aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-05-25 16:18:27 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2022-05-25 16:18:27 -0700
commit2518f226c60d8e04d18ba4295500a5b0b8ac7659 (patch)
treee74de5ca0db01398cbb0c34376f74a81d7583c75 /include/linux
parentMerge tag 'devicetree-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux (diff)
parentMerge tag 'drm-intel-next-fixes-2022-05-24' of git://anongit.freedesktop.org/drm/drm-intel into drm-next (diff)
downloadlinux-dev-2518f226c60d8e04d18ba4295500a5b0b8ac7659.tar.xz
linux-dev-2518f226c60d8e04d18ba4295500a5b0b8ac7659.zip
Merge tag 'drm-next-2022-05-25' of git://anongit.freedesktop.org/drm/drm
Pull drm updates from Dave Airlie: "Intel have enabled DG2 on certain SKUs for laptops, AMD has started some new GPU support, msm has user allocated VA controls dma-buf: - add dma_resv_replace_fences - add dma_resv_get_singleton - make dma_excl_fence private core: - EDID parser refactorings - switch drivers to drm_mode_copy/duplicate - DRM managed mutex initialization display-helper: - put HDMI, SCDC, HDCP, DSC and DP into new module gem: - rework fence handling ttm: - rework bulk move handling - add common debugfs for resource managers - convert to kvcalloc format helpers: - support monochrome formats - RGB888, RGB565 to XRGB8888 conversions fbdev: - cfb/sys_imageblit fixes - pagelist corruption fix - create offb platform device - deferred io improvements sysfb: - Kconfig rework - support for VESA mode selection bridge: - conversions to devm_drm_of_get_bridge - conversions to panel_bridge - analogix_dp - autosuspend support - it66121 - audio support - tc358767 - DSI to DPI support - icn6211 - PLL/I2C fixes, DT property - adv7611 - enable DRM_BRIDGE_OP_HPD - anx7625 - fill ELD if no monitor - dw_hdmi - add audio support - lontium LT9211 support, i.MXMP LDB - it6505: Kconfig fix, DPCD set power fix - adv7511 - CEC support for ADV7535 panel: - ltk035c5444t, B133UAN01, NV3052C panel support - DataImage FG040346DSSWBG04 support - st7735r - DT bindings fix - ssd130x - fixes i915: - DG2 laptop PCI-IDs ("motherboard down") - Initial RPL-P PCI IDs - compute engine ABI - DG2 Tile4 support - DG2 CCS clear color compression support - DG2 render/media compression formats support - ATS-M platform info - RPL-S PCI IDs added - Bump ADL-P DMC version to v2.16 - Support static DRRS - Support multiple eDP/LVDS native mode refresh rates - DP HDR support for HSW+ - Lots of display refactoring + fixes - GuC hwconfig support and query - sysfs support for multi-tile - fdinfo per-client gpu utilisation - add geometry subslices query - fix prime mmap with LMEM - fix vm open count and remove vma refcounts - contiguous allocation fixes - steered register write support - small PCI BAR enablement - GuC error capture support - sunset igpu legacy mmap support for newer devices - GuC version 70.1.1 support amdgpu: - Initial SoC21 support - SMU 13.x enablement - SMU 13.0.4 support - ttm_eu cleanups - USB-C, GPUVM updates - TMZ fixes for RV - RAS support for VCN - PM sysfs code cleanup - DC FP rework - extend CG/PG flags to 64-bit - SI dpm lockdep fix - runtime PM fixes amdkfd: - RAS/SVM fixes - TLB flush fixes - CRIU GWS support - ignore bogus MEC signals more efficiently msm: - Fourcc modifier for tiled but not compressed layouts - Support for userspace allocated IOVA (GPU virtual address) - DPU: DSC (Display Stream Compression) support - DP: eDP support - DP: conversion to use drm_bridge and drm_bridge_connector - Merge DPU1 and MDP5 MDSS driver - DPU: writeback support nouveau: - make some structures static - make some variables static - switch to drm_gem_plane_helper_prepare_fb radeon: - misc fixes/cleanups mxsfb: - rework crtc mode setting - LCDIF CRC support etnaviv: - fencing improvements - fix address space collisions - cleanup MMU reference handling gma500: - GEM/GTT improvements - connector handling fixes komeda: - switch to plane reset helper mediatek: - MIPI DSI improvements omapdrm: - GEM improvements qxl: - aarch64 support vc4: - add a CL submission tracepoint - HDMI YUV support - HDMI/clock improvements - drop is_hdmi caching virtio: - remove restriction of non-zero blob types vmwgfx: - support for cursormob and cursorbypass 4 - fence improvements tidss: - reset DISPC on startup solomon: - SPI support - DT improvements sun4i: - allwinner D1 support - drop is_hdmi caching imx: - use swap() instead of open-coding - use devm_platform_ioremap_resource - remove redunant initializations ast: - Displayport support rockchip: - Refactor IOMMU initialisation - make some structures static - replace drm_detect_hdmi_monitor with drm_display_info.is_hdmi - support swapped YUV formats, - clock improvements - rk3568 support - VOP2 support mediatek: - MT8186 support tegra: - debugabillity improvements" * tag 'drm-next-2022-05-25' of git://anongit.freedesktop.org/drm/drm: (1740 commits) drm/i915/dsi: fix VBT send packet port selection for ICL+ drm/i915/uc: Fix undefined behavior due to shift overflowing the constant drm/i915/reg: fix undefined behavior due to shift overflowing the constant drm/i915/gt: Fix use of static in macro mismatch drm/i915/audio: fix audio code enable/disable pipe logging drm/i915: Fix CFI violation with show_dynamic_id() drm/i915: Fix 'mixing different enum types' warnings in intel_display_power.c drm/i915/gt: Fix build error without CONFIG_PM drm/msm/dpu: handle pm_runtime_get_sync() errors in bind path drm/msm/dpu: add DRM_MODE_ROTATE_180 back to supported rotations drm/msm: don't free the IRQ if it was not requested drm/msm/dpu: limit writeback modes according to max_linewidth drm/amd: Don't reset dGPUs if the system is going to s2idle drm/amdgpu: Unmap legacy queue when MES is enabled drm: msm: fix possible memory leak in mdp5_crtc_cursor_set() drm/msm: Fix fb plane offset calculation drm/msm/a6xx: Fix refcount leak in a6xx_gpu_init drm/msm/dsi: don't powerup at modeset time for parade-ps8640 drm/rockchip: Change register space names in vop2 dt-bindings: display: rockchip: make reg-names mandatory for VOP2 ...
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/dma-buf.h26
-rw-r--r--include/linux/dma-resv.h233
-rw-r--r--include/linux/efi.h4
-rw-r--r--include/linux/fb.h19
-rw-r--r--include/linux/host1x.h6
-rw-r--r--include/linux/mdev.h82
-rw-r--r--include/linux/mei_aux.h19
-rw-r--r--include/linux/seqlock.h8
8 files changed, 172 insertions, 225 deletions
diff --git a/include/linux/dma-buf.h b/include/linux/dma-buf.h
index 2097760e8e95..71731796c8c3 100644
--- a/include/linux/dma-buf.h
+++ b/include/linux/dma-buf.h
@@ -393,27 +393,30 @@ struct dma_buf {
* e.g. exposed in `Implicit Fence Poll Support`_ must follow the
* below rules.
*
- * - Drivers must add a shared fence through dma_resv_add_shared_fence()
- * for anything the userspace API considers a read access. This highly
- * depends upon the API and window system.
+ * - Drivers must add a read fence through dma_resv_add_fence() with the
+ * DMA_RESV_USAGE_READ flag for anything the userspace API considers a
+ * read access. This highly depends upon the API and window system.
*
- * - Similarly drivers must set the exclusive fence through
- * dma_resv_add_excl_fence() for anything the userspace API considers
- * write access.
+ * - Similarly drivers must add a write fence through
+ * dma_resv_add_fence() with the DMA_RESV_USAGE_WRITE flag for
+ * anything the userspace API considers write access.
*
- * - Drivers may just always set the exclusive fence, since that only
+ * - Drivers may just always add a write fence, since that only
* causes unecessarily synchronization, but no correctness issues.
*
* - Some drivers only expose a synchronous userspace API with no
* pipelining across drivers. These do not set any fences for their
* access. An example here is v4l.
*
+ * - Driver should use dma_resv_usage_rw() when retrieving fences as
+ * dependency for implicit synchronization.
+ *
* DYNAMIC IMPORTER RULES:
*
* Dynamic importers, see dma_buf_attachment_is_dynamic(), have
* additional constraints on how they set up fences:
*
- * - Dynamic importers must obey the exclusive fence and wait for it to
+ * - Dynamic importers must obey the write fences and wait for them to
* signal before allowing access to the buffer's underlying storage
* through the device.
*
@@ -423,10 +426,9 @@ struct dma_buf {
*
* IMPORTANT:
*
- * All drivers must obey the struct dma_resv rules, specifically the
- * rules for updating fences, see &dma_resv.fence_excl and
- * &dma_resv.fence. If these dependency rules are broken access tracking
- * can be lost resulting in use after free issues.
+ * All drivers and memory management related functions must obey the
+ * struct dma_resv rules, specifically the rules for updating and
+ * obeying fences. See enum dma_resv_usage for further descriptions.
*/
struct dma_resv *resv;
diff --git a/include/linux/dma-resv.h b/include/linux/dma-resv.h
index afdfdfac729f..c8ccbc94d5d2 100644
--- a/include/linux/dma-resv.h
+++ b/include/linux/dma-resv.h
@@ -47,24 +47,89 @@
extern struct ww_class reservation_ww_class;
+struct dma_resv_list;
+
/**
- * struct dma_resv_list - a list of shared fences
- * @rcu: for internal use
- * @shared_count: table of shared fences
- * @shared_max: for growing shared fence table
- * @shared: shared fence table
+ * enum dma_resv_usage - how the fences from a dma_resv obj are used
+ *
+ * This enum describes the different use cases for a dma_resv object and
+ * controls which fences are returned when queried.
+ *
+ * An important fact is that there is the order KERNEL<WRITE<READ<BOOKKEEP and
+ * when the dma_resv object is asked for fences for one use case the fences
+ * for the lower use case are returned as well.
+ *
+ * For example when asking for WRITE fences then the KERNEL fences are returned
+ * as well. Similar when asked for READ fences then both WRITE and KERNEL
+ * fences are returned as well.
*/
-struct dma_resv_list {
- struct rcu_head rcu;
- u32 shared_count, shared_max;
- struct dma_fence __rcu *shared[];
+enum dma_resv_usage {
+ /**
+ * @DMA_RESV_USAGE_KERNEL: For in kernel memory management only.
+ *
+ * This should only be used for things like copying or clearing memory
+ * with a DMA hardware engine for the purpose of kernel memory
+ * management.
+ *
+ * Drivers *always* must wait for those fences before accessing the
+ * resource protected by the dma_resv object. The only exception for
+ * that is when the resource is known to be locked down in place by
+ * pinning it previously.
+ */
+ DMA_RESV_USAGE_KERNEL,
+
+ /**
+ * @DMA_RESV_USAGE_WRITE: Implicit write synchronization.
+ *
+ * This should only be used for userspace command submissions which add
+ * an implicit write dependency.
+ */
+ DMA_RESV_USAGE_WRITE,
+
+ /**
+ * @DMA_RESV_USAGE_READ: Implicit read synchronization.
+ *
+ * This should only be used for userspace command submissions which add
+ * an implicit read dependency.
+ */
+ DMA_RESV_USAGE_READ,
+
+ /**
+ * @DMA_RESV_USAGE_BOOKKEEP: No implicit sync.
+ *
+ * This should be used by submissions which don't want to participate in
+ * implicit synchronization.
+ *
+ * The most common case are preemption fences as well as page table
+ * updates and their TLB flushes.
+ */
+ DMA_RESV_USAGE_BOOKKEEP
};
/**
+ * dma_resv_usage_rw - helper for implicit sync
+ * @write: true if we create a new implicit sync write
+ *
+ * This returns the implicit synchronization usage for write or read accesses,
+ * see enum dma_resv_usage and &dma_buf.resv.
+ */
+static inline enum dma_resv_usage dma_resv_usage_rw(bool write)
+{
+ /* This looks confusing at first sight, but is indeed correct.
+ *
+ * The rational is that new write operations needs to wait for the
+ * existing read and write operations to finish.
+ * But a new read operation only needs to wait for the existing write
+ * operations to finish.
+ */
+ return write ? DMA_RESV_USAGE_READ : DMA_RESV_USAGE_WRITE;
+}
+
+/**
* struct dma_resv - a reservation object manages fences for a buffer
*
- * There are multiple uses for this, with sometimes slightly different rules in
- * how the fence slots are used.
+ * This is a container for dma_fence objects which needs to handle multiple use
+ * cases.
*
* One use is to synchronize cross-driver access to a struct dma_buf, either for
* dynamic buffer management or just to handle implicit synchronization between
@@ -91,62 +156,16 @@ struct dma_resv {
struct ww_mutex lock;
/**
- * @seq:
+ * @fences:
*
- * Sequence count for managing RCU read-side synchronization, allows
- * read-only access to @fence_excl and @fence while ensuring we take a
- * consistent snapshot.
- */
- seqcount_ww_mutex_t seq;
-
- /**
- * @fence_excl:
- *
- * The exclusive fence, if there is one currently.
+ * Array of fences which where added to the dma_resv object
*
- * There are two ways to update this fence:
- *
- * - First by calling dma_resv_add_excl_fence(), which replaces all
- * fences attached to the reservation object. To guarantee that no
- * fences are lost, this new fence must signal only after all previous
- * fences, both shared and exclusive, have signalled. In some cases it
- * is convenient to achieve that by attaching a struct dma_fence_array
- * with all the new and old fences.
- *
- * - Alternatively the fence can be set directly, which leaves the
- * shared fences unchanged. To guarantee that no fences are lost, this
- * new fence must signal only after the previous exclusive fence has
- * signalled. Since the shared fences are staying intact, it is not
- * necessary to maintain any ordering against those. If semantically
- * only a new access is added without actually treating the previous
- * one as a dependency the exclusive fences can be strung together
- * using struct dma_fence_chain.
- *
- * Note that actual semantics of what an exclusive or shared fence mean
- * is defined by the user, for reservation objects shared across drivers
- * see &dma_buf.resv.
- */
- struct dma_fence __rcu *fence_excl;
-
- /**
- * @fence:
- *
- * List of current shared fences.
- *
- * There are no ordering constraints of shared fences against the
- * exclusive fence slot. If a waiter needs to wait for all access, it
- * has to wait for both sets of fences to signal.
- *
- * A new fence is added by calling dma_resv_add_shared_fence(). Since
- * this often needs to be done past the point of no return in command
+ * A new fence is added by calling dma_resv_add_fence(). Since this
+ * often needs to be done past the point of no return in command
* submission it cannot fail, and therefore sufficient slots need to be
- * reserved by calling dma_resv_reserve_shared().
- *
- * Note that actual semantics of what an exclusive or shared fence mean
- * is defined by the user, for reservation objects shared across drivers
- * see &dma_buf.resv.
+ * reserved by calling dma_resv_reserve_fences().
*/
- struct dma_resv_list __rcu *fence;
+ struct dma_resv_list __rcu *fences;
};
/**
@@ -165,14 +184,14 @@ struct dma_resv_iter {
/** @obj: The dma_resv object we iterate over */
struct dma_resv *obj;
- /** @all_fences: If all fences should be returned */
- bool all_fences;
+ /** @usage: Return fences with this usage or lower. */
+ enum dma_resv_usage usage;
/** @fence: the currently handled fence */
struct dma_fence *fence;
- /** @seq: sequence number to check for modifications */
- unsigned int seq;
+ /** @fence_usage: the usage of the current fence */
+ enum dma_resv_usage fence_usage;
/** @index: index into the shared fences */
unsigned int index;
@@ -180,8 +199,8 @@ struct dma_resv_iter {
/** @fences: the shared fences; private, *MUST* not dereference */
struct dma_resv_list *fences;
- /** @shared_count: number of shared fences */
- unsigned int shared_count;
+ /** @num_fences: number of fences */
+ unsigned int num_fences;
/** @is_restarted: true if this is the first returned fence */
bool is_restarted;
@@ -196,14 +215,14 @@ struct dma_fence *dma_resv_iter_next(struct dma_resv_iter *cursor);
* dma_resv_iter_begin - initialize a dma_resv_iter object
* @cursor: The dma_resv_iter object to initialize
* @obj: The dma_resv object which we want to iterate over
- * @all_fences: If all fences should be returned or just the exclusive one
+ * @usage: controls which fences to include, see enum dma_resv_usage.
*/
static inline void dma_resv_iter_begin(struct dma_resv_iter *cursor,
struct dma_resv *obj,
- bool all_fences)
+ enum dma_resv_usage usage)
{
cursor->obj = obj;
- cursor->all_fences = all_fences;
+ cursor->usage = usage;
cursor->fence = NULL;
}
@@ -220,14 +239,15 @@ static inline void dma_resv_iter_end(struct dma_resv_iter *cursor)
}
/**
- * dma_resv_iter_is_exclusive - test if the current fence is the exclusive one
+ * dma_resv_iter_usage - Return the usage of the current fence
* @cursor: the cursor of the current position
*
- * Returns true if the currently returned fence is the exclusive one.
+ * Returns the usage of the currently processed fence.
*/
-static inline bool dma_resv_iter_is_exclusive(struct dma_resv_iter *cursor)
+static inline enum dma_resv_usage
+dma_resv_iter_usage(struct dma_resv_iter *cursor)
{
- return cursor->index == 0;
+ return cursor->fence_usage;
}
/**
@@ -264,7 +284,7 @@ static inline bool dma_resv_iter_is_restarted(struct dma_resv_iter *cursor)
* dma_resv_for_each_fence - fence iterator
* @cursor: a struct dma_resv_iter pointer
* @obj: a dma_resv object pointer
- * @all_fences: true if all fences should be returned
+ * @usage: controls which fences to return
* @fence: the current fence
*
* Iterate over the fences in a struct dma_resv object while holding the
@@ -273,8 +293,8 @@ static inline bool dma_resv_iter_is_restarted(struct dma_resv_iter *cursor)
* valid as long as the lock is held and so no extra reference to the fence is
* taken.
*/
-#define dma_resv_for_each_fence(cursor, obj, all_fences, fence) \
- for (dma_resv_iter_begin(cursor, obj, all_fences), \
+#define dma_resv_for_each_fence(cursor, obj, usage, fence) \
+ for (dma_resv_iter_begin(cursor, obj, usage), \
fence = dma_resv_iter_first(cursor); fence; \
fence = dma_resv_iter_next(cursor))
@@ -282,9 +302,9 @@ static inline bool dma_resv_iter_is_restarted(struct dma_resv_iter *cursor)
#define dma_resv_assert_held(obj) lockdep_assert_held(&(obj)->lock.base)
#ifdef CONFIG_DEBUG_MUTEXES
-void dma_resv_reset_shared_max(struct dma_resv *obj);
+void dma_resv_reset_max_fences(struct dma_resv *obj);
#else
-static inline void dma_resv_reset_shared_max(struct dma_resv *obj) {}
+static inline void dma_resv_reset_max_fences(struct dma_resv *obj) {}
#endif
/**
@@ -430,51 +450,26 @@ static inline struct ww_acquire_ctx *dma_resv_locking_ctx(struct dma_resv *obj)
*/
static inline void dma_resv_unlock(struct dma_resv *obj)
{
- dma_resv_reset_shared_max(obj);
+ dma_resv_reset_max_fences(obj);
ww_mutex_unlock(&obj->lock);
}
-/**
- * dma_resv_excl_fence - return the object's exclusive fence
- * @obj: the reservation object
- *
- * Returns the exclusive fence (if any). Caller must either hold the objects
- * through dma_resv_lock() or the RCU read side lock through rcu_read_lock(),
- * or one of the variants of each
- *
- * RETURNS
- * The exclusive fence or NULL
- */
-static inline struct dma_fence *
-dma_resv_excl_fence(struct dma_resv *obj)
-{
- return rcu_dereference_check(obj->fence_excl, dma_resv_held(obj));
-}
-
-/**
- * dma_resv_shared_list - get the reservation object's shared fence list
- * @obj: the reservation object
- *
- * Returns the shared fence list. Caller must either hold the objects
- * through dma_resv_lock() or the RCU read side lock through rcu_read_lock(),
- * or one of the variants of each
- */
-static inline struct dma_resv_list *dma_resv_shared_list(struct dma_resv *obj)
-{
- return rcu_dereference_check(obj->fence, dma_resv_held(obj));
-}
-
void dma_resv_init(struct dma_resv *obj);
void dma_resv_fini(struct dma_resv *obj);
-int dma_resv_reserve_shared(struct dma_resv *obj, unsigned int num_fences);
-void dma_resv_add_shared_fence(struct dma_resv *obj, struct dma_fence *fence);
-void dma_resv_add_excl_fence(struct dma_resv *obj, struct dma_fence *fence);
-int dma_resv_get_fences(struct dma_resv *obj, bool write,
+int dma_resv_reserve_fences(struct dma_resv *obj, unsigned int num_fences);
+void dma_resv_add_fence(struct dma_resv *obj, struct dma_fence *fence,
+ enum dma_resv_usage usage);
+void dma_resv_replace_fences(struct dma_resv *obj, uint64_t context,
+ struct dma_fence *fence,
+ enum dma_resv_usage usage);
+int dma_resv_get_fences(struct dma_resv *obj, enum dma_resv_usage usage,
unsigned int *num_fences, struct dma_fence ***fences);
+int dma_resv_get_singleton(struct dma_resv *obj, enum dma_resv_usage usage,
+ struct dma_fence **fence);
int dma_resv_copy_fences(struct dma_resv *dst, struct dma_resv *src);
-long dma_resv_wait_timeout(struct dma_resv *obj, bool wait_all, bool intr,
- unsigned long timeout);
-bool dma_resv_test_signaled(struct dma_resv *obj, bool test_all);
+long dma_resv_wait_timeout(struct dma_resv *obj, enum dma_resv_usage usage,
+ bool intr, unsigned long timeout);
+bool dma_resv_test_signaled(struct dma_resv *obj, enum dma_resv_usage usage);
void dma_resv_describe(struct dma_resv *obj, struct seq_file *seq);
#endif /* _LINUX_RESERVATION_H */
diff --git a/include/linux/efi.h b/include/linux/efi.h
index db424f3dc3f2..7d9b0bb47eb3 100644
--- a/include/linux/efi.h
+++ b/include/linux/efi.h
@@ -1349,11 +1349,7 @@ static inline struct efi_mokvar_table_entry *efi_mokvar_entry_find(
}
#endif
-#ifdef CONFIG_SYSFB
extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
-#else
-static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt) { }
-#endif
struct linux_efi_coco_secret_area {
u64 base_pa;
diff --git a/include/linux/fb.h b/include/linux/fb.h
index 9a77ab615c36..2892145468c9 100644
--- a/include/linux/fb.h
+++ b/include/linux/fb.h
@@ -201,12 +201,19 @@ struct fb_pixmap {
};
#ifdef CONFIG_FB_DEFERRED_IO
+struct fb_deferred_io_pageref {
+ struct page *page;
+ unsigned long offset;
+ /* private */
+ struct list_head list;
+};
+
struct fb_deferred_io {
/* delay between mkwrite and deferred handler */
unsigned long delay;
- bool sort_pagelist; /* sort pagelist by offset */
- struct mutex lock; /* mutex that protects the page list */
- struct list_head pagelist; /* list of touched pages */
+ bool sort_pagereflist; /* sort pagelist by offset */
+ struct mutex lock; /* mutex that protects the pageref list */
+ struct list_head pagereflist; /* list of pagerefs for touched pages */
/* callback */
void (*first_io)(struct fb_info *info);
void (*deferred_io)(struct fb_info *info, struct list_head *pagelist);
@@ -450,7 +457,6 @@ struct fb_info {
struct fb_var_screeninfo var; /* Current var */
struct fb_fix_screeninfo fix; /* Current fix */
struct fb_monspecs monspecs; /* Current Monitor specs */
- struct work_struct queue; /* Framebuffer event queue */
struct fb_pixmap pixmap; /* Image hardware mapper */
struct fb_pixmap sprite; /* Cursor hardware mapper */
struct fb_cmap cmap; /* Current cmap */
@@ -469,6 +475,8 @@ struct fb_info {
#endif
#ifdef CONFIG_FB_DEFERRED_IO
struct delayed_work deferred_work;
+ unsigned long npagerefs;
+ struct fb_deferred_io_pageref *pagerefs;
struct fb_deferred_io *fbdefio;
#endif
@@ -612,7 +620,6 @@ extern int remove_conflicting_pci_framebuffers(struct pci_dev *pdev,
const char *name);
extern int remove_conflicting_framebuffers(struct apertures_struct *a,
const char *name, bool primary);
-extern bool is_firmware_framebuffer(struct apertures_struct *a);
extern int fb_prepare_logo(struct fb_info *fb_info, int rotate);
extern int fb_show_logo(struct fb_info *fb_info, int rotate);
extern char* fb_get_buffer_offset(struct fb_info *info, struct fb_pixmap *buf, u32 size);
@@ -662,7 +669,7 @@ static inline void __fb_pad_aligned_buffer(u8 *dst, u32 d_pitch,
/* drivers/video/fb_defio.c */
int fb_deferred_io_mmap(struct fb_info *info, struct vm_area_struct *vma);
-extern void fb_deferred_io_init(struct fb_info *info);
+extern int fb_deferred_io_init(struct fb_info *info);
extern void fb_deferred_io_open(struct fb_info *info,
struct inode *inode,
struct file *file);
diff --git a/include/linux/host1x.h b/include/linux/host1x.h
index e8dc5bc41f79..c0bf4e581fe9 100644
--- a/include/linux/host1x.h
+++ b/include/linux/host1x.h
@@ -31,6 +31,11 @@ u64 host1x_get_dma_mask(struct host1x *host1x);
* struct host1x_bo_cache - host1x buffer object cache
* @mappings: list of mappings
* @lock: synchronizes accesses to the list of mappings
+ *
+ * Note that entries are not periodically evicted from this cache and instead need to be
+ * explicitly released. This is used primarily for DRM/KMS where the cache's reference is
+ * released when the last reference to a buffer object represented by a mapping in this
+ * cache is dropped.
*/
struct host1x_bo_cache {
struct list_head mappings;
@@ -81,6 +86,7 @@ struct host1x_client_ops {
* @parent: pointer to parent structure
* @usecount: reference count for this structure
* @lock: mutex for mutually exclusive concurrency
+ * @cache: host1x buffer object cache
*/
struct host1x_client {
struct list_head list;
diff --git a/include/linux/mdev.h b/include/linux/mdev.h
index 15d03f6532d0..bb539794f54a 100644
--- a/include/linux/mdev.h
+++ b/include/linux/mdev.h
@@ -15,7 +15,6 @@ struct mdev_type;
struct mdev_device {
struct device dev;
guid_t uuid;
- void *driver_data;
struct list_head next;
struct mdev_type *type;
bool active;
@@ -30,74 +29,6 @@ unsigned int mdev_get_type_group_id(struct mdev_device *mdev);
unsigned int mtype_get_type_group_id(struct mdev_type *mtype);
struct device *mtype_get_parent_dev(struct mdev_type *mtype);
-/**
- * struct mdev_parent_ops - Structure to be registered for each parent device to
- * register the device to mdev module.
- *
- * @owner: The module owner.
- * @device_driver: Which device driver to probe() on newly created devices
- * @dev_attr_groups: Attributes of the parent device.
- * @mdev_attr_groups: Attributes of the mediated device.
- * @supported_type_groups: Attributes to define supported types. It is mandatory
- * to provide supported types.
- * @create: Called to allocate basic resources in parent device's
- * driver for a particular mediated device. It is
- * mandatory to provide create ops.
- * @mdev: mdev_device structure on of mediated device
- * that is being created
- * Returns integer: success (0) or error (< 0)
- * @remove: Called to free resources in parent device's driver for
- * a mediated device. It is mandatory to provide 'remove'
- * ops.
- * @mdev: mdev_device device structure which is being
- * destroyed
- * Returns integer: success (0) or error (< 0)
- * @read: Read emulation callback
- * @mdev: mediated device structure
- * @buf: read buffer
- * @count: number of bytes to read
- * @ppos: address.
- * Retuns number on bytes read on success or error.
- * @write: Write emulation callback
- * @mdev: mediated device structure
- * @buf: write buffer
- * @count: number of bytes to be written
- * @ppos: address.
- * Retuns number on bytes written on success or error.
- * @ioctl: IOCTL callback
- * @mdev: mediated device structure
- * @cmd: ioctl command
- * @arg: arguments to ioctl
- * @mmap: mmap callback
- * @mdev: mediated device structure
- * @vma: vma structure
- * @request: request callback to release device
- * @mdev: mediated device structure
- * @count: request sequence number
- * Parent device that support mediated device should be registered with mdev
- * module with mdev_parent_ops structure.
- **/
-struct mdev_parent_ops {
- struct module *owner;
- struct mdev_driver *device_driver;
- const struct attribute_group **dev_attr_groups;
- const struct attribute_group **mdev_attr_groups;
- struct attribute_group **supported_type_groups;
-
- int (*create)(struct mdev_device *mdev);
- int (*remove)(struct mdev_device *mdev);
- int (*open_device)(struct mdev_device *mdev);
- void (*close_device)(struct mdev_device *mdev);
- ssize_t (*read)(struct mdev_device *mdev, char __user *buf,
- size_t count, loff_t *ppos);
- ssize_t (*write)(struct mdev_device *mdev, const char __user *buf,
- size_t count, loff_t *ppos);
- long (*ioctl)(struct mdev_device *mdev, unsigned int cmd,
- unsigned long arg);
- int (*mmap)(struct mdev_device *mdev, struct vm_area_struct *vma);
- void (*request)(struct mdev_device *mdev, unsigned int count);
-};
-
/* interface for exporting mdev supported type attributes */
struct mdev_type_attribute {
struct attribute attr;
@@ -122,23 +53,18 @@ struct mdev_type_attribute mdev_type_attr_##_name = \
* struct mdev_driver - Mediated device driver
* @probe: called when new device created
* @remove: called when device removed
+ * @supported_type_groups: Attributes to define supported types. It is mandatory
+ * to provide supported types.
* @driver: device driver structure
*
**/
struct mdev_driver {
int (*probe)(struct mdev_device *dev);
void (*remove)(struct mdev_device *dev);
+ struct attribute_group **supported_type_groups;
struct device_driver driver;
};
-static inline void *mdev_get_drvdata(struct mdev_device *mdev)
-{
- return mdev->driver_data;
-}
-static inline void mdev_set_drvdata(struct mdev_device *mdev, void *data)
-{
- mdev->driver_data = data;
-}
static inline const guid_t *mdev_uuid(struct mdev_device *mdev)
{
return &mdev->uuid;
@@ -146,7 +72,7 @@ static inline const guid_t *mdev_uuid(struct mdev_device *mdev)
extern struct bus_type mdev_bus_type;
-int mdev_register_device(struct device *dev, const struct mdev_parent_ops *ops);
+int mdev_register_device(struct device *dev, struct mdev_driver *mdev_driver);
void mdev_unregister_device(struct device *dev);
int mdev_register_driver(struct mdev_driver *drv);
diff --git a/include/linux/mei_aux.h b/include/linux/mei_aux.h
new file mode 100644
index 000000000000..587f25128848
--- /dev/null
+++ b/include/linux/mei_aux.h
@@ -0,0 +1,19 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (c) 2022, Intel Corporation. All rights reserved.
+ */
+#ifndef _LINUX_MEI_AUX_H
+#define _LINUX_MEI_AUX_H
+
+#include <linux/auxiliary_bus.h>
+
+struct mei_aux_device {
+ struct auxiliary_device aux_dev;
+ int irq;
+ struct resource bar;
+};
+
+#define auxiliary_dev_to_mei_aux_dev(auxiliary_dev) \
+ container_of(auxiliary_dev, struct mei_aux_device, aux_dev)
+
+#endif /* _LINUX_MEI_AUX_H */
diff --git a/include/linux/seqlock.h b/include/linux/seqlock.h
index 37ded6b8fee6..3926e9027947 100644
--- a/include/linux/seqlock.h
+++ b/include/linux/seqlock.h
@@ -17,7 +17,6 @@
#include <linux/kcsan-checks.h>
#include <linux/lockdep.h>
#include <linux/mutex.h>
-#include <linux/ww_mutex.h>
#include <linux/preempt.h>
#include <linux/spinlock.h>
@@ -164,7 +163,7 @@ static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
* static initializer or init function. This enables lockdep to validate
* that the write side critical section is properly serialized.
*
- * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex.
+ * LOCKNAME: raw_spinlock, spinlock, rwlock or mutex
*/
/*
@@ -184,7 +183,6 @@ static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
#define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock)
#define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock)
#define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex)
-#define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex)
/*
* SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers
@@ -277,7 +275,6 @@ SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_s
SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock))
SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock))
SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock))
-SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL))
/*
* SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
@@ -304,8 +301,7 @@ SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mu
__seqprop_case((s), raw_spinlock, prop), \
__seqprop_case((s), spinlock, prop), \
__seqprop_case((s), rwlock, prop), \
- __seqprop_case((s), mutex, prop), \
- __seqprop_case((s), ww_mutex, prop))
+ __seqprop_case((s), mutex, prop))
#define seqprop_ptr(s) __seqprop(s, ptr)
#define seqprop_sequence(s) __seqprop(s, sequence)