aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-bus-i3c146
-rw-r--r--Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt43
-rw-r--r--Documentation/devicetree/bindings/i3c/i3c.txt138
-rw-r--r--Documentation/devicetree/bindings/i3c/snps,dw-i3c-master.txt41
-rw-r--r--Documentation/driver-api/i3c/device-driver-api.rst9
-rw-r--r--Documentation/driver-api/i3c/index.rst11
-rw-r--r--Documentation/driver-api/i3c/master-driver-api.rst9
-rw-r--r--Documentation/driver-api/i3c/protocol.rst203
-rw-r--r--Documentation/driver-api/index.rst1
9 files changed, 601 insertions, 0 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-i3c b/Documentation/ABI/testing/sysfs-bus-i3c
new file mode 100644
index 000000000000..2f332ec36f82
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-i3c
@@ -0,0 +1,146 @@
+What: /sys/bus/i3c/devices/i3c-<bus-id>
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ An I3C bus. This directory will contain one sub-directory per
+ I3C device present on the bus.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/current_master
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ Expose the master that owns the bus (<bus-id>-<master-pid>) at
+ the time this file is read. Note that bus ownership can change
+ overtime, so there's no guarantee that when the read() call
+ returns, the value returned is still valid.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/mode
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ I3C bus mode. Can be "pure", "mixed-fast" or "mixed-slow". See
+ the I3C specification for a detailed description of what each
+ of these modes implies.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/i3c_scl_frequency
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ The frequency (expressed in Hz) of the SCL signal when
+ operating in I3C SDR mode.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/i2c_scl_frequency
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ The frequency (expressed in Hz) of the SCL signal when
+ operating in I2C mode.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/dynamic_address
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ Dynamic address assigned to the master controller. This
+ address may change if the bus is re-initialized.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/bcr
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ BCR stands for Bus Characteristics Register and express the
+ device capabilities in term of speed, maximum read/write
+ length, etc. See the I3C specification for more details.
+ This entry describes the BCR of the master controller driving
+ the bus.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/dcr
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ DCR stands for Device Characteristics Register and express the
+ device capabilities in term of exposed features. See the I3C
+ specification for more details.
+ This entry describes the DCR of the master controller driving
+ the bus.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/pid
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ PID stands for Provisional ID and is used to uniquely identify
+ a device on a bus. This PID contains information about the
+ vendor, the part and an instance ID so that several devices of
+ the same type can be connected on the same bus.
+ See the I3C specification for more details.
+ This entry describes the PID of the master controller driving
+ the bus.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/hdrcap
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ Expose the HDR (High Data Rate) capabilities of a device.
+ Returns a list of supported HDR mode, each element is separated
+ by space. Modes can be "hdr-ddr", "hdr-tsp" and "hdr-tsl".
+ See the I3C specification for more details about these HDR
+ modes.
+ This entry describes the HDRCAP of the master controller
+ driving the bus.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/<bus-id>-<device-pid>
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ An I3C device present on I3C bus identified by <bus-id>. Note
+ that all devices are represented including the master driving
+ the bus.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/<bus-id>-<device-pid>/dynamic_address
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ Dynamic address assigned to device <bus-id>-<device-pid>. This
+ address may change if the bus is re-initialized.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/<bus-id>-<device-pid>/bcr
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ BCR stands for Bus Characteristics Register and express the
+ device capabilities in term of speed, maximum read/write
+ length, etc. See the I3C specification for more details.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/<bus-id>-<device-pid>/dcr
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ DCR stands for Device Characteristics Register and express the
+ device capabilities in term of exposed features. See the I3C
+ specification for more details.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/<bus-id>-<device-pid>/pid
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ PID stands for Provisional ID and is used to uniquely identify
+ a device on a bus. This PID contains information about the
+ vendor, the part and an instance ID so that several devices of
+ the same type can be connected on the same bus.
+ See the I3C specification for more details.
+
+What: /sys/bus/i3c/devices/i3c-<bus-id>/<bus-id>-<device-pid>/hdrcap
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ Expose the HDR (High Data Rate) capabilities of a device.
+ Returns a list of supported HDR mode, each element is separated
+ by space. Modes can be "hdr-ddr", "hdr-tsp" and "hdr-tsl".
+ See the I3C specification for more details about these HDR
+ modes.
+
+What: /sys/bus/i3c/devices/<bus-id>-<device-pid>
+KernelVersion: 5.0
+Contact: linux-i3c@vger.kernel.org
+Description:
+ These directories are just symbolic links to
+ /sys/bus/i3c/devices/i3c-<bus-id>/<bus-id>-<device-pid>.
diff --git a/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt b/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
new file mode 100644
index 000000000000..69da2115abdc
--- /dev/null
+++ b/Documentation/devicetree/bindings/i3c/cdns,i3c-master.txt
@@ -0,0 +1,43 @@
+Bindings for cadence I3C master block
+=====================================
+
+Required properties:
+--------------------
+- compatible: shall be "cdns,i3c-master"
+- clocks: shall reference the pclk and sysclk
+- clock-names: shall contain "pclk" and "sysclk"
+- interrupts: the interrupt line connected to this I3C master
+- reg: I3C master registers
+
+Mandatory properties defined by the generic binding (see
+Documentation/devicetree/bindings/i3c/i3c.txt for more details):
+
+- #address-cells: shall be set to 1
+- #size-cells: shall be set to 0
+
+Optional properties defined by the generic binding (see
+Documentation/devicetree/bindings/i3c/i3c.txt for more details):
+
+- i2c-scl-hz
+- i3c-scl-hz
+
+I3C device connected on the bus follow the generic description (see
+Documentation/devicetree/bindings/i3c/i3c.txt for more details).
+
+Example:
+
+ i3c-master@0d040000 {
+ compatible = "cdns,i3c-master";
+ clocks = <&coreclock>, <&i3csysclock>;
+ clock-names = "pclk", "sysclk";
+ interrupts = <3 0>;
+ reg = <0x0d040000 0x1000>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ i2c-scl-hz = <100000>;
+
+ nunchuk: nunchuk@52 {
+ compatible = "nintendo,nunchuk";
+ reg = <0x52 0x80000010 0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/i3c/i3c.txt b/Documentation/devicetree/bindings/i3c/i3c.txt
new file mode 100644
index 000000000000..ab729a0a86ae
--- /dev/null
+++ b/Documentation/devicetree/bindings/i3c/i3c.txt
@@ -0,0 +1,138 @@
+Generic device tree bindings for I3C busses
+===========================================
+
+This document describes generic bindings that should be used to describe I3C
+busses in a device tree.
+
+Required properties
+-------------------
+
+- #address-cells - should be <3>. Read more about addresses below.
+- #size-cells - should be <0>.
+- compatible - name of the I3C master controller driving the I3C bus
+
+For other required properties e.g. to describe register sets,
+clocks, etc. check the binding documentation of the specific driver.
+The node describing an I3C bus should be named i3c-master.
+
+Optional properties
+-------------------
+
+These properties may not be supported by all I3C master drivers. Each I3C
+master bindings should specify which of them are supported.
+
+- i3c-scl-hz: frequency of the SCL signal used for I3C transfers.
+ When undefined the core sets it to 12.5MHz.
+
+- i2c-scl-hz: frequency of the SCL signal used for I2C transfers.
+ When undefined, the core looks at LVR (Legacy Virtual Register)
+ values of I2C devices described in the device tree to determine
+ the maximum I2C frequency.
+
+I2C devices
+===========
+
+Each I2C device connected to the bus should be described in a subnode. All
+properties described in Documentation/devicetree/bindings/i2c/i2c.txt are
+valid here, but several new properties have been added.
+
+New constraint on existing properties:
+--------------------------------------
+- reg: contains 3 cells
+ + first cell : still encoding the I2C address
+
+ + second cell: shall be 0
+
+ + third cell: shall encode the I3C LVR (Legacy Virtual Register)
+ bit[31:8]: unused/ignored
+ bit[7:5]: I2C device index. Possible values
+ * 0: I2C device has a 50 ns spike filter
+ * 1: I2C device does not have a 50 ns spike filter but supports high
+ frequency on SCL
+ * 2: I2C device does not have a 50 ns spike filter and is not tolerant
+ to high frequencies
+ * 3-7: reserved
+
+ bit[4]: tell whether the device operates in FM (Fast Mode) or FM+ mode
+ * 0: FM+ mode
+ * 1: FM mode
+
+ bit[3:0]: device type
+ * 0-15: reserved
+
+The I2C node unit-address should always match the first cell of the reg
+property: <device-type>@<i2c-address>.
+
+I3C devices
+===========
+
+All I3C devices are supposed to support DAA (Dynamic Address Assignment), and
+are thus discoverable. So, by default, I3C devices do not have to be described
+in the device tree.
+This being said, one might want to attach extra resources to these devices,
+and those resources may have to be described in the device tree, which in turn
+means we have to describe I3C devices.
+
+Another use case for describing an I3C device in the device tree is when this
+I3C device has a static I2C address and we want to assign it a specific I3C
+dynamic address before the DAA takes place (so that other devices on the bus
+can't take this dynamic address).
+
+The I3C device should be names <device-type>@<static-i2c-address>,<i3c-pid>,
+where device-type is describing the type of device connected on the bus
+(gpio-controller, sensor, ...).
+
+Required properties
+-------------------
+- reg: contains 3 cells
+ + first cell : encodes the static I2C address. Should be 0 if the device does
+ not have one (0 is not a valid I2C address).
+
+ + second and third cells: should encode the ProvisionalID. The second cell
+ contains the manufacturer ID left-shifted by 1.
+ The third cell contains ORing of the part ID
+ left-shifted by 16, the instance ID left-shifted
+ by 12 and the extra information. This encoding is
+ following the PID definition provided by the I3C
+ specification.
+
+Optional properties
+-------------------
+- assigned-address: dynamic address to be assigned to this device. This
+ property is only valid if the I3C device has a static
+ address (first cell of the reg property != 0).
+
+
+Example:
+
+ i3c-master@d040000 {
+ compatible = "cdns,i3c-master";
+ clocks = <&coreclock>, <&i3csysclock>;
+ clock-names = "pclk", "sysclk";
+ interrupts = <3 0>;
+ reg = <0x0d040000 0x1000>;
+ #address-cells = <3>;
+ #size-cells = <0>;
+ i2c-scl-hz = <100000>;
+
+ /* I2C device. */
+ nunchuk: nunchuk@52 {
+ compatible = "nintendo,nunchuk";
+ reg = <0x52 0x0 0x10>;
+ };
+
+ /* I3C device with a static I2C address. */
+ thermal_sensor: sensor@68,39200144004 {
+ reg = <0x68 0x392 0x144004>;
+ assigned-address = <0xa>;
+ };
+
+ /*
+ * I3C device without a static I2C address but requiring
+ * resources described in the DT.
+ */
+ sensor@0,39200154004 {
+ reg = <0x0 0x392 0x154004>;
+ clocks = <&clock_provider 0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/i3c/snps,dw-i3c-master.txt b/Documentation/devicetree/bindings/i3c/snps,dw-i3c-master.txt
new file mode 100644
index 000000000000..5020eb71eb8d
--- /dev/null
+++ b/Documentation/devicetree/bindings/i3c/snps,dw-i3c-master.txt
@@ -0,0 +1,41 @@
+Bindings for Synopsys DesignWare I3C master block
+=================================================
+
+Required properties:
+--------------------
+- compatible: shall be "snps,dw-i3c-master-1.00a"
+- clocks: shall reference the core_clk
+- interrupts: the interrupt line connected to this I3C master
+- reg: Offset and length of I3C master registers
+
+Mandatory properties defined by the generic binding (see
+Documentation/devicetree/bindings/i3c/i3c.txt for more details):
+
+- #address-cells: shall be set to 3
+- #size-cells: shall be set to 0
+
+Optional properties defined by the generic binding (see
+Documentation/devicetree/bindings/i3c/i3c.txt for more details):
+
+- i2c-scl-hz
+- i3c-scl-hz
+
+I3C device connected on the bus follow the generic description (see
+Documentation/devicetree/bindings/i3c/i3c.txt for more details).
+
+Example:
+
+ i3c-master@2000 {
+ compatible = "snps,dw-i3c-master-1.00a";
+ #address-cells = <3>;
+ #size-cells = <0>;
+ reg = <0x02000 0x1000>;
+ interrupts = <0>;
+ clocks = <&i3cclk>;
+
+ eeprom@57{
+ compatible = "atmel,24c01";
+ reg = <0x57 0x0 0x10>;
+ pagesize = <0x8>;
+ };
+ };
diff --git a/Documentation/driver-api/i3c/device-driver-api.rst b/Documentation/driver-api/i3c/device-driver-api.rst
new file mode 100644
index 000000000000..85bc3381cd3e
--- /dev/null
+++ b/Documentation/driver-api/i3c/device-driver-api.rst
@@ -0,0 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================
+I3C device driver API
+=====================
+
+.. kernel-doc:: include/linux/i3c/device.h
+
+.. kernel-doc:: drivers/i3c/device.c
diff --git a/Documentation/driver-api/i3c/index.rst b/Documentation/driver-api/i3c/index.rst
new file mode 100644
index 000000000000..783d6dad054b
--- /dev/null
+++ b/Documentation/driver-api/i3c/index.rst
@@ -0,0 +1,11 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+I3C subsystem
+=============
+
+.. toctree::
+
+ protocol
+ device-driver-api
+ master-driver-api
diff --git a/Documentation/driver-api/i3c/master-driver-api.rst b/Documentation/driver-api/i3c/master-driver-api.rst
new file mode 100644
index 000000000000..332552b28358
--- /dev/null
+++ b/Documentation/driver-api/i3c/master-driver-api.rst
@@ -0,0 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+================================
+I3C master controller driver API
+================================
+
+.. kernel-doc:: drivers/i3c/master.c
+
+.. kernel-doc:: include/linux/i3c/master.h
diff --git a/Documentation/driver-api/i3c/protocol.rst b/Documentation/driver-api/i3c/protocol.rst
new file mode 100644
index 000000000000..dae3b6d32c6b
--- /dev/null
+++ b/Documentation/driver-api/i3c/protocol.rst
@@ -0,0 +1,203 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============
+I3C protocol
+============
+
+Disclaimer
+==========
+
+This chapter will focus on aspects that matter to software developers. For
+everything hardware related (like how things are transmitted on the bus, how
+collisions are prevented, ...) please have a look at the I3C specification.
+
+This document is just a brief introduction to the I3C protocol and the concepts
+it brings to the table. If you need more information, please refer to the MIPI
+I3C specification (can be downloaded here
+http://resources.mipi.org/mipi-i3c-v1-download).
+
+Introduction
+============
+
+The I3C (pronounced 'eye-three-see') is a MIPI standardized protocol designed
+to overcome I2C limitations (limited speed, external signals needed for
+interrupts, no automatic detection of the devices connected to the bus, ...)
+while remaining power-efficient.
+
+I3C Bus
+=======
+
+An I3C bus is made of several I3C devices and possibly some I2C devices as
+well, but let's focus on I3C devices for now.
+
+An I3C device on the I3C bus can have one of the following roles:
+
+* Master: the device is driving the bus. It's the one in charge of initiating
+ transactions or deciding who is allowed to talk on the bus (slave generated
+ events are possible in I3C, see below).
+* Slave: the device acts as a slave, and is not able to send frames to another
+ slave on the bus. The device can still send events to the master on
+ its own initiative if the master allowed it.
+
+I3C is a multi-master protocol, so there might be several masters on a bus,
+though only one device can act as a master at a given time. In order to gain
+bus ownership, a master has to follow a specific procedure.
+
+Each device on the I3C bus has to be assigned a dynamic address to be able to
+communicate. Until this is done, the device should only respond to a limited
+set of commands. If it has a static address (also called legacy I2C address),
+the device can reply to I2C transfers.
+
+In addition to these per-device addresses, the protocol defines a broadcast
+address in order to address all devices on the bus.
+
+Once a dynamic address has been assigned to a device, this address will be used
+for any direct communication with the device. Note that even after being
+assigned a dynamic address, the device should still process broadcast messages.
+
+I3C Device discovery
+====================
+
+The I3C protocol defines a mechanism to automatically discover devices present
+on the bus, their capabilities and the functionalities they provide. In this
+regard I3C is closer to a discoverable bus like USB than it is to I2C or SPI.
+
+The discovery mechanism is called DAA (Dynamic Address Assignment), because it
+not only discovers devices but also assigns them a dynamic address.
+
+During DAA, each I3C device reports 3 important things:
+
+* BCR: Bus Characteristic Register. This 8-bit register describes the device bus
+ related capabilities
+* DCR: Device Characteristic Register. This 8-bit register describes the
+ functionalities provided by the device
+* Provisional ID: A 48-bit unique identifier. On a given bus there should be no
+ Provisional ID collision, otherwise the discovery mechanism may fail.
+
+I3C slave events
+================
+
+The I3C protocol allows slaves to generate events on their own, and thus allows
+them to take temporary control of the bus.
+
+This mechanism is called IBI for In Band Interrupts, and as stated in the name,
+it allows devices to generate interrupts without requiring an external signal.
+
+During DAA, each device on the bus has been assigned an address, and this
+address will serve as a priority identifier to determine who wins if 2 different
+devices are generating an interrupt at the same moment on the bus (the lower the
+dynamic address the higher the priority).
+
+Masters are allowed to inhibit interrupts if they want to. This inhibition
+request can be broadcast (applies to all devices) or sent to a specific
+device.
+
+I3C Hot-Join
+============
+
+The Hot-Join mechanism is similar to USB hotplug. This mechanism allows
+slaves to join the bus after it has been initialized by the master.
+
+This covers the following use cases:
+
+* the device is not powered when the bus is probed
+* the device is hotplugged on the bus through an extension board
+
+This mechanism is relying on slave events to inform the master that a new
+device joined the bus and is waiting for a dynamic address.
+
+The master is then free to address the request as it wishes: ignore it or
+assign a dynamic address to the slave.
+
+I3C transfer types
+==================
+
+If you omit SMBus (which is just a standardization on how to access registers
+exposed by I2C devices), I2C has only one transfer type.
+
+I3C defines 3 different classes of transfer in addition to I2C transfers which
+are here for backward compatibility with I2C devices.
+
+I3C CCC commands
+----------------
+
+CCC (Common Command Code) commands are meant to be used for anything that is
+related to bus management and all features that are common to a set of devices.
+
+CCC commands contain an 8-bit CCC ID describing the command that is executed.
+The MSB of this ID specifies whether this is a broadcast command (bit7 = 0) or a
+unicast one (bit7 = 1).
+
+The command ID can be followed by a payload. Depending on the command, this
+payload is either sent by the master sending the command (write CCC command),
+or sent by the slave receiving the command (read CCC command). Of course, read
+accesses only apply to unicast commands.
+Note that, when sending a CCC command to a specific device, the device address
+is passed in the first byte of the payload.
+
+The payload length is not explicitly passed on the bus, and should be extracted
+from the CCC ID.
+
+Note that vendors can use a dedicated range of CCC IDs for their own commands
+(0x61-0x7f and 0xe0-0xef).
+
+I3C Private SDR transfers
+-------------------------
+
+Private SDR (Single Data Rate) transfers should be used for anything that is
+device specific and does not require high transfer speed.
+
+It is the equivalent of I2C transfers but in the I3C world. Each transfer is
+passed the device address (dynamic address assigned during DAA), a payload
+and a direction.
+
+The only difference with I2C is that the transfer is much faster (typical clock
+frequency is 12.5MHz).
+
+I3C HDR commands
+----------------
+
+HDR commands should be used for anything that is device specific and requires
+high transfer speed.
+
+The first thing attached to an HDR command is the HDR mode. There are currently
+3 different modes defined by the I3C specification (refer to the specification
+for more details):
+
+* HDR-DDR: Double Data Rate mode
+* HDR-TSP: Ternary Symbol Pure. Only usable on busses with no I2C devices
+* HDR-TSL: Ternary Symbol Legacy. Usable on busses with I2C devices
+
+When sending an HDR command, the whole bus has to enter HDR mode, which is done
+using a broadcast CCC command.
+Once the bus has entered a specific HDR mode, the master sends the HDR command.
+An HDR command is made of:
+
+* one 16-bits command word in big endian
+* N 16-bits data words in big endian
+
+Those words may be wrapped with specific preambles/post-ambles which depend on
+the chosen HDR mode and are detailed here (see the specification for more
+details).
+
+The 16-bits command word is made of:
+
+* bit[15]: direction bit, read is 1, write is 0
+* bit[14:8]: command code. Identifies the command being executed, the amount of
+ data words and their meaning
+* bit[7:1]: I3C address of the device this command is addressed to
+* bit[0]: reserved/parity-bit
+
+Backward compatibility with I2C devices
+=======================================
+
+The I3C protocol has been designed to be backward compatible with I2C devices.
+This backward compatibility allows one to connect a mix of I2C and I3C devices
+on the same bus, though, in order to be really efficient, I2C devices should
+be equipped with 50 ns spike filters.
+
+I2C devices can't be discovered like I3C ones and have to be statically
+declared. In order to let the master know what these devices are capable of
+(both in terms of bus related limitations and functionalities), the software
+has to provide some information, which is done through the LVR (Legacy I2C
+Virtual Register).
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index 909f991b4c0d..ab38ced66a44 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -33,6 +33,7 @@ available subsections can be seen below.
pci/index
spi
i2c
+ i3c/index
hsi
edac
scsi