, if they
+ * are useful.
+ *
+ * SYM_OPT_HANDLE_DIR_UNKNOWN
+ * When this option is set, the SCRIPTS used by the driver
+ * are able to handle SCSI transfers with direction not
+ * supplied by user.
+ * (set for Linux-2.0.X)
+ *
+ * SYM_OPT_HANDLE_DEVICE_QUEUEING
+ * When this option is set, the driver will use a queue per
+ * device and handle QUEUE FULL status requeuing internally.
+ *
+ * SYM_OPT_LIMIT_COMMAND_REORDERING
+ * When this option is set, the driver tries to limit tagged
+ * command reordering to some reasonnable value.
+ * (set for Linux)
+ */
+#if 0
+#define SYM_OPT_HANDLE_DIR_UNKNOWN
+#define SYM_OPT_HANDLE_DEVICE_QUEUEING
+#define SYM_OPT_LIMIT_COMMAND_REORDERING
+#endif
+
+/*
+ * Active debugging tags and verbosity.
+ * Both DEBUG_FLAGS and sym_verbose can be redefined
+ * by the platform specific code to something else.
+ */
+#define DEBUG_ALLOC (0x0001)
+#define DEBUG_PHASE (0x0002)
+#define DEBUG_POLL (0x0004)
+#define DEBUG_QUEUE (0x0008)
+#define DEBUG_RESULT (0x0010)
+#define DEBUG_SCATTER (0x0020)
+#define DEBUG_SCRIPT (0x0040)
+#define DEBUG_TINY (0x0080)
+#define DEBUG_TIMING (0x0100)
+#define DEBUG_NEGO (0x0200)
+#define DEBUG_TAGS (0x0400)
+#define DEBUG_POINTER (0x0800)
+
+#ifndef DEBUG_FLAGS
+#define DEBUG_FLAGS (0x0000)
+#endif
+
+#ifndef sym_verbose
+#define sym_verbose (np->verbose)
+#endif
+
+/*
+ * These ones should have been already defined.
+ */
+#ifndef assert
+#define assert(expression) { \
+ if (!(expression)) { \
+ (void)panic( \
+ "assertion \"%s\" failed: file \"%s\", line %d\n", \
+ #expression, \
+ __FILE__, __LINE__); \
+ } \
+}
+#endif
+
+/*
+ * Number of tasks per device we want to handle.
+ */
+#if SYM_CONF_MAX_TAG_ORDER > 8
+#error "more than 256 tags per logical unit not allowed."
+#endif
+#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
+
+/*
+ * Donnot use more tasks that we can handle.
+ */
+#ifndef SYM_CONF_MAX_TAG
+#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
+#endif
+#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
+#undef SYM_CONF_MAX_TAG
+#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
+#endif
+
+/*
+ * This one means 'NO TAG for this job'
+ */
+#define NO_TAG (256)
+
+/*
+ * Number of SCSI targets.
+ */
+#if SYM_CONF_MAX_TARGET > 16
+#error "more than 16 targets not allowed."
+#endif
+
+/*
+ * Number of logical units per target.
+ */
+#if SYM_CONF_MAX_LUN > 64
+#error "more than 64 logical units per target not allowed."
+#endif
+
+/*
+ * Asynchronous pre-scaler (ns). Shall be 40 for
+ * the SCSI timings to be compliant.
+ */
+#define SYM_CONF_MIN_ASYNC (40)
+
+/*
+ * Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
+ * Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
+ * (1 PAGE at a time is just fine).
+ */
+#define SYM_MEM_SHIFT 4
+#define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT)
+#define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1)
+
+/*
+ * Number of entries in the START and DONE queues.
+ *
+ * We limit to 1 PAGE in order to succeed allocation of
+ * these queues. Each entry is 8 bytes long (2 DWORDS).
+ */
+#ifdef SYM_CONF_MAX_START
+#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
+#else
+#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
+#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
+#endif
+
+#if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
+#undef SYM_CONF_MAX_QUEUE
+#define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
+#undef SYM_CONF_MAX_START
+#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
+#endif
+
+/*
+ * For this one, we want a short name :-)
+ */
+#define MAX_QUEUE SYM_CONF_MAX_QUEUE
+
+/*
+ * Common definitions for both bus space based and legacy IO methods.
+ */
+
+#define INB_OFF(np, o) ioread8(np->s.ioaddr + (o))
+#define INW_OFF(np, o) ioread16(np->s.ioaddr + (o))
+#define INL_OFF(np, o) ioread32(np->s.ioaddr + (o))
+
+#define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o))
+#define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o))
+#define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o))
+
+#define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r))
+#define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r))
+#define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r))
+
+#define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
+#define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
+#define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
+
+#define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m))
+#define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m))
+#define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m))
+#define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m))
+#define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m))
+#define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m))
+
+/*
+ * We normally want the chip to have a consistent view
+ * of driver internal data structures when we restart it.
+ * Thus these macros.
+ */
+#define OUTL_DSP(np, v) \
+ do { \
+ MEMORY_WRITE_BARRIER(); \
+ OUTL(np, nc_dsp, (v)); \
+ } while (0)
+
+#define OUTONB_STD() \
+ do { \
+ MEMORY_WRITE_BARRIER(); \
+ OUTONB(np, nc_dcntl, (STD|NOCOM)); \
+ } while (0)
+
+/*
+ * Command control block states.
+ */
+#define HS_IDLE (0)
+#define HS_BUSY (1)
+#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
+#define HS_DISCONNECT (3) /* Disconnected by target */
+#define HS_WAIT (4) /* waiting for resource */
+
+#define HS_DONEMASK (0x80)
+#define HS_COMPLETE (4|HS_DONEMASK)
+#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
+#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
+#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
+
+/*
+ * Software Interrupt Codes
+ */
+#define SIR_BAD_SCSI_STATUS (1)
+#define SIR_SEL_ATN_NO_MSG_OUT (2)
+#define SIR_MSG_RECEIVED (3)
+#define SIR_MSG_WEIRD (4)
+#define SIR_NEGO_FAILED (5)
+#define SIR_NEGO_PROTO (6)
+#define SIR_SCRIPT_STOPPED (7)
+#define SIR_REJECT_TO_SEND (8)
+#define SIR_SWIDE_OVERRUN (9)
+#define SIR_SODL_UNDERRUN (10)
+#define SIR_RESEL_NO_MSG_IN (11)
+#define SIR_RESEL_NO_IDENTIFY (12)
+#define SIR_RESEL_BAD_LUN (13)
+#define SIR_TARGET_SELECTED (14)
+#define SIR_RESEL_BAD_I_T_L (15)
+#define SIR_RESEL_BAD_I_T_L_Q (16)
+#define SIR_ABORT_SENT (17)
+#define SIR_RESEL_ABORTED (18)
+#define SIR_MSG_OUT_DONE (19)
+#define SIR_COMPLETE_ERROR (20)
+#define SIR_DATA_OVERRUN (21)
+#define SIR_BAD_PHASE (22)
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+#define SIR_DMAP_DIRTY (23)
+#define SIR_MAX (23)
+#else
+#define SIR_MAX (22)
+#endif
+
+/*
+ * Extended error bit codes.
+ * xerr_status field of struct sym_ccb.
+ */
+#define XE_EXTRA_DATA (1) /* unexpected data phase */
+#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
+#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
+#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
+#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
+
+/*
+ * Negotiation status.
+ * nego_status field of struct sym_ccb.
+ */
+#define NS_SYNC (1)
+#define NS_WIDE (2)
+#define NS_PPR (3)
+
+/*
+ * A CCB hashed table is used to retrieve CCB address
+ * from DSA value.
+ */
+#define CCB_HASH_SHIFT 8
+#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
+#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
+#if 1
+#define CCB_HASH_CODE(dsa) \
+ (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
+#else
+#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
+#endif
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+/*
+ * We may want to use segment registers for 64 bit DMA.
+ * 16 segments registers -> up to 64 GB addressable.
+ */
+#define SYM_DMAP_SHIFT (4)
+#define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT)
+#define SYM_DMAP_MASK (SYM_DMAP_SIZE-1)
+#endif
+
+/*
+ * Device flags.
+ */
+#define SYM_DISC_ENABLED (1)
+#define SYM_TAGS_ENABLED (1<<1)
+#define SYM_SCAN_BOOT_DISABLED (1<<2)
+#define SYM_SCAN_LUNS_DISABLED (1<<3)
+
+/*
+ * Host adapter miscellaneous flags.
+ */
+#define SYM_AVOID_BUS_RESET (1)
+
+/*
+ * Misc.
+ */
+#define SYM_SNOOP_TIMEOUT (10000000)
+#define BUS_8_BIT 0
+#define BUS_16_BIT 1
+
+/*
+ * Gather negotiable parameters value
+ */
+struct sym_trans {
+ u8 period;
+ u8 offset;
+ unsigned int width:1;
+ unsigned int iu:1;
+ unsigned int dt:1;
+ unsigned int qas:1;
+ unsigned int check_nego:1;
+};
+
+/*
+ * Global TCB HEADER.
+ *
+ * Due to lack of indirect addressing on earlier NCR chips,
+ * this substructure is copied from the TCB to a global
+ * address after selection.
+ * For SYMBIOS chips that support LOAD/STORE this copy is
+ * not needed and thus not performed.
+ */
+struct sym_tcbh {
+ /*
+ * Scripts bus addresses of LUN table accessed from scripts.
+ * LUN #0 is a special case, since multi-lun devices are rare,
+ * and we we want to speed-up the general case and not waste
+ * resources.
+ */
+ u32 luntbl_sa; /* bus address of this table */
+ u32 lun0_sa; /* bus address of LCB #0 */
+ /*
+ * Actual SYNC/WIDE IO registers value for this target.
+ * 'sval', 'wval' and 'uval' are read from SCRIPTS and
+ * so have alignment constraints.
+ */
+/*0*/ u_char uval; /* -> SCNTL4 register */
+/*1*/ u_char sval; /* -> SXFER io register */
+/*2*/ u_char filler1;
+/*3*/ u_char wval; /* -> SCNTL3 io register */
+};
+
+/*
+ * Target Control Block
+ */
+struct sym_tcb {
+ /*
+ * TCB header.
+ * Assumed at offset 0.
+ */
+/*0*/ struct sym_tcbh head;
+
+ /*
+ * LUN table used by the SCRIPTS processor.
+ * An array of bus addresses is used on reselection.
+ */
+ u32 *luntbl; /* LCBs bus address table */
+
+ /*
+ * LUN table used by the C code.
+ */
+ struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */
+#if SYM_CONF_MAX_LUN > 1
+ struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */
+#endif
+
+ /*
+ * Bitmap that tells about LUNs that succeeded at least
+ * 1 IO and therefore assumed to be a real device.
+ * Avoid useless allocation of the LCB structure.
+ */
+ u32 lun_map[(SYM_CONF_MAX_LUN+31)/32];
+
+ /*
+ * Bitmap that tells about LUNs that haven't yet an LCB
+ * allocated (not discovered or LCB allocation failed).
+ */
+ u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32];
+
+#ifdef SYM_HAVE_STCB
+ /*
+ * O/S specific data structure.
+ */
+ struct sym_stcb s;
+#endif
+
+ /* Transfer goal */
+ struct sym_trans tgoal;
+
+ /*
+ * Keep track of the CCB used for the negotiation in order
+ * to ensure that only 1 negotiation is queued at a time.
+ */
+ struct sym_ccb * nego_cp; /* CCB used for the nego */
+
+ /*
+ * Set when we want to reset the device.
+ */
+ u_char to_reset;
+
+ /*
+ * Other user settable limits and options.
+ * These limits are read from the NVRAM if present.
+ */
+ u_char usrflags;
+ u_short usrtags;
+ struct scsi_device *sdev;
+};
+
+/*
+ * Global LCB HEADER.
+ *
+ * Due to lack of indirect addressing on earlier NCR chips,
+ * this substructure is copied from the LCB to a global
+ * address after selection.
+ * For SYMBIOS chips that support LOAD/STORE this copy is
+ * not needed and thus not performed.
+ */
+struct sym_lcbh {
+ /*
+ * SCRIPTS address jumped by SCRIPTS on reselection.
+ * For not probed logical units, this address points to
+ * SCRIPTS that deal with bad LU handling (must be at
+ * offset zero of the LCB for that reason).
+ */
+/*0*/ u32 resel_sa;
+
+ /*
+ * Task (bus address of a CCB) read from SCRIPTS that points
+ * to the unique ITL nexus allowed to be disconnected.
+ */
+ u32 itl_task_sa;
+
+ /*
+ * Task table bus address (read from SCRIPTS).
+ */
+ u32 itlq_tbl_sa;
+};
+
+/*
+ * Logical Unit Control Block
+ */
+struct sym_lcb {
+ /*
+ * TCB header.
+ * Assumed at offset 0.
+ */
+/*0*/ struct sym_lcbh head;
+
+ /*
+ * Task table read from SCRIPTS that contains pointers to
+ * ITLQ nexuses. The bus address read from SCRIPTS is
+ * inside the header.
+ */
+ u32 *itlq_tbl; /* Kernel virtual address */
+
+ /*
+ * Busy CCBs management.
+ */
+ u_short busy_itlq; /* Number of busy tagged CCBs */
+ u_short busy_itl; /* Number of busy untagged CCBs */
+
+ /*
+ * Circular tag allocation buffer.
+ */
+ u_short ia_tag; /* Tag allocation index */
+ u_short if_tag; /* Tag release index */
+ u_char *cb_tags; /* Circular tags buffer */
+
+ /*
+ * O/S specific data structure.
+ */
+#ifdef SYM_HAVE_SLCB
+ struct sym_slcb s;
+#endif
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ /*
+ * Optionnaly the driver can handle device queueing,
+ * and requeues internally command to redo.
+ */
+ SYM_QUEHEAD waiting_ccbq;
+ SYM_QUEHEAD started_ccbq;
+ int num_sgood;
+ u_short started_tags;
+ u_short started_no_tag;
+ u_short started_max;
+ u_short started_limit;
+#endif
+
+#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
+ /*
+ * Optionally the driver can try to prevent SCSI
+ * IOs from being reordered too much.
+ */
+ u_char tags_si; /* Current index to tags sum */
+ u_short tags_sum[2]; /* Tags sum counters */
+ u_short tags_since; /* # of tags since last switch */
+#endif
+
+ /*
+ * Set when we want to clear all tasks.
+ */
+ u_char to_clear;
+
+ /*
+ * Capabilities.
+ */
+ u_char user_flags;
+ u_char curr_flags;
+};
+
+/*
+ * Action from SCRIPTS on a task.
+ * Is part of the CCB, but is also used separately to plug
+ * error handling action to perform from SCRIPTS.
+ */
+struct sym_actscr {
+ u32 start; /* Jumped by SCRIPTS after selection */
+ u32 restart; /* Jumped by SCRIPTS on relection */
+};
+
+/*
+ * Phase mismatch context.
+ *
+ * It is part of the CCB and is used as parameters for the
+ * DATA pointer. We need two contexts to handle correctly the
+ * SAVED DATA POINTER.
+ */
+struct sym_pmc {
+ struct sym_tblmove sg; /* Updated interrupted SG block */
+ u32 ret; /* SCRIPT return address */
+};
+
+/*
+ * LUN control block lookup.
+ * We use a direct pointer for LUN #0, and a table of
+ * pointers which is only allocated for devices that support
+ * LUN(s) > 0.
+ */
+#if SYM_CONF_MAX_LUN <= 1
+#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
+#else
+#define sym_lp(tp, lun) \
+ (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
+#endif
+
+/*
+ * Status are used by the host and the script processor.
+ *
+ * The last four bytes (status[4]) are copied to the
+ * scratchb register (declared as scr0..scr3) just after the
+ * select/reselect, and copied back just after disconnecting.
+ * Inside the script the XX_REG are used.
+ */
+
+/*
+ * Last four bytes (script)
+ */
+#define HX_REG scr0
+#define HX_PRT nc_scr0
+#define HS_REG scr1
+#define HS_PRT nc_scr1
+#define SS_REG scr2
+#define SS_PRT nc_scr2
+#define HF_REG scr3
+#define HF_PRT nc_scr3
+
+/*
+ * Last four bytes (host)
+ */
+#define host_xflags phys.head.status[0]
+#define host_status phys.head.status[1]
+#define ssss_status phys.head.status[2]
+#define host_flags phys.head.status[3]
+
+/*
+ * Host flags
+ */
+#define HF_IN_PM0 1u
+#define HF_IN_PM1 (1u<<1)
+#define HF_ACT_PM (1u<<2)
+#define HF_DP_SAVED (1u<<3)
+#define HF_SENSE (1u<<4)
+#define HF_EXT_ERR (1u<<5)
+#define HF_DATA_IN (1u<<6)
+#ifdef SYM_CONF_IARB_SUPPORT
+#define HF_HINT_IARB (1u<<7)
+#endif
+
+/*
+ * More host flags
+ */
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+#define HX_DMAP_DIRTY (1u<<7)
+#endif
+
+/*
+ * Global CCB HEADER.
+ *
+ * Due to lack of indirect addressing on earlier NCR chips,
+ * this substructure is copied from the ccb to a global
+ * address after selection (or reselection) and copied back
+ * before disconnect.
+ * For SYMBIOS chips that support LOAD/STORE this copy is
+ * not needed and thus not performed.
+ */
+
+struct sym_ccbh {
+ /*
+ * Start and restart SCRIPTS addresses (must be at 0).
+ */
+/*0*/ struct sym_actscr go;
+
+ /*
+ * SCRIPTS jump address that deal with data pointers.
+ * 'savep' points to the position in the script responsible
+ * for the actual transfer of data.
+ * It's written on reception of a SAVE_DATA_POINTER message.
+ */
+ u32 savep; /* Jump address to saved data pointer */
+ u32 lastp; /* SCRIPTS address at end of data */
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ u32 wlastp;
+#endif
+
+ /*
+ * Status fields.
+ */
+ u8 status[4];
+};
+
+/*
+ * GET/SET the value of the data pointer used by SCRIPTS.
+ *
+ * We must distinguish between the LOAD/STORE-based SCRIPTS
+ * that use directly the header in the CCB, and the NCR-GENERIC
+ * SCRIPTS that use the copy of the header in the HCB.
+ */
+#if SYM_CONF_GENERIC_SUPPORT
+#define sym_set_script_dp(np, cp, dp) \
+ do { \
+ if (np->features & FE_LDSTR) \
+ cp->phys.head.lastp = cpu_to_scr(dp); \
+ else \
+ np->ccb_head.lastp = cpu_to_scr(dp); \
+ } while (0)
+#define sym_get_script_dp(np, cp) \
+ scr_to_cpu((np->features & FE_LDSTR) ? \
+ cp->phys.head.lastp : np->ccb_head.lastp)
+#else
+#define sym_set_script_dp(np, cp, dp) \
+ do { \
+ cp->phys.head.lastp = cpu_to_scr(dp); \
+ } while (0)
+
+#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
+#endif
+
+/*
+ * Data Structure Block
+ *
+ * During execution of a ccb by the script processor, the
+ * DSA (data structure address) register points to this
+ * substructure of the ccb.
+ */
+struct sym_dsb {
+ /*
+ * CCB header.
+ * Also assumed at offset 0 of the sym_ccb structure.
+ */
+/*0*/ struct sym_ccbh head;
+
+ /*
+ * Phase mismatch contexts.
+ * We need two to handle correctly the SAVED DATA POINTER.
+ * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
+ * for address calculation from SCRIPTS.
+ */
+ struct sym_pmc pm0;
+ struct sym_pmc pm1;
+
+ /*
+ * Table data for Script
+ */
+ struct sym_tblsel select;
+ struct sym_tblmove smsg;
+ struct sym_tblmove smsg_ext;
+ struct sym_tblmove cmd;
+ struct sym_tblmove sense;
+ struct sym_tblmove wresid;
+ struct sym_tblmove data [SYM_CONF_MAX_SG];
+};
+
+/*
+ * Our Command Control Block
+ */
+struct sym_ccb {
+ /*
+ * This is the data structure which is pointed by the DSA
+ * register when it is executed by the script processor.
+ * It must be the first entry.
+ */
+ struct sym_dsb phys;
+
+ /*
+ * Pointer to CAM ccb and related stuff.
+ */
+ struct scsi_cmnd *cmd; /* CAM scsiio ccb */
+ u8 cdb_buf[16]; /* Copy of CDB */
+#define SYM_SNS_BBUF_LEN 32
+ u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
+ int data_len; /* Total data length */
+ int segments; /* Number of SG segments */
+
+ u8 order; /* Tag type (if tagged command) */
+
+ /*
+ * Miscellaneous status'.
+ */
+ u_char nego_status; /* Negotiation status */
+ u_char xerr_status; /* Extended error flags */
+ u32 extra_bytes; /* Extraneous bytes transferred */
+
+ /*
+ * Message areas.
+ * We prepare a message to be sent after selection.
+ * We may use a second one if the command is rescheduled
+ * due to CHECK_CONDITION or COMMAND TERMINATED.
+ * Contents are IDENTIFY and SIMPLE_TAG.
+ * While negotiating sync or wide transfer,
+ * a SDTR or WDTR message is appended.
+ */
+ u_char scsi_smsg [12];
+ u_char scsi_smsg2[12];
+
+ /*
+ * Auto request sense related fields.
+ */
+ u_char sensecmd[6]; /* Request Sense command */
+ u_char sv_scsi_status; /* Saved SCSI status */
+ u_char sv_xerr_status; /* Saved extended status */
+ int sv_resid; /* Saved residual */
+
+ /*
+ * Other fields.
+ */
+ u32 ccb_ba; /* BUS address of this CCB */
+ u_short tag; /* Tag for this transfer */
+ /* NO_TAG means no tag */
+ u_char target;
+ u_char lun;
+ struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */
+ SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */
+ u32 startp; /* Initial data pointer */
+ u32 goalp; /* Expected last data pointer */
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ u32 wgoalp;
+#endif
+ int ext_sg; /* Extreme data pointer, used */
+ int ext_ofs; /* to calculate the residual. */
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ SYM_QUEHEAD link2_ccbq; /* Link for device queueing */
+ u_char started; /* CCB queued to the squeue */
+#endif
+ u_char to_abort; /* Want this IO to be aborted */
+#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
+ u_char tags_si; /* Lun tags sum index (0,1) */
+#endif
+};
+
+#define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl))
+
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+#define sym_goalp(cp) ((cp->host_flags & HF_DATA_IN) ? cp->goalp : cp->wgoalp)
+#else
+#define sym_goalp(cp) (cp->goalp)
+#endif
+
+typedef struct device *m_pool_ident_t;
+
+/*
+ * Host Control Block
+ */
+struct sym_hcb {
+ /*
+ * Global headers.
+ * Due to poorness of addressing capabilities, earlier
+ * chips (810, 815, 825) copy part of the data structures
+ * (CCB, TCB and LCB) in fixed areas.
+ */
+#if SYM_CONF_GENERIC_SUPPORT
+ struct sym_ccbh ccb_head;
+ struct sym_tcbh tcb_head;
+ struct sym_lcbh lcb_head;
+#endif
+ /*
+ * Idle task and invalid task actions and
+ * their bus addresses.
+ */
+ struct sym_actscr idletask, notask, bad_itl, bad_itlq;
+ u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
+
+ /*
+ * Dummy lun table to protect us against target
+ * returning bad lun number on reselection.
+ */
+ u32 *badluntbl; /* Table physical address */
+ u32 badlun_sa; /* SCRIPT handler BUS address */
+
+ /*
+ * Bus address of this host control block.
+ */
+ u32 hcb_ba;
+
+ /*
+ * Bit 32-63 of the on-chip RAM bus address in LE format.
+ * The START_RAM64 script loads the MMRS and MMWS from this
+ * field.
+ */
+ u32 scr_ram_seg;
+
+ /*
+ * Initial value of some IO register bits.
+ * These values are assumed to have been set by BIOS, and may
+ * be used to probe adapter implementation differences.
+ */
+ u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
+ sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
+ sv_stest1;
+
+ /*
+ * Actual initial value of IO register bits used by the
+ * driver. They are loaded at initialisation according to
+ * features that are to be enabled/disabled.
+ */
+ u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
+ rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
+
+ /*
+ * Target data.
+ */
+ struct sym_tcb target[SYM_CONF_MAX_TARGET];
+
+ /*
+ * Target control block bus address array used by the SCRIPT
+ * on reselection.
+ */
+ u32 *targtbl;
+ u32 targtbl_ba;
+
+ /*
+ * DMA pool handle for this HBA.
+ */
+ m_pool_ident_t bus_dmat;
+
+ /*
+ * O/S specific data structure
+ */
+ struct sym_shcb s;
+
+ /*
+ * Physical bus addresses of the chip.
+ */
+ u32 mmio_ba; /* MMIO 32 bit BUS address */
+ int mmio_ws; /* MMIO Window size */
+
+ u32 ram_ba; /* RAM 32 bit BUS address */
+ int ram_ws; /* RAM window size */
+
+ /*
+ * SCRIPTS virtual and physical bus addresses.
+ * 'script' is loaded in the on-chip RAM if present.
+ * 'scripth' stays in main memory for all chips except the
+ * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
+ */
+ u_char *scripta0; /* Copy of scripts A, B, Z */
+ u_char *scriptb0;
+ u_char *scriptz0;
+ u32 scripta_ba; /* Actual scripts A, B, Z */
+ u32 scriptb_ba; /* 32 bit bus addresses. */
+ u32 scriptz_ba;
+ u_short scripta_sz; /* Actual size of script A, B, Z*/
+ u_short scriptb_sz;
+ u_short scriptz_sz;
+
+ /*
+ * Bus addresses, setup and patch methods for
+ * the selected firmware.
+ */
+ struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
+ struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
+ struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */
+ void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
+ void (*fw_patch)(struct sym_hcb *np);
+ char *fw_name;
+
+ /*
+ * General controller parameters and configuration.
+ */
+ u_short device_id; /* PCI device id */
+ u_char revision_id; /* PCI device revision id */
+ u_int features; /* Chip features map */
+ u_char myaddr; /* SCSI id of the adapter */
+ u_char maxburst; /* log base 2 of dwords burst */
+ u_char maxwide; /* Maximum transfer width */
+ u_char minsync; /* Min sync period factor (ST) */
+ u_char maxsync; /* Max sync period factor (ST) */
+ u_char maxoffs; /* Max scsi offset (ST) */
+ u_char minsync_dt; /* Min sync period factor (DT) */
+ u_char maxsync_dt; /* Max sync period factor (DT) */
+ u_char maxoffs_dt; /* Max scsi offset (DT) */
+ u_char multiplier; /* Clock multiplier (1,2,4) */
+ u_char clock_divn; /* Number of clock divisors */
+ u32 clock_khz; /* SCSI clock frequency in KHz */
+ u32 pciclk_khz; /* Estimated PCI clock in KHz */
+ /*
+ * Start queue management.
+ * It is filled up by the host processor and accessed by the
+ * SCRIPTS processor in order to start SCSI commands.
+ */
+ volatile /* Prevent code optimizations */
+ u32 *squeue; /* Start queue virtual address */
+ u32 squeue_ba; /* Start queue BUS address */
+ u_short squeueput; /* Next free slot of the queue */
+ u_short actccbs; /* Number of allocated CCBs */
+
+ /*
+ * Command completion queue.
+ * It is the same size as the start queue to avoid overflow.
+ */
+ u_short dqueueget; /* Next position to scan */
+ volatile /* Prevent code optimizations */
+ u32 *dqueue; /* Completion (done) queue */
+ u32 dqueue_ba; /* Done queue BUS address */
+
+ /*
+ * Miscellaneous buffers accessed by the scripts-processor.
+ * They shall be DWORD aligned, because they may be read or
+ * written with a script command.
+ */
+ u_char msgout[8]; /* Buffer for MESSAGE OUT */
+ u_char msgin [8]; /* Buffer for MESSAGE IN */
+ u32 lastmsg; /* Last SCSI message sent */
+ u32 scratch; /* Scratch for SCSI receive */
+ /* Also used for cache test */
+ /*
+ * Miscellaneous configuration and status parameters.
+ */
+ u_char usrflags; /* Miscellaneous user flags */
+ u_char scsi_mode; /* Current SCSI BUS mode */
+ u_char verbose; /* Verbosity for this controller*/
+
+ /*
+ * CCB lists and queue.
+ */
+ struct sym_ccb **ccbh; /* CCBs hashed by DSA value */
+ /* CCB_HASH_SIZE lists of CCBs */
+ SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
+ SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
+
+ /*
+ * During error handling and/or recovery,
+ * active CCBs that are to be completed with
+ * error or requeued are moved from the busy_ccbq
+ * to the comp_ccbq prior to completion.
+ */
+ SYM_QUEHEAD comp_ccbq;
+
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+ SYM_QUEHEAD dummy_ccbq;
+#endif
+
+ /*
+ * IMMEDIATE ARBITRATION (IARB) control.
+ *
+ * We keep track in 'last_cp' of the last CCB that has been
+ * queued to the SCRIPTS processor and clear 'last_cp' when
+ * this CCB completes. If last_cp is not zero at the moment
+ * we queue a new CCB, we set a flag in 'last_cp' that is
+ * used by the SCRIPTS as a hint for setting IARB.
+ * We donnot set more than 'iarb_max' consecutive hints for
+ * IARB in order to leave devices a chance to reselect.
+ * By the way, any non zero value of 'iarb_max' is unfair. :)
+ */
+#ifdef SYM_CONF_IARB_SUPPORT
+ u_short iarb_max; /* Max. # consecutive IARB hints*/
+ u_short iarb_count; /* Actual # of these hints */
+ struct sym_ccb * last_cp;
+#endif
+
+ /*
+ * Command abort handling.
+ * We need to synchronize tightly with the SCRIPTS
+ * processor in order to handle things correctly.
+ */
+ u_char abrt_msg[4]; /* Message to send buffer */
+ struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
+ struct sym_tblsel abrt_sel; /* Sync params for selection */
+ u_char istat_sem; /* Tells the chip to stop (SEM) */
+
+ /*
+ * 64 bit DMA handling.
+ */
+#if SYM_CONF_DMA_ADDRESSING_MODE != 0
+ u_char use_dac; /* Use PCI DAC cycles */
+#if SYM_CONF_DMA_ADDRESSING_MODE == 2
+ u_char dmap_dirty; /* Dma segments registers dirty */
+ u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */
+#endif
+#endif
+};
+
+#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
+
+
+/*
+ * FIRMWARES (sym_fw.c)
+ */
+struct sym_fw * sym_find_firmware(struct sym_chip *chip);
+void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
+
+/*
+ * Driver methods called from O/S specific code.
+ */
+char *sym_driver_name(void);
+void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
+int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
+struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
+void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
+#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
+void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
+#endif
+void sym_start_up(struct sym_hcb *np, int reason);
+void sym_interrupt(struct sym_hcb *np);
+int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
+struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
+void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
+struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
+int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
+int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
+int sym_reset_scsi_target(struct sym_hcb *np, int target);
+void sym_hcb_free(struct sym_hcb *np);
+int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
+
+/*
+ * Build a scatter/gather entry.
+ *
+ * For 64 bit systems, we use the 8 upper bits of the size field
+ * to provide bus address bits 32-39 to the SCRIPTS processor.
+ * This allows the 895A, 896, 1010 to address up to 1 TB of memory.
+ */
+
+#if SYM_CONF_DMA_ADDRESSING_MODE == 0
+#define sym_build_sge(np, data, badd, len) \
+do { \
+ (data)->addr = cpu_to_scr(badd); \
+ (data)->size = cpu_to_scr(len); \
+} while (0)
+#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
+#define sym_build_sge(np, data, badd, len) \
+do { \
+ (data)->addr = cpu_to_scr(badd); \
+ (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \
+} while (0)
+#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
+int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
+static __inline void
+sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
+{
+ u32 h = (badd>>32);
+ int s = (h&SYM_DMAP_MASK);
+
+ if (h != np->dmap_bah[s])
+ goto bad;
+good:
+ (data)->addr = cpu_to_scr(badd);
+ (data)->size = cpu_to_scr((s<<24) + len);
+ return;
+bad:
+ s = sym_lookup_dmap(np, h, s);
+ goto good;
+}
+#else
+#error "Unsupported DMA addressing mode"
+#endif
+
+/*
+ * Set up data pointers used by SCRIPTS.
+ * Called from O/S specific code.
+ */
+static inline void sym_setup_data_pointers(struct sym_hcb *np,
+ struct sym_ccb *cp, int dir)
+{
+ u32 lastp, goalp;
+
+ /*
+ * No segments means no data.
+ */
+ if (!cp->segments)
+ dir = CAM_DIR_NONE;
+
+ /*
+ * Set the data pointer.
+ */
+ switch(dir) {
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ case CAM_DIR_UNKNOWN:
+#endif
+ case CAM_DIR_OUT:
+ goalp = SCRIPTA_BA(np, data_out2) + 8;
+ lastp = goalp - 8 - (cp->segments * (2*4));
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ cp->wgoalp = cpu_to_scr(goalp);
+ if (dir != CAM_DIR_UNKNOWN)
+ break;
+ cp->phys.head.wlastp = cpu_to_scr(lastp);
+ /* fall through */
+#else
+ break;
+#endif
+ case CAM_DIR_IN:
+ cp->host_flags |= HF_DATA_IN;
+ goalp = SCRIPTA_BA(np, data_in2) + 8;
+ lastp = goalp - 8 - (cp->segments * (2*4));
+ break;
+ case CAM_DIR_NONE:
+ default:
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ cp->host_flags |= HF_DATA_IN;
+#endif
+ lastp = goalp = SCRIPTB_BA(np, no_data);
+ break;
+ }
+
+ /*
+ * Set all pointers values needed by SCRIPTS.
+ */
+ cp->phys.head.lastp = cpu_to_scr(lastp);
+ cp->phys.head.savep = cpu_to_scr(lastp);
+ cp->startp = cp->phys.head.savep;
+ cp->goalp = cpu_to_scr(goalp);
+
+#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
+ /*
+ * If direction is unknown, start at data_io.
+ */
+ if (dir == CAM_DIR_UNKNOWN)
+ cp->phys.head.savep = cpu_to_scr(SCRIPTB_BA(np, data_io));
+#endif
+}
+
+/*
+ * MEMORY ALLOCATOR.
+ */
+
+#define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
+#define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
+#define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
+
+#define SYM_MEM_WARN 1 /* Warn on failed operations */
+
+#define sym_get_mem_cluster() \
+ (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
+#define sym_free_mem_cluster(p) \
+ free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
+
+/*
+ * Link between free memory chunks of a given size.
+ */
+typedef struct sym_m_link {
+ struct sym_m_link *next;
+} *m_link_p;
+
+/*
+ * Virtual to bus physical translation for a given cluster.
+ * Such a structure is only useful with DMA abstraction.
+ */
+typedef struct sym_m_vtob { /* Virtual to Bus address translation */
+ struct sym_m_vtob *next;
+ void *vaddr; /* Virtual address */
+ dma_addr_t baddr; /* Bus physical address */
+} *m_vtob_p;
+
+/* Hash this stuff a bit to speed up translations */
+#define VTOB_HASH_SHIFT 5
+#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
+#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
+#define VTOB_HASH_CODE(m) \
+ ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
+
+/*
+ * Memory pool of a given kind.
+ * Ideally, we want to use:
+ * 1) 1 pool for memory we donnot need to involve in DMA.
+ * 2) The same pool for controllers that require same DMA
+ * constraints and features.
+ * The OS specific m_pool_id_t thing and the sym_m_pool_match()
+ * method are expected to tell the driver about.
+ */
+typedef struct sym_m_pool {
+ m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */
+ void * (*get_mem_cluster)(struct sym_m_pool *);
+#ifdef SYM_MEM_FREE_UNUSED
+ void (*free_mem_cluster)(struct sym_m_pool *, void *);
+#endif
+#define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp)
+#define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p)
+ int nump;
+ m_vtob_p vtob[VTOB_HASH_SIZE];
+ struct sym_m_pool *next;
+ struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
+} *m_pool_p;
+
+/*
+ * Alloc, free and translate addresses to bus physical
+ * for DMAable memory.
+ */
+void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
+void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
+dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
+
+/*
+ * Verbs used by the driver code for DMAable memory handling.
+ * The _uvptv_ macro avoids a nasty warning about pointer to volatile
+ * being discarded.
+ */
+#define _uvptv_(p) ((void *)((u_long)(p)))
+
+#define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n)
+#define _sym_mfree_dma(np, p, l, n) \
+ __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
+#define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n)
+#define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n)
+#define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p))
+
+/*
+ * We have to provide the driver memory allocator with methods for
+ * it to maintain virtual to bus physical address translations.
+ */
+
+#define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
+
+static __inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
+{
+ void *vaddr = NULL;
+ dma_addr_t baddr = 0;
+
+ vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
+ GFP_ATOMIC);
+ if (vaddr) {
+ vbp->vaddr = vaddr;
+ vbp->baddr = baddr;
+ }
+ return vaddr;
+}
+
+static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
+{
+ dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
+ vbp->baddr);
+}
+
+#endif /* SYM_HIPD_H */
diff --git a/drivers/scsi/sym53c8xx_2/sym_malloc.c b/drivers/scsi/sym53c8xx_2/sym_malloc.c
new file mode 100644
index 000000000000..a34d403ccc6c
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_malloc.c
@@ -0,0 +1,382 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifdef __FreeBSD__
+#include <dev/sym/sym_glue.h>
+#else
+#include "sym_glue.h"
+#endif
+
+/*
+ * Simple power of two buddy-like generic allocator.
+ * Provides naturally aligned memory chunks.
+ *
+ * This simple code is not intended to be fast, but to
+ * provide power of 2 aligned memory allocations.
+ * Since the SCRIPTS processor only supplies 8 bit arithmetic,
+ * this allocator allows simple and fast address calculations
+ * from the SCRIPTS code. In addition, cache line alignment
+ * is guaranteed for power of 2 cache line size.
+ *
+ * This allocator has been developped for the Linux sym53c8xx
+ * driver, since this O/S does not provide naturally aligned
+ * allocations.
+ * It has the advantage of allowing the driver to use private
+ * pages of memory that will be useful if we ever need to deal
+ * with IO MMUs for PCI.
+ */
+static void *___sym_malloc(m_pool_p mp, int size)
+{
+ int i = 0;
+ int s = (1 << SYM_MEM_SHIFT);
+ int j;
+ void *a;
+ m_link_p h = mp->h;
+
+ if (size > SYM_MEM_CLUSTER_SIZE)
+ return NULL;
+
+ while (size > s) {
+ s <<= 1;
+ ++i;
+ }
+
+ j = i;
+ while (!h[j].next) {
+ if (s == SYM_MEM_CLUSTER_SIZE) {
+ h[j].next = (m_link_p) M_GET_MEM_CLUSTER();
+ if (h[j].next)
+ h[j].next->next = NULL;
+ break;
+ }
+ ++j;
+ s <<= 1;
+ }
+ a = h[j].next;
+ if (a) {
+ h[j].next = h[j].next->next;
+ while (j > i) {
+ j -= 1;
+ s >>= 1;
+ h[j].next = (m_link_p) (a+s);
+ h[j].next->next = NULL;
+ }
+ }
+#ifdef DEBUG
+ printf("___sym_malloc(%d) = %p\n", size, (void *) a);
+#endif
+ return a;
+}
+
+/*
+ * Counter-part of the generic allocator.
+ */
+static void ___sym_mfree(m_pool_p mp, void *ptr, int size)
+{
+ int i = 0;
+ int s = (1 << SYM_MEM_SHIFT);
+ m_link_p q;
+ unsigned long a, b;
+ m_link_p h = mp->h;
+
+#ifdef DEBUG
+ printf("___sym_mfree(%p, %d)\n", ptr, size);
+#endif
+
+ if (size > SYM_MEM_CLUSTER_SIZE)
+ return;
+
+ while (size > s) {
+ s <<= 1;
+ ++i;
+ }
+
+ a = (unsigned long)ptr;
+
+ while (1) {
+ if (s == SYM_MEM_CLUSTER_SIZE) {
+#ifdef SYM_MEM_FREE_UNUSED
+ M_FREE_MEM_CLUSTER((void *)a);
+#else
+ ((m_link_p) a)->next = h[i].next;
+ h[i].next = (m_link_p) a;
+#endif
+ break;
+ }
+ b = a ^ s;
+ q = &h[i];
+ while (q->next && q->next != (m_link_p) b) {
+ q = q->next;
+ }
+ if (!q->next) {
+ ((m_link_p) a)->next = h[i].next;
+ h[i].next = (m_link_p) a;
+ break;
+ }
+ q->next = q->next->next;
+ a = a & b;
+ s <<= 1;
+ ++i;
+ }
+}
+
+/*
+ * Verbose and zeroing allocator that wrapps to the generic allocator.
+ */
+static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags)
+{
+ void *p;
+
+ p = ___sym_malloc(mp, size);
+
+ if (DEBUG_FLAGS & DEBUG_ALLOC) {
+ printf ("new %-10s[%4d] @%p.\n", name, size, p);
+ }
+
+ if (p)
+ memset(p, 0, size);
+ else if (uflags & SYM_MEM_WARN)
+ printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
+ return p;
+}
+#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, SYM_MEM_WARN)
+
+/*
+ * Its counter-part.
+ */
+static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name)
+{
+ if (DEBUG_FLAGS & DEBUG_ALLOC)
+ printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
+
+ ___sym_mfree(mp, ptr, size);
+}
+
+/*
+ * Default memory pool we donnot need to involve in DMA.
+ *
+ * With DMA abstraction, we use functions (methods), to
+ * distinguish between non DMAable memory and DMAable memory.
+ */
+static void *___mp0_get_mem_cluster(m_pool_p mp)
+{
+ void *m = sym_get_mem_cluster();
+ if (m)
+ ++mp->nump;
+ return m;
+}
+
+#ifdef SYM_MEM_FREE_UNUSED
+static void ___mp0_free_mem_cluster(m_pool_p mp, void *m)
+{
+ sym_free_mem_cluster(m);
+ --mp->nump;
+}
+#else
+#define ___mp0_free_mem_cluster NULL
+#endif
+
+static struct sym_m_pool mp0 = {
+ NULL,
+ ___mp0_get_mem_cluster,
+ ___mp0_free_mem_cluster
+};
+
+/*
+ * Methods that maintains DMAable pools according to user allocations.
+ * New pools are created on the fly when a new pool id is provided.
+ * They are deleted on the fly when they get emptied.
+ */
+/* Get a memory cluster that matches the DMA constraints of a given pool */
+static void * ___get_dma_mem_cluster(m_pool_p mp)
+{
+ m_vtob_p vbp;
+ void *vaddr;
+
+ vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
+ if (!vbp)
+ goto out_err;
+
+ vaddr = sym_m_get_dma_mem_cluster(mp, vbp);
+ if (vaddr) {
+ int hc = VTOB_HASH_CODE(vaddr);
+ vbp->next = mp->vtob[hc];
+ mp->vtob[hc] = vbp;
+ ++mp->nump;
+ }
+ return vaddr;
+out_err:
+ return NULL;
+}
+
+#ifdef SYM_MEM_FREE_UNUSED
+/* Free a memory cluster and associated resources for DMA */
+static void ___free_dma_mem_cluster(m_pool_p mp, void *m)
+{
+ m_vtob_p *vbpp, vbp;
+ int hc = VTOB_HASH_CODE(m);
+
+ vbpp = &mp->vtob[hc];
+ while (*vbpp && (*vbpp)->vaddr != m)
+ vbpp = &(*vbpp)->next;
+ if (*vbpp) {
+ vbp = *vbpp;
+ *vbpp = (*vbpp)->next;
+ sym_m_free_dma_mem_cluster(mp, vbp);
+ __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
+ --mp->nump;
+ }
+}
+#endif
+
+/* Fetch the memory pool for a given pool id (i.e. DMA constraints) */
+static __inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat)
+{
+ m_pool_p mp;
+ for (mp = mp0.next;
+ mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat);
+ mp = mp->next);
+ return mp;
+}
+
+/* Create a new memory DMAable pool (when fetch failed) */
+static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat)
+{
+ m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
+ if (mp) {
+ mp->dev_dmat = dev_dmat;
+ mp->get_mem_cluster = ___get_dma_mem_cluster;
+#ifdef SYM_MEM_FREE_UNUSED
+ mp->free_mem_cluster = ___free_dma_mem_cluster;
+#endif
+ mp->next = mp0.next;
+ mp0.next = mp;
+ return mp;
+ }
+ return NULL;
+}
+
+#ifdef SYM_MEM_FREE_UNUSED
+/* Destroy a DMAable memory pool (when got emptied) */
+static void ___del_dma_pool(m_pool_p p)
+{
+ m_pool_p *pp = &mp0.next;
+
+ while (*pp && *pp != p)
+ pp = &(*pp)->next;
+ if (*pp) {
+ *pp = (*pp)->next;
+ __sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
+ }
+}
+#endif
+
+/* This lock protects only the memory allocation/free. */
+static DEFINE_SPINLOCK(sym53c8xx_lock);
+
+/*
+ * Actual allocator for DMAable memory.
+ */
+void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name)
+{
+ unsigned long flags;
+ m_pool_p mp;
+ void *m = NULL;
+
+ spin_lock_irqsave(&sym53c8xx_lock, flags);
+ mp = ___get_dma_pool(dev_dmat);
+ if (!mp)
+ mp = ___cre_dma_pool(dev_dmat);
+ if (!mp)
+ goto out;
+ m = __sym_calloc(mp, size, name);
+#ifdef SYM_MEM_FREE_UNUSED
+ if (!mp->nump)
+ ___del_dma_pool(mp);
+#endif
+
+ out:
+ spin_unlock_irqrestore(&sym53c8xx_lock, flags);
+ return m;
+}
+
+void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name)
+{
+ unsigned long flags;
+ m_pool_p mp;
+
+ spin_lock_irqsave(&sym53c8xx_lock, flags);
+ mp = ___get_dma_pool(dev_dmat);
+ if (!mp)
+ goto out;
+ __sym_mfree(mp, m, size, name);
+#ifdef SYM_MEM_FREE_UNUSED
+ if (!mp->nump)
+ ___del_dma_pool(mp);
+#endif
+ out:
+ spin_unlock_irqrestore(&sym53c8xx_lock, flags);
+}
+
+/*
+ * Actual virtual to bus physical address translator
+ * for 32 bit addressable DMAable memory.
+ */
+dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m)
+{
+ unsigned long flags;
+ m_pool_p mp;
+ int hc = VTOB_HASH_CODE(m);
+ m_vtob_p vp = NULL;
+ void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK);
+ dma_addr_t b;
+
+ spin_lock_irqsave(&sym53c8xx_lock, flags);
+ mp = ___get_dma_pool(dev_dmat);
+ if (mp) {
+ vp = mp->vtob[hc];
+ while (vp && vp->vaddr != a)
+ vp = vp->next;
+ }
+ if (!vp)
+ panic("sym: VTOBUS FAILED!\n");
+ b = vp->baddr + (m - a);
+ spin_unlock_irqrestore(&sym53c8xx_lock, flags);
+ return b;
+}
diff --git a/drivers/scsi/sym53c8xx_2/sym_misc.h b/drivers/scsi/sym53c8xx_2/sym_misc.h
new file mode 100644
index 000000000000..0433d5d0caf3
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_misc.h
@@ -0,0 +1,192 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifndef SYM_MISC_H
+#define SYM_MISC_H
+
+/*
+ * A la VMS/CAM-3 queue management.
+ */
+typedef struct sym_quehead {
+ struct sym_quehead *flink; /* Forward pointer */
+ struct sym_quehead *blink; /* Backward pointer */
+} SYM_QUEHEAD;
+
+#define sym_que_init(ptr) do { \
+ (ptr)->flink = (ptr); (ptr)->blink = (ptr); \
+} while (0)
+
+static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
+{
+ return (head->flink == head) ? 0 : head->flink;
+}
+
+static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
+{
+ return (head->blink == head) ? 0 : head->blink;
+}
+
+static __inline void __sym_que_add(struct sym_quehead * new,
+ struct sym_quehead * blink,
+ struct sym_quehead * flink)
+{
+ flink->blink = new;
+ new->flink = flink;
+ new->blink = blink;
+ blink->flink = new;
+}
+
+static __inline void __sym_que_del(struct sym_quehead * blink,
+ struct sym_quehead * flink)
+{
+ flink->blink = blink;
+ blink->flink = flink;
+}
+
+static __inline int sym_que_empty(struct sym_quehead *head)
+{
+ return head->flink == head;
+}
+
+static __inline void sym_que_splice(struct sym_quehead *list,
+ struct sym_quehead *head)
+{
+ struct sym_quehead *first = list->flink;
+
+ if (first != list) {
+ struct sym_quehead *last = list->blink;
+ struct sym_quehead *at = head->flink;
+
+ first->blink = head;
+ head->flink = first;
+
+ last->flink = at;
+ at->blink = last;
+ }
+}
+
+static __inline void sym_que_move(struct sym_quehead *orig,
+ struct sym_quehead *dest)
+{
+ struct sym_quehead *first, *last;
+
+ first = orig->flink;
+ if (first != orig) {
+ first->blink = dest;
+ dest->flink = first;
+ last = orig->blink;
+ last->flink = dest;
+ dest->blink = last;
+ orig->flink = orig;
+ orig->blink = orig;
+ } else {
+ dest->flink = dest;
+ dest->blink = dest;
+ }
+}
+
+#define sym_que_entry(ptr, type, member) \
+ ((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
+
+
+#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink)
+
+#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink)
+
+#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink)
+
+static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
+{
+ struct sym_quehead *elem = head->flink;
+
+ if (elem != head)
+ __sym_que_del(head, elem->flink);
+ else
+ elem = NULL;
+ return elem;
+}
+
+#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head)
+
+static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
+{
+ struct sym_quehead *elem = head->blink;
+
+ if (elem != head)
+ __sym_que_del(elem->blink, head);
+ else
+ elem = 0;
+ return elem;
+}
+
+/*
+ * This one may be useful.
+ */
+#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
+ for (qp = (head)->flink; qp != (head); qp = qp->flink)
+/*
+ * FreeBSD does not offer our kind of queue in the CAM CCB.
+ * So, we have to cast.
+ */
+#define sym_qptr(p) ((struct sym_quehead *) (p))
+
+/*
+ * Simple bitmap operations.
+ */
+#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f)))
+#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
+#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f)))
+
+/*
+ * The below round up/down macros are to be used with a constant
+ * as argument (sizeof(...) for example), for the compiler to
+ * optimize the whole thing.
+ */
+#define _U_(a,m) (a)<=(1<<m)?m:
+
+/*
+ * Round up logarithm to base 2 of a 16 bit constant.
+ */
+#define _LGRU16_(a) \
+( \
+ _U_(a, 0)_U_(a, 1)_U_(a, 2)_U_(a, 3)_U_(a, 4)_U_(a, 5)_U_(a, 6)_U_(a, 7) \
+ _U_(a, 8)_U_(a, 9)_U_(a,10)_U_(a,11)_U_(a,12)_U_(a,13)_U_(a,14)_U_(a,15) \
+ 16)
+
+#endif /* SYM_MISC_H */
diff --git a/drivers/scsi/sym53c8xx_2/sym_nvram.c b/drivers/scsi/sym53c8xx_2/sym_nvram.c
new file mode 100644
index 000000000000..1b721e3ec520
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_nvram.c
@@ -0,0 +1,771 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include "sym_glue.h"
+#include "sym_nvram.h"
+
+#ifdef SYM_CONF_DEBUG_NVRAM
+static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120};
+#endif
+
+/*
+ * Get host setup from NVRAM.
+ */
+void sym_nvram_setup_host(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
+{
+ /*
+ * Get parity checking, host ID, verbose mode
+ * and miscellaneous host flags from NVRAM.
+ */
+ switch (nvram->type) {
+ case SYM_SYMBIOS_NVRAM:
+ if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
+ np->rv_scntl0 &= ~0x0a;
+ np->myaddr = nvram->data.Symbios.host_id & 0x0f;
+ if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
+ np->verbose += 1;
+ if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
+ shost->reverse_ordering = 1;
+ if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
+ np->usrflags |= SYM_AVOID_BUS_RESET;
+ break;
+ case SYM_TEKRAM_NVRAM:
+ np->myaddr = nvram->data.Tekram.host_id & 0x0f;
+ break;
+#ifdef CONFIG_PARISC
+ case SYM_PARISC_PDC:
+ if (nvram->data.parisc.host_id != -1)
+ np->myaddr = nvram->data.parisc.host_id;
+ if (nvram->data.parisc.factor != -1)
+ np->minsync = nvram->data.parisc.factor;
+ if (nvram->data.parisc.width != -1)
+ np->maxwide = nvram->data.parisc.width;
+ switch (nvram->data.parisc.mode) {
+ case 0: np->scsi_mode = SMODE_SE; break;
+ case 1: np->scsi_mode = SMODE_HVD; break;
+ case 2: np->scsi_mode = SMODE_LVD; break;
+ default: break;
+ }
+#endif
+ default:
+ break;
+ }
+}
+
+/*
+ * Get target set-up from Symbios format NVRAM.
+ */
+static void
+sym_Symbios_setup_target(struct sym_hcb *np, int target, Symbios_nvram *nvram)
+{
+ struct sym_tcb *tp = &np->target[target];
+ Symbios_target *tn = &nvram->target[target];
+
+ tp->usrtags =
+ (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
+
+ if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
+ tp->usrflags &= ~SYM_DISC_ENABLED;
+ if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
+ tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
+ if (!(tn->flags & SYMBIOS_SCAN_LUNS))
+ tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
+}
+
+/*
+ * Get target set-up from Tekram format NVRAM.
+ */
+static void
+sym_Tekram_setup_target(struct sym_hcb *np, int target, Tekram_nvram *nvram)
+{
+ struct sym_tcb *tp = &np->target[target];
+ struct Tekram_target *tn = &nvram->target[target];
+
+ if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
+ tp->usrtags = 2 << nvram->max_tags_index;
+ }
+
+ if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
+ tp->usrflags |= SYM_DISC_ENABLED;
+
+ /* If any device does not support parity, we will not use this option */
+ if (!(tn->flags & TEKRAM_PARITY_CHECK))
+ np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */
+}
+
+/*
+ * Get target setup from NVRAM.
+ */
+void sym_nvram_setup_target(struct sym_hcb *np, int target, struct sym_nvram *nvp)
+{
+ switch (nvp->type) {
+ case SYM_SYMBIOS_NVRAM:
+ sym_Symbios_setup_target(np, target, &nvp->data.Symbios);
+ break;
+ case SYM_TEKRAM_NVRAM:
+ sym_Tekram_setup_target(np, target, &nvp->data.Tekram);
+ break;
+ default:
+ break;
+ }
+}
+
+#ifdef SYM_CONF_DEBUG_NVRAM
+/*
+ * Dump Symbios format NVRAM for debugging purpose.
+ */
+static void sym_display_Symbios_nvram(struct sym_device *np, Symbios_nvram *nvram)
+{
+ int i;
+
+ /* display Symbios nvram host data */
+ printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
+ sym_name(np), nvram->host_id & 0x0f,
+ (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
+ (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"",
+ (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"",
+ (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"",
+ (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"",
+ (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :"");
+
+ /* display Symbios nvram drive data */
+ for (i = 0 ; i < 15 ; i++) {
+ struct Symbios_target *tn = &nvram->target[i];
+ printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
+ sym_name(np), i,
+ (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "",
+ (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "",
+ (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "",
+ (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "",
+ tn->bus_width,
+ tn->sync_period / 4,
+ tn->timeout);
+ }
+}
+
+/*
+ * Dump TEKRAM format NVRAM for debugging purpose.
+ */
+static void sym_display_Tekram_nvram(struct sym_device *np, Tekram_nvram *nvram)
+{
+ int i, tags, boot_delay;
+ char *rem;
+
+ /* display Tekram nvram host data */
+ tags = 2 << nvram->max_tags_index;
+ boot_delay = 0;
+ if (nvram->boot_delay_index < 6)
+ boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
+ switch ((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
+ default:
+ case 0: rem = ""; break;
+ case 1: rem = " REMOVABLE=boot device"; break;
+ case 2: rem = " REMOVABLE=all"; break;
+ }
+
+ printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
+ sym_name(np), nvram->host_id & 0x0f,
+ (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
+ (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES":"",
+ (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"",
+ (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"",
+ (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"",
+ (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"",
+ (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"",
+ (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"",
+ rem, boot_delay, tags);
+
+ /* display Tekram nvram drive data */
+ for (i = 0; i <= 15; i++) {
+ int sync, j;
+ struct Tekram_target *tn = &nvram->target[i];
+ j = tn->sync_index & 0xf;
+ sync = Tekram_sync[j];
+ printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
+ sym_name(np), i,
+ (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "",
+ (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "",
+ (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "",
+ (tn->flags & TEKRAM_START_CMD) ? " START" : "",
+ (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "",
+ (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "",
+ sync);
+ }
+}
+#else
+static void sym_display_Symbios_nvram(struct sym_device *np, Symbios_nvram *nvram) { (void)np; (void)nvram; }
+static void sym_display_Tekram_nvram(struct sym_device *np, Tekram_nvram *nvram) { (void)np; (void)nvram; }
+#endif /* SYM_CONF_DEBUG_NVRAM */
+
+
+/*
+ * 24C16 EEPROM reading.
+ *
+ * GPOI0 - data in/data out
+ * GPIO1 - clock
+ * Symbios NVRAM wiring now also used by Tekram.
+ */
+
+#define SET_BIT 0
+#define CLR_BIT 1
+#define SET_CLK 2
+#define CLR_CLK 3
+
+/*
+ * Set/clear data/clock bit in GPIO0
+ */
+static void S24C16_set_bit(struct sym_device *np, u_char write_bit, u_char *gpreg,
+ int bit_mode)
+{
+ udelay(5);
+ switch (bit_mode) {
+ case SET_BIT:
+ *gpreg |= write_bit;
+ break;
+ case CLR_BIT:
+ *gpreg &= 0xfe;
+ break;
+ case SET_CLK:
+ *gpreg |= 0x02;
+ break;
+ case CLR_CLK:
+ *gpreg &= 0xfd;
+ break;
+
+ }
+ OUTB(np, nc_gpreg, *gpreg);
+ udelay(5);
+}
+
+/*
+ * Send START condition to NVRAM to wake it up.
+ */
+static void S24C16_start(struct sym_device *np, u_char *gpreg)
+{
+ S24C16_set_bit(np, 1, gpreg, SET_BIT);
+ S24C16_set_bit(np, 0, gpreg, SET_CLK);
+ S24C16_set_bit(np, 0, gpreg, CLR_BIT);
+ S24C16_set_bit(np, 0, gpreg, CLR_CLK);
+}
+
+/*
+ * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
+ */
+static void S24C16_stop(struct sym_device *np, u_char *gpreg)
+{
+ S24C16_set_bit(np, 0, gpreg, SET_CLK);
+ S24C16_set_bit(np, 1, gpreg, SET_BIT);
+}
+
+/*
+ * Read or write a bit to the NVRAM,
+ * read if GPIO0 input else write if GPIO0 output
+ */
+static void S24C16_do_bit(struct sym_device *np, u_char *read_bit, u_char write_bit,
+ u_char *gpreg)
+{
+ S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
+ S24C16_set_bit(np, 0, gpreg, SET_CLK);
+ if (read_bit)
+ *read_bit = INB(np, nc_gpreg);
+ S24C16_set_bit(np, 0, gpreg, CLR_CLK);
+ S24C16_set_bit(np, 0, gpreg, CLR_BIT);
+}
+
+/*
+ * Output an ACK to the NVRAM after reading,
+ * change GPIO0 to output and when done back to an input
+ */
+static void S24C16_write_ack(struct sym_device *np, u_char write_bit, u_char *gpreg,
+ u_char *gpcntl)
+{
+ OUTB(np, nc_gpcntl, *gpcntl & 0xfe);
+ S24C16_do_bit(np, NULL, write_bit, gpreg);
+ OUTB(np, nc_gpcntl, *gpcntl);
+}
+
+/*
+ * Input an ACK from NVRAM after writing,
+ * change GPIO0 to input and when done back to an output
+ */
+static void S24C16_read_ack(struct sym_device *np, u_char *read_bit, u_char *gpreg,
+ u_char *gpcntl)
+{
+ OUTB(np, nc_gpcntl, *gpcntl | 0x01);
+ S24C16_do_bit(np, read_bit, 1, gpreg);
+ OUTB(np, nc_gpcntl, *gpcntl);
+}
+
+/*
+ * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
+ * GPIO0 must already be set as an output
+ */
+static void S24C16_write_byte(struct sym_device *np, u_char *ack_data, u_char write_data,
+ u_char *gpreg, u_char *gpcntl)
+{
+ int x;
+
+ for (x = 0; x < 8; x++)
+ S24C16_do_bit(np, NULL, (write_data >> (7 - x)) & 0x01, gpreg);
+
+ S24C16_read_ack(np, ack_data, gpreg, gpcntl);
+}
+
+/*
+ * READ a byte from the NVRAM and then send an ACK to say we have got it,
+ * GPIO0 must already be set as an input
+ */
+static void S24C16_read_byte(struct sym_device *np, u_char *read_data, u_char ack_data,
+ u_char *gpreg, u_char *gpcntl)
+{
+ int x;
+ u_char read_bit;
+
+ *read_data = 0;
+ for (x = 0; x < 8; x++) {
+ S24C16_do_bit(np, &read_bit, 1, gpreg);
+ *read_data |= ((read_bit & 0x01) << (7 - x));
+ }
+
+ S24C16_write_ack(np, ack_data, gpreg, gpcntl);
+}
+
+#if SYM_CONF_NVRAM_WRITE_SUPPORT
+/*
+ * Write 'len' bytes starting at 'offset'.
+ */
+static int sym_write_S24C16_nvram(struct sym_device *np, int offset,
+ u_char *data, int len)
+{
+ u_char gpcntl, gpreg;
+ u_char old_gpcntl, old_gpreg;
+ u_char ack_data;
+ int x;
+
+ /* save current state of GPCNTL and GPREG */
+ old_gpreg = INB(np, nc_gpreg);
+ old_gpcntl = INB(np, nc_gpcntl);
+ gpcntl = old_gpcntl & 0x1c;
+
+ /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
+ OUTB(np, nc_gpreg, old_gpreg);
+ OUTB(np, nc_gpcntl, gpcntl);
+
+ /* this is to set NVRAM into a known state with GPIO0/1 both low */
+ gpreg = old_gpreg;
+ S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
+ S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
+
+ /* now set NVRAM inactive with GPIO0/1 both high */
+ S24C16_stop(np, &gpreg);
+
+ /* NVRAM has to be written in segments of 16 bytes */
+ for (x = 0; x < len ; x += 16) {
+ do {
+ S24C16_start(np, &gpreg);
+ S24C16_write_byte(np, &ack_data,
+ 0xa0 | (((offset+x) >> 7) & 0x0e),
+ &gpreg, &gpcntl);
+ } while (ack_data & 0x01);
+
+ S24C16_write_byte(np, &ack_data, (offset+x) & 0xff,
+ &gpreg, &gpcntl);
+
+ for (y = 0; y < 16; y++)
+ S24C16_write_byte(np, &ack_data, data[x+y],
+ &gpreg, &gpcntl);
+ S24C16_stop(np, &gpreg);
+ }
+
+ /* return GPIO0/1 to original states after having accessed NVRAM */
+ OUTB(np, nc_gpcntl, old_gpcntl);
+ OUTB(np, nc_gpreg, old_gpreg);
+
+ return 0;
+}
+#endif /* SYM_CONF_NVRAM_WRITE_SUPPORT */
+
+/*
+ * Read 'len' bytes starting at 'offset'.
+ */
+static int sym_read_S24C16_nvram(struct sym_device *np, int offset, u_char *data, int len)
+{
+ u_char gpcntl, gpreg;
+ u_char old_gpcntl, old_gpreg;
+ u_char ack_data;
+ int retv = 1;
+ int x;
+
+ /* save current state of GPCNTL and GPREG */
+ old_gpreg = INB(np, nc_gpreg);
+ old_gpcntl = INB(np, nc_gpcntl);
+ gpcntl = old_gpcntl & 0x1c;
+
+ /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
+ OUTB(np, nc_gpreg, old_gpreg);
+ OUTB(np, nc_gpcntl, gpcntl);
+
+ /* this is to set NVRAM into a known state with GPIO0/1 both low */
+ gpreg = old_gpreg;
+ S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
+ S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
+
+ /* now set NVRAM inactive with GPIO0/1 both high */
+ S24C16_stop(np, &gpreg);
+
+ /* activate NVRAM */
+ S24C16_start(np, &gpreg);
+
+ /* write device code and random address MSB */
+ S24C16_write_byte(np, &ack_data,
+ 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
+ if (ack_data & 0x01)
+ goto out;
+
+ /* write random address LSB */
+ S24C16_write_byte(np, &ack_data,
+ offset & 0xff, &gpreg, &gpcntl);
+ if (ack_data & 0x01)
+ goto out;
+
+ /* regenerate START state to set up for reading */
+ S24C16_start(np, &gpreg);
+
+ /* rewrite device code and address MSB with read bit set (lsb = 0x01) */
+ S24C16_write_byte(np, &ack_data,
+ 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
+ if (ack_data & 0x01)
+ goto out;
+
+ /* now set up GPIO0 for inputting data */
+ gpcntl |= 0x01;
+ OUTB(np, nc_gpcntl, gpcntl);
+
+ /* input all requested data - only part of total NVRAM */
+ for (x = 0; x < len; x++)
+ S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
+
+ /* finally put NVRAM back in inactive mode */
+ gpcntl &= 0xfe;
+ OUTB(np, nc_gpcntl, gpcntl);
+ S24C16_stop(np, &gpreg);
+ retv = 0;
+out:
+ /* return GPIO0/1 to original states after having accessed NVRAM */
+ OUTB(np, nc_gpcntl, old_gpcntl);
+ OUTB(np, nc_gpreg, old_gpreg);
+
+ return retv;
+}
+
+#undef SET_BIT
+#undef CLR_BIT
+#undef SET_CLK
+#undef CLR_CLK
+
+/*
+ * Try reading Symbios NVRAM.
+ * Return 0 if OK.
+ */
+static int sym_read_Symbios_nvram(struct sym_device *np, Symbios_nvram *nvram)
+{
+ static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
+ u_char *data = (u_char *) nvram;
+ int len = sizeof(*nvram);
+ u_short csum;
+ int x;
+
+ /* probe the 24c16 and read the SYMBIOS 24c16 area */
+ if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
+ return 1;
+
+ /* check valid NVRAM signature, verify byte count and checksum */
+ if (nvram->type != 0 ||
+ memcmp(nvram->trailer, Symbios_trailer, 6) ||
+ nvram->byte_count != len - 12)
+ return 1;
+
+ /* verify checksum */
+ for (x = 6, csum = 0; x < len - 6; x++)
+ csum += data[x];
+ if (csum != nvram->checksum)
+ return 1;
+
+ return 0;
+}
+
+/*
+ * 93C46 EEPROM reading.
+ *
+ * GPOI0 - data in
+ * GPIO1 - data out
+ * GPIO2 - clock
+ * GPIO4 - chip select
+ *
+ * Used by Tekram.
+ */
+
+/*
+ * Pulse clock bit in GPIO0
+ */
+static void T93C46_Clk(struct sym_device *np, u_char *gpreg)
+{
+ OUTB(np, nc_gpreg, *gpreg | 0x04);
+ udelay(2);
+ OUTB(np, nc_gpreg, *gpreg);
+}
+
+/*
+ * Read bit from NVRAM
+ */
+static void T93C46_Read_Bit(struct sym_device *np, u_char *read_bit, u_char *gpreg)
+{
+ udelay(2);
+ T93C46_Clk(np, gpreg);
+ *read_bit = INB(np, nc_gpreg);
+}
+
+/*
+ * Write bit to GPIO0
+ */
+static void T93C46_Write_Bit(struct sym_device *np, u_char write_bit, u_char *gpreg)
+{
+ if (write_bit & 0x01)
+ *gpreg |= 0x02;
+ else
+ *gpreg &= 0xfd;
+
+ *gpreg |= 0x10;
+
+ OUTB(np, nc_gpreg, *gpreg);
+ udelay(2);
+
+ T93C46_Clk(np, gpreg);
+}
+
+/*
+ * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
+ */
+static void T93C46_Stop(struct sym_device *np, u_char *gpreg)
+{
+ *gpreg &= 0xef;
+ OUTB(np, nc_gpreg, *gpreg);
+ udelay(2);
+
+ T93C46_Clk(np, gpreg);
+}
+
+/*
+ * Send read command and address to NVRAM
+ */
+static void T93C46_Send_Command(struct sym_device *np, u_short write_data,
+ u_char *read_bit, u_char *gpreg)
+{
+ int x;
+
+ /* send 9 bits, start bit (1), command (2), address (6) */
+ for (x = 0; x < 9; x++)
+ T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
+
+ *read_bit = INB(np, nc_gpreg);
+}
+
+/*
+ * READ 2 bytes from the NVRAM
+ */
+static void T93C46_Read_Word(struct sym_device *np,
+ unsigned short *nvram_data, unsigned char *gpreg)
+{
+ int x;
+ u_char read_bit;
+
+ *nvram_data = 0;
+ for (x = 0; x < 16; x++) {
+ T93C46_Read_Bit(np, &read_bit, gpreg);
+
+ if (read_bit & 0x01)
+ *nvram_data |= (0x01 << (15 - x));
+ else
+ *nvram_data &= ~(0x01 << (15 - x));
+ }
+}
+
+/*
+ * Read Tekram NvRAM data.
+ */
+static int T93C46_Read_Data(struct sym_device *np, unsigned short *data,
+ int len, unsigned char *gpreg)
+{
+ int x;
+
+ for (x = 0; x < len; x++) {
+ unsigned char read_bit;
+ /* output read command and address */
+ T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
+ if (read_bit & 0x01)
+ return 1; /* Bad */
+ T93C46_Read_Word(np, &data[x], gpreg);
+ T93C46_Stop(np, gpreg);
+ }
+
+ return 0;
+}
+
+/*
+ * Try reading 93C46 Tekram NVRAM.
+ */
+static int sym_read_T93C46_nvram(struct sym_device *np, Tekram_nvram *nvram)
+{
+ u_char gpcntl, gpreg;
+ u_char old_gpcntl, old_gpreg;
+ int retv = 1;
+
+ /* save current state of GPCNTL and GPREG */
+ old_gpreg = INB(np, nc_gpreg);
+ old_gpcntl = INB(np, nc_gpcntl);
+
+ /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
+ 1/2/4 out */
+ gpreg = old_gpreg & 0xe9;
+ OUTB(np, nc_gpreg, gpreg);
+ gpcntl = (old_gpcntl & 0xe9) | 0x09;
+ OUTB(np, nc_gpcntl, gpcntl);
+
+ /* input all of NVRAM, 64 words */
+ retv = T93C46_Read_Data(np, (u_short *) nvram,
+ sizeof(*nvram) / sizeof(short), &gpreg);
+
+ /* return GPIO0/1/2/4 to original states after having accessed NVRAM */
+ OUTB(np, nc_gpcntl, old_gpcntl);
+ OUTB(np, nc_gpreg, old_gpreg);
+
+ return retv;
+}
+
+/*
+ * Try reading Tekram NVRAM.
+ * Return 0 if OK.
+ */
+static int sym_read_Tekram_nvram (struct sym_device *np, Tekram_nvram *nvram)
+{
+ u_char *data = (u_char *) nvram;
+ int len = sizeof(*nvram);
+ u_short csum;
+ int x;
+
+ switch (np->device_id) {
+ case PCI_DEVICE_ID_NCR_53C885:
+ case PCI_DEVICE_ID_NCR_53C895:
+ case PCI_DEVICE_ID_NCR_53C896:
+ x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
+ data, len);
+ break;
+ case PCI_DEVICE_ID_NCR_53C875:
+ x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
+ data, len);
+ if (!x)
+ break;
+ default:
+ x = sym_read_T93C46_nvram(np, nvram);
+ break;
+ }
+ if (x)
+ return 1;
+
+ /* verify checksum */
+ for (x = 0, csum = 0; x < len - 1; x += 2)
+ csum += data[x] + (data[x+1] << 8);
+ if (csum != 0x1234)
+ return 1;
+
+ return 0;
+}
+
+#ifdef CONFIG_PARISC
+/*
+ * Host firmware (PDC) keeps a table for altering SCSI capabilities.
+ * Many newer machines export one channel of 53c896 chip as SE, 50-pin HD.
+ * Also used for Multi-initiator SCSI clusters to set the SCSI Initiator ID.
+ */
+static int sym_read_parisc_pdc(struct sym_device *np, struct pdc_initiator *pdc)
+{
+ struct hardware_path hwpath;
+ get_pci_node_path(np->pdev, &hwpath);
+ if (!pdc_get_initiator(&hwpath, pdc))
+ return 0;
+
+ return SYM_PARISC_PDC;
+}
+#else
+static int sym_read_parisc_pdc(struct sym_device *np, struct pdc_initiator *x)
+{
+ return 0;
+}
+#endif
+
+/*
+ * Try reading Symbios or Tekram NVRAM
+ */
+int sym_read_nvram(struct sym_device *np, struct sym_nvram *nvp)
+{
+ if (!sym_read_Symbios_nvram(np, &nvp->data.Symbios)) {
+ nvp->type = SYM_SYMBIOS_NVRAM;
+ sym_display_Symbios_nvram(np, &nvp->data.Symbios);
+ } else if (!sym_read_Tekram_nvram(np, &nvp->data.Tekram)) {
+ nvp->type = SYM_TEKRAM_NVRAM;
+ sym_display_Tekram_nvram(np, &nvp->data.Tekram);
+ } else {
+ nvp->type = sym_read_parisc_pdc(np, &nvp->data.parisc);
+ }
+ return nvp->type;
+}
+
+char *sym_nvram_type(struct sym_nvram *nvp)
+{
+ switch (nvp->type) {
+ case SYM_SYMBIOS_NVRAM:
+ return "Symbios NVRAM";
+ case SYM_TEKRAM_NVRAM:
+ return "Tekram NVRAM";
+ case SYM_PARISC_PDC:
+ return "PA-RISC Firmware";
+ default:
+ return "No NVRAM";
+ }
+}
diff --git a/drivers/scsi/sym53c8xx_2/sym_nvram.h b/drivers/scsi/sym53c8xx_2/sym_nvram.h
new file mode 100644
index 000000000000..1538bede5277
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_nvram.h
@@ -0,0 +1,214 @@
+/*
+ * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
+ * of PCI-SCSI IO processors.
+ *
+ * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
+ *
+ * This driver is derived from the Linux sym53c8xx driver.
+ * Copyright (C) 1998-2000 Gerard Roudier
+ *
+ * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
+ * a port of the FreeBSD ncr driver to Linux-1.2.13.
+ *
+ * The original ncr driver has been written for 386bsd and FreeBSD by
+ * Wolfgang Stanglmeier <wolf@cologne.de>
+ * Stefan Esser <se@mi.Uni-Koeln.de>
+ * Copyright (C) 1994 Wolfgang Stanglmeier
+ *
+ * Other major contributions:
+ *
+ * NVRAM detection and reading.
+ * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
+ *
+ *-----------------------------------------------------------------------------
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#ifndef SYM_NVRAM_H
+#define SYM_NVRAM_H
+
+#include "sym53c8xx.h"
+
+/*
+ * Symbios NVRAM data format
+ */
+#define SYMBIOS_NVRAM_SIZE 368
+#define SYMBIOS_NVRAM_ADDRESS 0x100
+
+struct Symbios_nvram {
+/* Header 6 bytes */
+ u_short type; /* 0x0000 */
+ u_short byte_count; /* excluding header/trailer */
+ u_short checksum;
+
+/* Controller set up 20 bytes */
+ u_char v_major; /* 0x00 */
+ u_char v_minor; /* 0x30 */
+ u32 boot_crc;
+ u_short flags;
+#define SYMBIOS_SCAM_ENABLE (1)
+#define SYMBIOS_PARITY_ENABLE (1<<1)
+#define SYMBIOS_VERBOSE_MSGS (1<<2)
+#define SYMBIOS_CHS_MAPPING (1<<3)
+#define SYMBIOS_NO_NVRAM (1<<3) /* ??? */
+ u_short flags1;
+#define SYMBIOS_SCAN_HI_LO (1)
+ u_short term_state;
+#define SYMBIOS_TERM_CANT_PROGRAM (0)
+#define SYMBIOS_TERM_ENABLED (1)
+#define SYMBIOS_TERM_DISABLED (2)
+ u_short rmvbl_flags;
+#define SYMBIOS_RMVBL_NO_SUPPORT (0)
+#define SYMBIOS_RMVBL_BOOT_DEVICE (1)
+#define SYMBIOS_RMVBL_MEDIA_INSTALLED (2)
+ u_char host_id;
+ u_char num_hba; /* 0x04 */
+ u_char num_devices; /* 0x10 */
+ u_char max_scam_devices; /* 0x04 */
+ u_char num_valid_scam_devices; /* 0x00 */
+ u_char flags2;
+#define SYMBIOS_AVOID_BUS_RESET (1<<2)
+
+/* Boot order 14 bytes * 4 */
+ struct Symbios_host{
+ u_short type; /* 4:8xx / 0:nok */
+ u_short device_id; /* PCI device id */
+ u_short vendor_id; /* PCI vendor id */
+ u_char bus_nr; /* PCI bus number */
+ u_char device_fn; /* PCI device/function number << 3*/
+ u_short word8;
+ u_short flags;
+#define SYMBIOS_INIT_SCAN_AT_BOOT (1)
+ u_short io_port; /* PCI io_port address */
+ } host[4];
+
+/* Targets 8 bytes * 16 */
+ struct Symbios_target {
+ u_char flags;
+#define SYMBIOS_DISCONNECT_ENABLE (1)
+#define SYMBIOS_SCAN_AT_BOOT_TIME (1<<1)
+#define SYMBIOS_SCAN_LUNS (1<<2)
+#define SYMBIOS_QUEUE_TAGS_ENABLED (1<<3)
+ u_char rsvd;
+ u_char bus_width; /* 0x08/0x10 */
+ u_char sync_offset;
+ u_short sync_period; /* 4*period factor */
+ u_short timeout;
+ } target[16];
+/* Scam table 8 bytes * 4 */
+ struct Symbios_scam {
+ u_short id;
+ u_short method;
+#define SYMBIOS_SCAM_DEFAULT_METHOD (0)
+#define SYMBIOS_SCAM_DONT_ASSIGN (1)
+#define SYMBIOS_SCAM_SET_SPECIFIC_ID (2)
+#define SYMBIOS_SCAM_USE_ORDER_GIVEN (3)
+ u_short status;
+#define SYMBIOS_SCAM_UNKNOWN (0)
+#define SYMBIOS_SCAM_DEVICE_NOT_FOUND (1)
+#define SYMBIOS_SCAM_ID_NOT_SET (2)
+#define SYMBIOS_SCAM_ID_VALID (3)
+ u_char target_id;
+ u_char rsvd;
+ } scam[4];
+
+ u_char spare_devices[15*8];
+ u_char trailer[6]; /* 0xfe 0xfe 0x00 0x00 0x00 0x00 */
+};
+typedef struct Symbios_nvram Symbios_nvram;
+typedef struct Symbios_host Symbios_host;
+typedef struct Symbios_target Symbios_target;
+typedef struct Symbios_scam Symbios_scam;
+
+/*
+ * Tekram NvRAM data format.
+ */
+#define TEKRAM_NVRAM_SIZE 64
+#define TEKRAM_93C46_NVRAM_ADDRESS 0
+#define TEKRAM_24C16_NVRAM_ADDRESS 0x40
+
+struct Tekram_nvram {
+ struct Tekram_target {
+ u_char flags;
+#define TEKRAM_PARITY_CHECK (1)
+#define TEKRAM_SYNC_NEGO (1<<1)
+#define TEKRAM_DISCONNECT_ENABLE (1<<2)
+#define TEKRAM_START_CMD (1<<3)
+#define TEKRAM_TAGGED_COMMANDS (1<<4)
+#define TEKRAM_WIDE_NEGO (1<<5)
+ u_char sync_index;
+ u_short word2;
+ } target[16];
+ u_char host_id;
+ u_char flags;
+#define TEKRAM_MORE_THAN_2_DRIVES (1)
+#define TEKRAM_DRIVES_SUP_1GB (1<<1)
+#define TEKRAM_RESET_ON_POWER_ON (1<<2)
+#define TEKRAM_ACTIVE_NEGATION (1<<3)
+#define TEKRAM_IMMEDIATE_SEEK (1<<4)
+#define TEKRAM_SCAN_LUNS (1<<5)
+#define TEKRAM_REMOVABLE_FLAGS (3<<6) /* 0: disable; */
+ /* 1: boot device; 2:all */
+ u_char boot_delay_index;
+ u_char max_tags_index;
+ u_short flags1;
+#define TEKRAM_F2_F6_ENABLED (1)
+ u_short spare[29];
+};
+typedef struct Tekram_nvram Tekram_nvram;
+typedef struct Tekram_target Tekram_target;
+
+#ifndef CONFIG_PARISC
+struct pdc_initiator { int dummy; };
+#endif
+
+/*
+ * Union of supported NVRAM formats.
+ */
+struct sym_nvram {
+ int type;
+#define SYM_SYMBIOS_NVRAM (1)
+#define SYM_TEKRAM_NVRAM (2)
+#define SYM_PARISC_PDC (3)
+#if SYM_CONF_NVRAM_SUPPORT
+ union {
+ Symbios_nvram Symbios;
+ Tekram_nvram Tekram;
+ struct pdc_initiator parisc;
+ } data;
+#endif
+};
+
+#if SYM_CONF_NVRAM_SUPPORT
+void sym_nvram_setup_host(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram);
+void sym_nvram_setup_target (struct sym_hcb *np, int target, struct sym_nvram *nvp);
+int sym_read_nvram (struct sym_device *np, struct sym_nvram *nvp);
+char *sym_nvram_type(struct sym_nvram *nvp);
+#else
+static inline void sym_nvram_setup_host(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) { }
+static inline void sym_nvram_setup_target(struct sym_hcb *np, struct sym_nvram *nvram) { }
+static inline int sym_read_nvram(struct sym_device *np, struct sym_nvram *nvp)
+{
+ nvp->type = 0;
+ return 0;
+}
+static inline char *sym_nvram_type(struct sym_nvram *nvp)
+{
+ return "No NVRAM";
+}
+#endif
+
+#endif /* SYM_NVRAM_H */