aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/media/kapi/mc-core.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/media/kapi/mc-core.rst')
-rw-r--r--Documentation/media/kapi/mc-core.rst25
1 files changed, 13 insertions, 12 deletions
diff --git a/Documentation/media/kapi/mc-core.rst b/Documentation/media/kapi/mc-core.rst
index 569cfc4f01cd..1a738e5f6056 100644
--- a/Documentation/media/kapi/mc-core.rst
+++ b/Documentation/media/kapi/mc-core.rst
@@ -34,7 +34,7 @@ pad to a sink pad.
Media device
^^^^^^^^^^^^
-A media device is represented by a :c:type:`struct media_device <media_device>`
+A media device is represented by a struct :c:type:`media_device`
instance, defined in ``include/media/media-device.h``.
Allocation of the structure is handled by the media device driver, usually by
embedding the :c:type:`media_device` instance in a larger driver-specific
@@ -47,7 +47,7 @@ and unregistered by calling :c:func:`media_device_unregister()`.
Entities
^^^^^^^^
-Entities are represented by a :c:type:`struct media_entity <media_entity>`
+Entities are represented by a struct :c:type:`media_entity`
instance, defined in ``include/media/media-entity.h``. The structure is usually
embedded into a higher-level structure, such as
:c:type:`v4l2_subdev` or :c:type:`video_device`
@@ -65,10 +65,10 @@ Interfaces
^^^^^^^^^^
Interfaces are represented by a
-:c:type:`struct media_interface <media_interface>` instance, defined in
+struct :c:type:`media_interface` instance, defined in
``include/media/media-entity.h``. Currently, only one type of interface is
defined: a device node. Such interfaces are represented by a
-:c:type:`struct media_intf_devnode <media_intf_devnode>`.
+struct :c:type:`media_intf_devnode`.
Drivers initialize and create device node interfaces by calling
:c:func:`media_devnode_create()`
@@ -77,7 +77,7 @@ and remove them by calling:
Pads
^^^^
-Pads are represented by a :c:type:`struct media_pad <media_pad>` instance,
+Pads are represented by a struct :c:type:`media_pad` instance,
defined in ``include/media/media-entity.h``. Each entity stores its pads in
a pads array managed by the entity driver. Drivers usually embed the array in
a driver-specific structure.
@@ -85,8 +85,9 @@ a driver-specific structure.
Pads are identified by their entity and their 0-based index in the pads
array.
-Both information are stored in the :c:type:`struct media_pad`, making the
-:c:type:`media_pad` pointer the canonical way to store and pass link references.
+Both information are stored in the struct :c:type:`media_pad`,
+making the struct :c:type:`media_pad` pointer the canonical way
+to store and pass link references.
Pads have flags that describe the pad capabilities and state.
@@ -101,7 +102,7 @@ Pads have flags that describe the pad capabilities and state.
Links
^^^^^
-Links are represented by a :c:type:`struct media_link <media_link>` instance,
+Links are represented by a struct :c:type:`media_link` instance,
defined in ``include/media/media-entity.h``. There are two types of links:
**1. pad to pad links**:
@@ -184,7 +185,7 @@ Use count and power handling
Due to the wide differences between drivers regarding power management
needs, the media controller does not implement power management. However,
-the :c:type:`struct media_entity <media_entity>` includes a ``use_count``
+the struct :c:type:`media_entity` includes a ``use_count``
field that media drivers
can use to track the number of users of every entity for power management
needs.
@@ -210,11 +211,11 @@ prevent link states from being modified during streaming by calling
The function will mark all entities connected to the given entity through
enabled links, either directly or indirectly, as streaming.
-The :c:type:`struct media_pipeline <media_pipeline>` instance pointed to by
+The struct :c:type:`media_pipeline` instance pointed to by
the pipe argument will be stored in every entity in the pipeline.
-Drivers should embed the :c:type:`struct media_pipeline <media_pipeline>`
+Drivers should embed the struct :c:type:`media_pipeline`
in higher-level pipeline structures and can then access the
-pipeline through the :c:type:`struct media_entity <media_entity>`
+pipeline through the struct :c:type:`media_entity`
pipe field.
Calls to :c:func:`media_entity_pipeline_start()` can be nested.