aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/stable/sysfs-fs-orangefs87
-rw-r--r--Documentation/filesystems/orangefs.txt406
2 files changed, 493 insertions, 0 deletions
diff --git a/Documentation/ABI/stable/sysfs-fs-orangefs b/Documentation/ABI/stable/sysfs-fs-orangefs
new file mode 100644
index 000000000000..affdb114bd33
--- /dev/null
+++ b/Documentation/ABI/stable/sysfs-fs-orangefs
@@ -0,0 +1,87 @@
+What: /sys/fs/orangefs/perf_counters/*
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ Counters and settings for various caches.
+ Read only.
+
+
+What: /sys/fs/orangefs/perf_counter_reset
+Date: June 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ echo a 0 or a 1 into perf_counter_reset to
+ reset all the counters in
+ /sys/fs/orangefs/perf_counters
+ except ones with PINT_PERF_PRESERVE set.
+
+
+What: /sys/fs/orangefs/perf_time_interval_secs
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ Length of perf counter intervals in
+ seconds.
+
+
+What: /sys/fs/orangefs/perf_history_size
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ The perf_counters cache statistics have N, or
+ perf_history_size, samples. The default is
+ one.
+
+ Every perf_time_interval_secs the (first)
+ samples are reset.
+
+ If N is greater than one, the "current" set
+ of samples is reset, and the samples from the
+ other N-1 intervals remain available.
+
+
+What: /sys/fs/orangefs/op_timeout_secs
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ Service operation timeout in seconds.
+
+
+What: /sys/fs/orangefs/slot_timeout_secs
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ "Slot" timeout in seconds. A "slot"
+ is an indexed buffer in the shared
+ memory segment used for communication
+ between the kernel module and userspace.
+ Slots are requested and waited for,
+ the wait times out after slot_timeout_secs.
+
+
+What: /sys/fs/orangefs/acache/*
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ Attribute cache configurable settings.
+
+
+What: /sys/fs/orangefs/ncache/*
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ Name cache configurable settings.
+
+
+What: /sys/fs/orangefs/capcache/*
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ Capability cache configurable settings.
+
+
+What: /sys/fs/orangefs/ccache/*
+Date: Jun 2015
+Contact: Mike Marshall <hubcap@omnibond.com>
+Description:
+ Credential cache configurable settings.
diff --git a/Documentation/filesystems/orangefs.txt b/Documentation/filesystems/orangefs.txt
new file mode 100644
index 000000000000..e1a0056a365f
--- /dev/null
+++ b/Documentation/filesystems/orangefs.txt
@@ -0,0 +1,406 @@
+ORANGEFS
+========
+
+OrangeFS is an LGPL userspace scale-out parallel storage system. It is ideal
+for large storage problems faced by HPC, BigData, Streaming Video,
+Genomics, Bioinformatics.
+
+Orangefs, originally called PVFS, was first developed in 1993 by
+Walt Ligon and Eric Blumer as a parallel file system for Parallel
+Virtual Machine (PVM) as part of a NASA grant to study the I/O patterns
+of parallel programs.
+
+Orangefs features include:
+
+ * Distributes file data among multiple file servers
+ * Supports simultaneous access by multiple clients
+ * Stores file data and metadata on servers using local file system
+ and access methods
+ * Userspace implementation is easy to install and maintain
+ * Direct MPI support
+ * Stateless
+
+
+MAILING LIST
+============
+
+http://beowulf-underground.org/mailman/listinfo/pvfs2-users
+
+
+DOCUMENTATION
+=============
+
+http://www.orangefs.org/documentation/
+
+
+USERSPACE FILESYSTEM SOURCE
+===========================
+
+http://www.orangefs.org/download
+
+Orangefs versions prior to 2.9.3 would not be compatible with the
+upstream version of the kernel client.
+
+
+BUILDING THE USERSPACE FILESYSTEM ON A SINGLE SERVER
+====================================================
+
+When Orangefs is upstream, "--with-kernel" shouldn't be needed, but
+until then the path to where the kernel with the Orangefs kernel client
+patch was built is needed to ensure that pvfs2-client-core (the bridge
+between kernel space and user space) will build properly. You can omit
+--prefix if you don't care that things are sprinkled around in
+/usr/local.
+
+./configure --prefix=/opt/ofs --with-kernel=/path/to/orangefs/kernel
+
+make
+
+make install
+
+Create an orangefs config file:
+/opt/ofs/bin/pvfs2-genconfig /etc/pvfs2.conf
+
+ for "Enter hostnames", use the hostname, don't let it default to
+ localhost.
+
+create a pvfs2tab file in /etc:
+cat /etc/pvfs2tab
+tcp://myhostname:3334/orangefs /mymountpoint pvfs2 defaults,noauto 0 0
+
+create the mount point you specified in the tab file if needed:
+mkdir /mymountpoint
+
+bootstrap the server:
+/opt/ofs/sbin/pvfs2-server /etc/pvfs2.conf -f
+
+start the server:
+/opt/osf/sbin/pvfs2-server /etc/pvfs2.conf
+
+Now the server is running. At this point you might like to
+prove things are working with:
+
+/opt/osf/bin/pvfs2-ls /mymountpoint
+
+You might not want to enforce selinux, it doesn't seem to matter by
+linux 3.11...
+
+If stuff seems to be working, turn on the client core:
+/opt/osf/sbin/pvfs2-client -p /opt/osf/sbin/pvfs2-client-core
+
+Mount your filesystem.
+mount -t pvfs2 tcp://myhostname:3334/orangefs /mymountpoint
+
+
+OPTIONS
+=======
+
+The following mount options are accepted:
+
+ acl
+ Allow the use of Access Control Lists on files and directories.
+
+ intr
+ Some operations between the kernel client and the user space
+ filesystem can be interruptible, such as changes in debug levels
+ and the setting of tunable parameters.
+
+ local_lock
+ Enable posix locking from the perspective of "this" kernel. The
+ default file_operations lock action is to return ENOSYS. Posix
+ locking kicks in if the filesystem is mounted with -o local_lock.
+ Distributed locking is being worked on for the future.
+
+
+DEBUGGING
+=========
+
+If you want the debug (GOSSIP) statements in a particular
+source file (inode.c for example) go to syslog:
+
+ echo inode > /sys/kernel/debug/orangefs/kernel-debug
+
+No debugging (the default):
+
+ echo none > /sys/kernel/debug/orangefs/kernel-debug
+
+Debugging from several source files:
+
+ echo inode,dir > /sys/kernel/debug/orangefs/kernel-debug
+
+All debugging:
+
+ echo all > /sys/kernel/debug/orangefs/kernel-debug
+
+Get a list of all debugging keywords:
+
+ cat /sys/kernel/debug/orangefs/debug-help
+
+
+PROTOCOL BETWEEN KERNEL MODULE AND USERSPACE
+============================================
+
+Orangefs is a user space filesystem and an associated kernel module.
+We'll just refer to the user space part of Orangefs as "userspace"
+from here on out. Orangefs descends from PVFS, and userspace code
+still uses PVFS for function and variable names. Userspace typedefs
+many of the important structures. Function and variable names in
+the kernel module have been transitioned to "orangefs", and The Linux
+Coding Style avoids typedefs, so kernel module structures that
+correspond to userspace structures are not typedefed.
+
+The kernel module implements a pseudo device that userspace
+can read from and write to. Userspace can also manipulate the
+kernel module through the pseudo device with ioctl.
+
+THE BUFMAP:
+
+At startup userspace allocates two page-size-aligned (posix_memalign)
+mlocked memory buffers, one is used for IO and one is used for readdir
+operations. The IO buffer is 41943040 bytes and the readdir buffer is
+4194304 bytes. Each buffer contains logical chunks, or partitions, and
+a pointer to each buffer is added to its own PVFS_dev_map_desc structure
+which also describes its total size, as well as the size and number of
+the partitions.
+
+A pointer to the IO buffer's PVFS_dev_map_desc structure is sent to a
+mapping routine in the kernel module with an ioctl. The structure is
+copied from user space to kernel space with copy_from_user and is used
+to initialize the kernel module's "bufmap" (struct orangefs_bufmap), which
+then contains:
+
+ * refcnt - a reference counter
+ * desc_size - PVFS2_BUFMAP_DEFAULT_DESC_SIZE (4194304) - the IO buffer's
+ partition size, which represents the filesystem's block size and
+ is used for s_blocksize in super blocks.
+ * desc_count - PVFS2_BUFMAP_DEFAULT_DESC_COUNT (10) - the number of
+ partitions in the IO buffer.
+ * desc_shift - log2(desc_size), used for s_blocksize_bits in super blocks.
+ * total_size - the total size of the IO buffer.
+ * page_count - the number of 4096 byte pages in the IO buffer.
+ * page_array - a pointer to page_count * (sizeof(struct page*)) bytes
+ of kcalloced memory. This memory is used as an array of pointers
+ to each of the pages in the IO buffer through a call to get_user_pages.
+ * desc_array - a pointer to desc_count * (sizeof(struct orangefs_bufmap_desc))
+ bytes of kcalloced memory. This memory is further intialized:
+
+ user_desc is the kernel's copy of the IO buffer's ORANGEFS_dev_map_desc
+ structure. user_desc->ptr points to the IO buffer.
+
+ pages_per_desc = bufmap->desc_size / PAGE_SIZE
+ offset = 0
+
+ bufmap->desc_array[0].page_array = &bufmap->page_array[offset]
+ bufmap->desc_array[0].array_count = pages_per_desc = 1024
+ bufmap->desc_array[0].uaddr = (user_desc->ptr) + (0 * 1024 * 4096)
+ offset += 1024
+ .
+ .
+ .
+ bufmap->desc_array[9].page_array = &bufmap->page_array[offset]
+ bufmap->desc_array[9].array_count = pages_per_desc = 1024
+ bufmap->desc_array[9].uaddr = (user_desc->ptr) +
+ (9 * 1024 * 4096)
+ offset += 1024
+
+ * buffer_index_array - a desc_count sized array of ints, used to
+ indicate which of the IO buffer's partitions are available to use.
+ * buffer_index_lock - a spinlock to protect buffer_index_array during update.
+ * readdir_index_array - a five (ORANGEFS_READDIR_DEFAULT_DESC_COUNT) element
+ int array used to indicate which of the readdir buffer's partitions are
+ available to use.
+ * readdir_index_lock - a spinlock to protect readdir_index_array during
+ update.
+
+OPERATIONS:
+
+The kernel module builds an "op" (struct orangefs_kernel_op_s) when it
+needs to communicate with userspace. Part of the op contains the "upcall"
+which expresses the request to userspace. Part of the op eventually
+contains the "downcall" which expresses the results of the request.
+
+The slab allocator is used to keep a cache of op structures handy.
+
+At init time the kernel module defines and initializes a request list
+and an in_progress hash table to keep track of all the ops that are
+in flight at any given time.
+
+Ops are stateful:
+
+ * unknown - op was just initialized
+ * waiting - op is on request_list (upward bound)
+ * inprogr - op is in progress (waiting for downcall)
+ * serviced - op has matching downcall; ok
+ * purged - op has to start a timer since client-core
+ exited uncleanly before servicing op
+ * given up - submitter has given up waiting for it
+
+When some arbitrary userspace program needs to perform a
+filesystem operation on Orangefs (readdir, I/O, create, whatever)
+an op structure is initialized and tagged with a distinguishing ID
+number. The upcall part of the op is filled out, and the op is
+passed to the "service_operation" function.
+
+Service_operation changes the op's state to "waiting", puts
+it on the request list, and signals the Orangefs file_operations.poll
+function through a wait queue. Userspace is polling the pseudo-device
+and thus becomes aware of the upcall request that needs to be read.
+
+When the Orangefs file_operations.read function is triggered, the
+request list is searched for an op that seems ready-to-process.
+The op is removed from the request list. The tag from the op and
+the filled-out upcall struct are copy_to_user'ed back to userspace.
+
+If any of these (and some additional protocol) copy_to_users fail,
+the op's state is set to "waiting" and the op is added back to
+the request list. Otherwise, the op's state is changed to "in progress",
+and the op is hashed on its tag and put onto the end of a list in the
+in_progress hash table at the index the tag hashed to.
+
+When userspace has assembled the response to the upcall, it
+writes the response, which includes the distinguishing tag, back to
+the pseudo device in a series of io_vecs. This triggers the Orangefs
+file_operations.write_iter function to find the op with the associated
+tag and remove it from the in_progress hash table. As long as the op's
+state is not "canceled" or "given up", its state is set to "serviced".
+The file_operations.write_iter function returns to the waiting vfs,
+and back to service_operation through wait_for_matching_downcall.
+
+Service operation returns to its caller with the op's downcall
+part (the response to the upcall) filled out.
+
+The "client-core" is the bridge between the kernel module and
+userspace. The client-core is a daemon. The client-core has an
+associated watchdog daemon. If the client-core is ever signaled
+to die, the watchdog daemon restarts the client-core. Even though
+the client-core is restarted "right away", there is a period of
+time during such an event that the client-core is dead. A dead client-core
+can't be triggered by the Orangefs file_operations.poll function.
+Ops that pass through service_operation during a "dead spell" can timeout
+on the wait queue and one attempt is made to recycle them. Obviously,
+if the client-core stays dead too long, the arbitrary userspace processes
+trying to use Orangefs will be negatively affected. Waiting ops
+that can't be serviced will be removed from the request list and
+have their states set to "given up". In-progress ops that can't
+be serviced will be removed from the in_progress hash table and
+have their states set to "given up".
+
+Readdir and I/O ops are atypical with respect to their payloads.
+
+ - readdir ops use the smaller of the two pre-allocated pre-partitioned
+ memory buffers. The readdir buffer is only available to userspace.
+ The kernel module obtains an index to a free partition before launching
+ a readdir op. Userspace deposits the results into the indexed partition
+ and then writes them to back to the pvfs device.
+
+ - io (read and write) ops use the larger of the two pre-allocated
+ pre-partitioned memory buffers. The IO buffer is accessible from
+ both userspace and the kernel module. The kernel module obtains an
+ index to a free partition before launching an io op. The kernel module
+ deposits write data into the indexed partition, to be consumed
+ directly by userspace. Userspace deposits the results of read
+ requests into the indexed partition, to be consumed directly
+ by the kernel module.
+
+Responses to kernel requests are all packaged in pvfs2_downcall_t
+structs. Besides a few other members, pvfs2_downcall_t contains a
+union of structs, each of which is associated with a particular
+response type.
+
+The several members outside of the union are:
+ - int32_t type - type of operation.
+ - int32_t status - return code for the operation.
+ - int64_t trailer_size - 0 unless readdir operation.
+ - char *trailer_buf - initialized to NULL, used during readdir operations.
+
+The appropriate member inside the union is filled out for any
+particular response.
+
+ PVFS2_VFS_OP_FILE_IO
+ fill a pvfs2_io_response_t
+
+ PVFS2_VFS_OP_LOOKUP
+ fill a PVFS_object_kref
+
+ PVFS2_VFS_OP_CREATE
+ fill a PVFS_object_kref
+
+ PVFS2_VFS_OP_SYMLINK
+ fill a PVFS_object_kref
+
+ PVFS2_VFS_OP_GETATTR
+ fill in a PVFS_sys_attr_s (tons of stuff the kernel doesn't need)
+ fill in a string with the link target when the object is a symlink.
+
+ PVFS2_VFS_OP_MKDIR
+ fill a PVFS_object_kref
+
+ PVFS2_VFS_OP_STATFS
+ fill a pvfs2_statfs_response_t with useless info <g>. It is hard for
+ us to know, in a timely fashion, these statistics about our
+ distributed network filesystem.
+
+ PVFS2_VFS_OP_FS_MOUNT
+ fill a pvfs2_fs_mount_response_t which is just like a PVFS_object_kref
+ except its members are in a different order and "__pad1" is replaced
+ with "id".
+
+ PVFS2_VFS_OP_GETXATTR
+ fill a pvfs2_getxattr_response_t
+
+ PVFS2_VFS_OP_LISTXATTR
+ fill a pvfs2_listxattr_response_t
+
+ PVFS2_VFS_OP_PARAM
+ fill a pvfs2_param_response_t
+
+ PVFS2_VFS_OP_PERF_COUNT
+ fill a pvfs2_perf_count_response_t
+
+ PVFS2_VFS_OP_FSKEY
+ file a pvfs2_fs_key_response_t
+
+ PVFS2_VFS_OP_READDIR
+ jamb everything needed to represent a pvfs2_readdir_response_t into
+ the readdir buffer descriptor specified in the upcall.
+
+Userspace uses writev() on /dev/pvfs2-req to pass responses to the requests
+made by the kernel side.
+
+A buffer_list containing:
+ - a pointer to the prepared response to the request from the
+ kernel (struct pvfs2_downcall_t).
+ - and also, in the case of a readdir request, a pointer to a
+ buffer containing descriptors for the objects in the target
+ directory.
+... is sent to the function (PINT_dev_write_list) which performs
+the writev.
+
+PINT_dev_write_list has a local iovec array: struct iovec io_array[10];
+
+The first four elements of io_array are initialized like this for all
+responses:
+
+ io_array[0].iov_base = address of local variable "proto_ver" (int32_t)
+ io_array[0].iov_len = sizeof(int32_t)
+
+ io_array[1].iov_base = address of global variable "pdev_magic" (int32_t)
+ io_array[1].iov_len = sizeof(int32_t)
+
+ io_array[2].iov_base = address of parameter "tag" (PVFS_id_gen_t)
+ io_array[2].iov_len = sizeof(int64_t)
+
+ io_array[3].iov_base = address of out_downcall member (pvfs2_downcall_t)
+ of global variable vfs_request (vfs_request_t)
+ io_array[3].iov_len = sizeof(pvfs2_downcall_t)
+
+Readdir responses initialize the fifth element io_array like this:
+
+ io_array[4].iov_base = contents of member trailer_buf (char *)
+ from out_downcall member of global variable
+ vfs_request
+ io_array[4].iov_len = contents of member trailer_size (PVFS_size)
+ from out_downcall member of global variable
+ vfs_request
+
+