diff options
Diffstat (limited to 'arch/x86/kvm/mmu')
-rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 2361 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/mmu_audit.c | 303 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/mmu_internal.h | 181 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/mmutrace.h | 26 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/page_track.c | 15 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/paging.h | 14 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/paging_tmpl.h | 267 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/spte.c | 209 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/spte.h | 192 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/tdp_iter.c | 20 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/tdp_iter.h | 55 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/tdp_mmu.c | 1148 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/tdp_mmu.h | 43 |
13 files changed, 2928 insertions, 1906 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index fcdf3f8bb59a..1ccb769f62af 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -53,8 +53,6 @@ #include <asm/kvm_page_track.h> #include "trace.h" -#include "paging.h" - extern bool itlb_multihit_kvm_mitigation; int __read_mostly nx_huge_pages = -1; @@ -104,15 +102,6 @@ static int max_huge_page_level __read_mostly; static int tdp_root_level __read_mostly; static int max_tdp_level __read_mostly; -enum { - AUDIT_PRE_PAGE_FAULT, - AUDIT_POST_PAGE_FAULT, - AUDIT_PRE_PTE_WRITE, - AUDIT_POST_PTE_WRITE, - AUDIT_PRE_SYNC, - AUDIT_POST_SYNC -}; - #ifdef MMU_DEBUG bool dbg = 0; module_param(dbg, bool, 0644); @@ -120,26 +109,6 @@ module_param(dbg, bool, 0644); #define PTE_PREFETCH_NUM 8 -#define PT32_LEVEL_BITS 10 - -#define PT32_LEVEL_SHIFT(level) \ - (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) - -#define PT32_LVL_OFFSET_MASK(level) \ - (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ - * PT32_LEVEL_BITS))) - 1)) - -#define PT32_INDEX(address, level)\ - (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) - - -#define PT32_BASE_ADDR_MASK PAGE_MASK -#define PT32_DIR_BASE_ADDR_MASK \ - (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) -#define PT32_LVL_ADDR_MASK(level) \ - (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ - * PT32_LEVEL_BITS))) - 1)) - #include <trace/events/kvm.h> /* make pte_list_desc fit well in cache lines */ @@ -190,8 +159,6 @@ struct kmem_cache *mmu_page_header_cache; static struct percpu_counter kvm_total_used_mmu_pages; static void mmu_spte_set(u64 *sptep, u64 spte); -static union kvm_mmu_page_role -kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); struct kvm_mmu_role_regs { const unsigned long cr0; @@ -204,11 +171,12 @@ struct kvm_mmu_role_regs { /* * Yes, lot's of underscores. They're a hint that you probably shouldn't be - * reading from the role_regs. Once the mmu_role is constructed, it becomes + * reading from the role_regs. Once the root_role is constructed, it becomes * the single source of truth for the MMU's state. */ #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \ -static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\ +static inline bool __maybe_unused \ +____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \ { \ return !!(regs->reg & flag); \ } @@ -232,17 +200,26 @@ BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA); #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \ static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \ { \ - return !!(mmu->mmu_role. base_or_ext . reg##_##name); \ + return !!(mmu->cpu_role. base_or_ext . reg##_##name); \ } -BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg); BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp); BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse); -BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae); BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep); BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap); BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke); BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57); BUILD_MMU_ROLE_ACCESSOR(base, efer, nx); +BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma); + +static inline bool is_cr0_pg(struct kvm_mmu *mmu) +{ + return mmu->cpu_role.base.level > 0; +} + +static inline bool is_cr4_pae(struct kvm_mmu *mmu) +{ + return !mmu->cpu_role.base.has_4_byte_gpte; +} static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) { @@ -255,19 +232,6 @@ static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu) return regs; } -static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs) -{ - if (!____is_cr0_pg(regs)) - return 0; - else if (____is_efer_lma(regs)) - return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL : - PT64_ROOT_4LEVEL; - else if (____is_cr4_pae(regs)) - return PT32E_ROOT_LEVEL; - else - return PT32_ROOT_LEVEL; -} - static inline bool kvm_available_flush_tlb_with_range(void) { return kvm_x86_ops.tlb_remote_flush_with_range; @@ -335,24 +299,11 @@ static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) return likely(kvm_gen == spte_gen); } -static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, - struct x86_exception *exception) -{ - return gpa; -} - static int is_cpuid_PSE36(void) { return 1; } -static gfn_t pse36_gfn_delta(u32 gpte) -{ - int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; - - return (gpte & PT32_DIR_PSE36_MASK) << shift; -} - #ifdef CONFIG_X86_64 static void __set_spte(u64 *sptep, u64 spte) { @@ -452,7 +403,7 @@ static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) * The idea using the light way get the spte on x86_32 guest is from * gup_get_pte (mm/gup.c). * - * An spte tlb flush may be pending, because kvm_set_pte_rmapp + * An spte tlb flush may be pending, because kvm_set_pte_rmap * coalesces them and we are running out of the MMU lock. Therefore * we need to protect against in-progress updates of the spte. * @@ -490,30 +441,6 @@ retry: } #endif -static bool spte_has_volatile_bits(u64 spte) -{ - if (!is_shadow_present_pte(spte)) - return false; - - /* - * Always atomically update spte if it can be updated - * out of mmu-lock, it can ensure dirty bit is not lost, - * also, it can help us to get a stable is_writable_pte() - * to ensure tlb flush is not missed. - */ - if (spte_can_locklessly_be_made_writable(spte) || - is_access_track_spte(spte)) - return true; - - if (spte_ad_enabled(spte)) { - if ((spte & shadow_accessed_mask) == 0 || - (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) - return true; - } - - return false; -} - /* Rules for using mmu_spte_set: * Set the sptep from nonpresent to present. * Note: the sptep being assigned *must* be either not present @@ -535,6 +462,7 @@ static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) u64 old_spte = *sptep; WARN_ON(!is_shadow_present_pte(new_spte)); + check_spte_writable_invariants(new_spte); if (!is_shadow_present_pte(old_spte)) { mmu_spte_set(sptep, new_spte); @@ -554,11 +482,9 @@ static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) /* Rules for using mmu_spte_update: * Update the state bits, it means the mapped pfn is not changed. * - * Whenever we overwrite a writable spte with a read-only one we - * should flush remote TLBs. Otherwise rmap_write_protect - * will find a read-only spte, even though the writable spte - * might be cached on a CPU's TLB, the return value indicates this - * case. + * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote + * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only + * spte, even though the writable spte might be cached on a CPU's TLB. * * Returns true if the TLB needs to be flushed */ @@ -575,7 +501,7 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte) * we always atomically update it, see the comments in * spte_has_volatile_bits(). */ - if (spte_can_locklessly_be_made_writable(old_spte) && + if (is_mmu_writable_spte(old_spte) && !is_writable_pte(new_spte)) flush = true; @@ -603,13 +529,15 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte) * state bits, it is used to clear the last level sptep. * Returns the old PTE. */ -static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) +static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) { kvm_pfn_t pfn; u64 old_spte = *sptep; int level = sptep_to_sp(sptep)->role.level; + struct page *page; - if (!spte_has_volatile_bits(old_spte)) + if (!is_shadow_present_pte(old_spte) || + !spte_has_volatile_bits(old_spte)) __update_clear_spte_fast(sptep, 0ull); else old_spte = __update_clear_spte_slow(sptep, 0ull); @@ -622,11 +550,13 @@ static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep) pfn = spte_to_pfn(old_spte); /* - * KVM does not hold the refcount of the page used by - * kvm mmu, before reclaiming the page, we should - * unmap it from mmu first. + * KVM doesn't hold a reference to any pages mapped into the guest, and + * instead uses the mmu_notifier to ensure that KVM unmaps any pages + * before they are reclaimed. Sanity check that, if the pfn is backed + * by a refcounted page, the refcount is elevated. */ - WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); + page = kvm_pfn_to_refcounted_page(pfn); + WARN_ON(page && !page_count(page)); if (is_accessed_spte(old_spte)) kvm_set_pfn_accessed(pfn); @@ -652,24 +582,6 @@ static u64 mmu_spte_get_lockless(u64 *sptep) return __get_spte_lockless(sptep); } -/* Restore an acc-track PTE back to a regular PTE */ -static u64 restore_acc_track_spte(u64 spte) -{ - u64 new_spte = spte; - u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) - & SHADOW_ACC_TRACK_SAVED_BITS_MASK; - - WARN_ON_ONCE(spte_ad_enabled(spte)); - WARN_ON_ONCE(!is_access_track_spte(spte)); - - new_spte &= ~shadow_acc_track_mask; - new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << - SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); - new_spte |= saved_bits; - - return new_spte; -} - /* Returns the Accessed status of the PTE and resets it at the same time. */ static bool mmu_spte_age(u64 *sptep) { @@ -744,7 +656,7 @@ static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) if (r) return r; if (maybe_indirect) { - r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, + r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache, PT64_ROOT_MAX_LEVEL); if (r) return r; @@ -757,40 +669,79 @@ static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) { kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); - kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); + kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache); kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); } -static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) -{ - return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); -} - static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) { kmem_cache_free(pte_list_desc_cache, pte_list_desc); } +static bool sp_has_gptes(struct kvm_mmu_page *sp); + static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) { + if (sp->role.passthrough) + return sp->gfn; + if (!sp->role.direct) - return sp->gfns[index]; + return sp->shadowed_translation[index] >> PAGE_SHIFT; + + return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS)); +} + +/* + * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note + * that the SPTE itself may have a more constrained access permissions that + * what the guest enforces. For example, a guest may create an executable + * huge PTE but KVM may disallow execution to mitigate iTLB multihit. + */ +static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index) +{ + if (sp_has_gptes(sp)) + return sp->shadowed_translation[index] & ACC_ALL; - return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); + /* + * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs, + * KVM is not shadowing any guest page tables, so the "guest access + * permissions" are just ACC_ALL. + * + * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM + * is shadowing a guest huge page with small pages, the guest access + * permissions being shadowed are the access permissions of the huge + * page. + * + * In both cases, sp->role.access contains the correct access bits. + */ + return sp->role.access; } -static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) +static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index, + gfn_t gfn, unsigned int access) { - if (!sp->role.direct) { - sp->gfns[index] = gfn; + if (sp_has_gptes(sp)) { + sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access; return; } - if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) - pr_err_ratelimited("gfn mismatch under direct page %llx " - "(expected %llx, got %llx)\n", - sp->gfn, - kvm_mmu_page_get_gfn(sp, index), gfn); + WARN_ONCE(access != kvm_mmu_page_get_access(sp, index), + "access mismatch under %s page %llx (expected %u, got %u)\n", + sp->role.passthrough ? "passthrough" : "direct", + sp->gfn, kvm_mmu_page_get_access(sp, index), access); + + WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index), + "gfn mismatch under %s page %llx (expected %llx, got %llx)\n", + sp->role.passthrough ? "passthrough" : "direct", + sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn); +} + +static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index, + unsigned int access) +{ + gfn_t gfn = kvm_mmu_page_get_gfn(sp, index); + + kvm_mmu_page_set_translation(sp, index, gfn, access); } /* @@ -846,6 +797,9 @@ static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) KVM_PAGE_TRACK_WRITE); kvm_mmu_gfn_disallow_lpage(slot, gfn); + + if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K)) + kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); } void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) @@ -909,7 +863,7 @@ gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, /* * Returns the number of pointers in the rmap chain, not counting the new one. */ -static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, +static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte, struct kvm_rmap_head *rmap_head) { struct pte_list_desc *desc; @@ -920,7 +874,7 @@ static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, rmap_head->val = (unsigned long)spte; } else if (!(rmap_head->val & 1)) { rmap_printk("%p %llx 1->many\n", spte, *spte); - desc = mmu_alloc_pte_list_desc(vcpu); + desc = kvm_mmu_memory_cache_alloc(cache); desc->sptes[0] = (u64 *)rmap_head->val; desc->sptes[1] = spte; desc->spte_count = 2; @@ -932,7 +886,7 @@ static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, while (desc->spte_count == PTE_LIST_EXT) { count += PTE_LIST_EXT; if (!desc->more) { - desc->more = mmu_alloc_pte_list_desc(vcpu); + desc->more = kvm_mmu_memory_cache_alloc(cache); desc = desc->more; desc->spte_count = 0; break; @@ -967,7 +921,7 @@ pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, mmu_free_pte_list_desc(desc); } -static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) +static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) { struct pte_list_desc *desc; struct pte_list_desc *prev_desc; @@ -1003,15 +957,16 @@ static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) } } -static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - u64 *sptep) +static void kvm_zap_one_rmap_spte(struct kvm *kvm, + struct kvm_rmap_head *rmap_head, u64 *sptep) { mmu_spte_clear_track_bits(kvm, sptep); - __pte_list_remove(sptep, rmap_head); + pte_list_remove(sptep, rmap_head); } -/* Return true if rmap existed, false otherwise */ -static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head) +/* Return true if at least one SPTE was zapped, false otherwise */ +static bool kvm_zap_all_rmap_sptes(struct kvm *kvm, + struct kvm_rmap_head *rmap_head) { struct pte_list_desc *desc, *next; int i; @@ -1084,7 +1039,7 @@ static void rmap_remove(struct kvm *kvm, u64 *spte) struct kvm_rmap_head *rmap_head; sp = sptep_to_sp(spte); - gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); + gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte)); /* * Unlike rmap_add, rmap_remove does not run in the context of a vCPU @@ -1096,7 +1051,7 @@ static void rmap_remove(struct kvm *kvm, u64 *spte) slot = __gfn_to_memslot(slots, gfn); rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); - __pte_list_remove(spte, rmap_head); + pte_list_remove(spte, rmap_head); } /* @@ -1183,26 +1138,18 @@ static void drop_spte(struct kvm *kvm, u64 *sptep) rmap_remove(kvm, sptep); } - -static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) +static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush) { - if (is_large_pte(*sptep)) { - WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); - drop_spte(kvm, sptep); - return true; - } + struct kvm_mmu_page *sp; - return false; -} + sp = sptep_to_sp(sptep); + WARN_ON(sp->role.level == PG_LEVEL_4K); -static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) -{ - if (__drop_large_spte(vcpu->kvm, sptep)) { - struct kvm_mmu_page *sp = sptep_to_sp(sptep); + drop_spte(kvm, sptep); - kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + if (flush) + kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); - } } /* @@ -1223,7 +1170,7 @@ static bool spte_write_protect(u64 *sptep, bool pt_protect) u64 spte = *sptep; if (!is_writable_pte(spte) && - !(pt_protect && spte_can_locklessly_be_made_writable(spte))) + !(pt_protect && is_mmu_writable_spte(spte))) return false; rmap_printk("spte %p %llx\n", sptep, *sptep); @@ -1235,9 +1182,8 @@ static bool spte_write_protect(u64 *sptep, bool pt_protect) return mmu_spte_update(sptep, spte); } -static bool __rmap_write_protect(struct kvm *kvm, - struct kvm_rmap_head *rmap_head, - bool pt_protect) +static bool rmap_write_protect(struct kvm_rmap_head *rmap_head, + bool pt_protect) { u64 *sptep; struct rmap_iterator iter; @@ -1317,7 +1263,7 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, while (mask) { rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), PG_LEVEL_4K, slot); - __rmap_write_protect(kvm, rmap_head, false); + rmap_write_protect(rmap_head, false); /* clear the first set bit */ mask &= mask - 1; @@ -1384,6 +1330,9 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask); gfn_t end = slot->base_gfn + gfn_offset + __fls(mask); + if (READ_ONCE(eager_page_split)) + kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K); + kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M); /* Cross two large pages? */ @@ -1416,7 +1365,7 @@ bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, if (kvm_memslots_have_rmaps(kvm)) { for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { rmap_head = gfn_to_rmap(gfn, i, slot); - write_protected |= __rmap_write_protect(kvm, rmap_head, true); + write_protected |= rmap_write_protect(rmap_head, true); } } @@ -1427,7 +1376,7 @@ bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, return write_protected; } -static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) +static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn) { struct kvm_memory_slot *slot; @@ -1435,26 +1384,26 @@ static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K); } -static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - const struct kvm_memory_slot *slot) +static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + const struct kvm_memory_slot *slot) { - return pte_list_destroy(kvm, rmap_head); + return kvm_zap_all_rmap_sptes(kvm, rmap_head); } -static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - struct kvm_memory_slot *slot, gfn_t gfn, int level, - pte_t unused) +static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + pte_t unused) { - return kvm_zap_rmapp(kvm, rmap_head, slot); + return __kvm_zap_rmap(kvm, rmap_head, slot); } -static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - struct kvm_memory_slot *slot, gfn_t gfn, int level, - pte_t pte) +static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + pte_t pte) { u64 *sptep; struct rmap_iterator iter; - int need_flush = 0; + bool need_flush = false; u64 new_spte; kvm_pfn_t new_pfn; @@ -1466,10 +1415,10 @@ restart: rmap_printk("spte %p %llx gfn %llx (%d)\n", sptep, *sptep, gfn, level); - need_flush = 1; + need_flush = true; if (pte_write(pte)) { - pte_list_remove(kvm, rmap_head, sptep); + kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); goto restart; } else { new_spte = kvm_mmu_changed_pte_notifier_make_spte( @@ -1482,7 +1431,7 @@ restart: if (need_flush && kvm_available_flush_tlb_with_range()) { kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); - return 0; + return false; } return need_flush; @@ -1535,9 +1484,11 @@ static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) { - if (++iterator->rmap <= iterator->end_rmap) { + while (++iterator->rmap <= iterator->end_rmap) { iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); - return; + + if (iterator->rmap->val) + return; } if (++iterator->level > iterator->end_level) { @@ -1579,7 +1530,7 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) bool flush = false; if (kvm_memslots_have_rmaps(kvm)) - flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); + flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap); if (is_tdp_mmu_enabled(kvm)) flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); @@ -1592,7 +1543,7 @@ bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) bool flush = false; if (kvm_memslots_have_rmaps(kvm)) - flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); + flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap); if (is_tdp_mmu_enabled(kvm)) flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); @@ -1600,9 +1551,9 @@ bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) return flush; } -static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - struct kvm_memory_slot *slot, gfn_t gfn, int level, - pte_t unused) +static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, gfn_t gfn, int level, + pte_t unused) { u64 *sptep; struct rmap_iterator iter; @@ -1614,46 +1565,60 @@ static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, return young; } -static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, - struct kvm_memory_slot *slot, gfn_t gfn, - int level, pte_t unused) +static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head, + struct kvm_memory_slot *slot, gfn_t gfn, + int level, pte_t unused) { u64 *sptep; struct rmap_iterator iter; for_each_rmap_spte(rmap_head, &iter, sptep) if (is_accessed_spte(*sptep)) - return 1; - return 0; + return true; + return false; } #define RMAP_RECYCLE_THRESHOLD 1000 -static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, - u64 *spte, gfn_t gfn) +static void __rmap_add(struct kvm *kvm, + struct kvm_mmu_memory_cache *cache, + const struct kvm_memory_slot *slot, + u64 *spte, gfn_t gfn, unsigned int access) { struct kvm_mmu_page *sp; struct kvm_rmap_head *rmap_head; int rmap_count; sp = sptep_to_sp(spte); - kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); + kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access); + kvm_update_page_stats(kvm, sp->role.level, 1); + rmap_head = gfn_to_rmap(gfn, sp->role.level, slot); - rmap_count = pte_list_add(vcpu, spte, rmap_head); + rmap_count = pte_list_add(cache, spte, rmap_head); + if (rmap_count > kvm->stat.max_mmu_rmap_size) + kvm->stat.max_mmu_rmap_size = rmap_count; if (rmap_count > RMAP_RECYCLE_THRESHOLD) { - kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); + kvm_zap_all_rmap_sptes(kvm, rmap_head); kvm_flush_remote_tlbs_with_address( - vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); + kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); } } +static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot, + u64 *spte, gfn_t gfn, unsigned int access) +{ + struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache; + + __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access); +} + bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { bool young = false; if (kvm_memslots_have_rmaps(kvm)) - young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); + young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap); if (is_tdp_mmu_enabled(kvm)) young |= kvm_tdp_mmu_age_gfn_range(kvm, range); @@ -1666,7 +1631,7 @@ bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) bool young = false; if (kvm_memslots_have_rmaps(kvm)) - young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); + young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap); if (is_tdp_mmu_enabled(kvm)) young |= kvm_tdp_mmu_test_age_gfn(kvm, range); @@ -1702,14 +1667,26 @@ static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) percpu_counter_add(&kvm_total_used_mmu_pages, nr); } -static void kvm_mmu_free_page(struct kvm_mmu_page *sp) +static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + kvm_mod_used_mmu_pages(kvm, +1); + kvm_account_pgtable_pages((void *)sp->spt, +1); +} + +static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + kvm_mod_used_mmu_pages(kvm, -1); + kvm_account_pgtable_pages((void *)sp->spt, -1); +} + +static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp) { MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); hlist_del(&sp->hash_link); list_del(&sp->link); free_page((unsigned long)sp->spt); if (!sp->role.direct) - free_page((unsigned long)sp->gfns); + free_page((unsigned long)sp->shadowed_translation); kmem_cache_free(mmu_page_header_cache, sp); } @@ -1718,19 +1695,19 @@ static unsigned kvm_page_table_hashfn(gfn_t gfn) return hash_64(gfn, KVM_MMU_HASH_SHIFT); } -static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, +static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache, struct kvm_mmu_page *sp, u64 *parent_pte) { if (!parent_pte) return; - pte_list_add(vcpu, parent_pte, &sp->parent_ptes); + pte_list_add(cache, parent_pte, &sp->parent_ptes); } static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, u64 *parent_pte) { - __pte_list_remove(parent_pte, &sp->parent_ptes); + pte_list_remove(parent_pte, &sp->parent_ptes); } static void drop_parent_pte(struct kvm_mmu_page *sp, @@ -1740,27 +1717,6 @@ static void drop_parent_pte(struct kvm_mmu_page *sp, mmu_spte_clear_no_track(parent_pte); } -static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) -{ - struct kvm_mmu_page *sp; - - sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); - sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); - if (!direct) - sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); - set_page_private(virt_to_page(sp->spt), (unsigned long)sp); - - /* - * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() - * depends on valid pages being added to the head of the list. See - * comments in kvm_zap_obsolete_pages(). - */ - sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; - list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); - kvm_mod_used_mmu_pages(vcpu->kvm, +1); - return sp; -} - static void mark_unsync(u64 *spte); static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) { @@ -1775,11 +1731,9 @@ static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) static void mark_unsync(u64 *spte) { struct kvm_mmu_page *sp; - unsigned int index; sp = sptep_to_sp(spte); - index = spte - sp->spt; - if (__test_and_set_bit(index, sp->unsync_child_bitmap)) + if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap)) return; if (sp->unsync_children++) return; @@ -1839,7 +1793,7 @@ static int __mmu_unsync_walk(struct kvm_mmu_page *sp, continue; } - child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); + child = to_shadow_page(ent & SPTE_BASE_ADDR_MASK); if (child->unsync_children) { if (mmu_pages_add(pvec, child, i)) @@ -1890,27 +1844,35 @@ static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, static void kvm_mmu_commit_zap_page(struct kvm *kvm, struct list_head *invalid_list); +static bool sp_has_gptes(struct kvm_mmu_page *sp) +{ + if (sp->role.direct) + return false; + + if (sp->role.passthrough) + return false; + + return true; +} + #define for_each_valid_sp(_kvm, _sp, _list) \ hlist_for_each_entry(_sp, _list, hash_link) \ if (is_obsolete_sp((_kvm), (_sp))) { \ } else -#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ +#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \ for_each_valid_sp(_kvm, _sp, \ &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ - if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else + if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else -static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, +static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, struct list_head *invalid_list) { int ret = vcpu->arch.mmu->sync_page(vcpu, sp); - if (ret < 0) { + if (ret < 0) kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); - return false; - } - - return !!ret; + return ret; } static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, @@ -1927,13 +1889,6 @@ static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, return true; } -#ifdef CONFIG_KVM_MMU_AUDIT -#include "mmu_audit.c" -#else -static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } -static void mmu_audit_disable(void) { } -#endif - static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) { if (sp->role.invalid) @@ -2030,7 +1985,7 @@ static int mmu_sync_children(struct kvm_vcpu *vcpu, bool protected = false; for_each_sp(pages, sp, parents, i) - protected |= rmap_write_protect(vcpu, sp->gfn); + protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn); if (protected) { kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true); @@ -2039,7 +1994,7 @@ static int mmu_sync_children(struct kvm_vcpu *vcpu, for_each_sp(pages, sp, parents, i) { kvm_unlink_unsync_page(vcpu->kvm, sp); - flush |= kvm_sync_page(vcpu, sp, &invalid_list); + flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0; mmu_pages_clear_parents(&parents); } if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { @@ -2068,35 +2023,24 @@ static void clear_sp_write_flooding_count(u64 *spte) __clear_sp_write_flooding_count(sptep_to_sp(spte)); } -static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, - gfn_t gfn, - gva_t gaddr, - unsigned level, - int direct, - unsigned int access) +/* + * The vCPU is required when finding indirect shadow pages; the shadow + * page may already exist and syncing it needs the vCPU pointer in + * order to read guest page tables. Direct shadow pages are never + * unsync, thus @vcpu can be NULL if @role.direct is true. + */ +static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm, + struct kvm_vcpu *vcpu, + gfn_t gfn, + struct hlist_head *sp_list, + union kvm_mmu_page_role role) { - bool direct_mmu = vcpu->arch.mmu->direct_map; - union kvm_mmu_page_role role; - struct hlist_head *sp_list; - unsigned quadrant; struct kvm_mmu_page *sp; + int ret; int collisions = 0; LIST_HEAD(invalid_list); - role = vcpu->arch.mmu->mmu_role.base; - role.level = level; - role.direct = direct; - if (role.direct) - role.gpte_is_8_bytes = true; - role.access = access; - if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { - quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); - quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; - role.quadrant = quadrant; - } - - sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; - for_each_valid_sp(vcpu->kvm, sp, sp_list) { + for_each_valid_sp(kvm, sp, sp_list) { if (sp->gfn != gfn) { collisions++; continue; @@ -2112,16 +2056,20 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, * Unsync pages must not be left as is, because the new * upper-level page will be write-protected. */ - if (level > PG_LEVEL_4K && sp->unsync) - kvm_mmu_prepare_zap_page(vcpu->kvm, sp, + if (role.level > PG_LEVEL_4K && sp->unsync) + kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); continue; } - if (direct_mmu) - goto trace_get_page; + /* unsync and write-flooding only apply to indirect SPs. */ + if (sp->role.direct) + goto out; if (sp->unsync) { + if (KVM_BUG_ON(!vcpu, kvm)) + break; + /* * The page is good, but is stale. kvm_sync_page does * get the latest guest state, but (unlike mmu_unsync_children) @@ -2134,52 +2082,177 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, * If the sync fails, the page is zapped. If so, break * in order to rebuild it. */ - if (!kvm_sync_page(vcpu, sp, &invalid_list)) + ret = kvm_sync_page(vcpu, sp, &invalid_list); + if (ret < 0) break; WARN_ON(!list_empty(&invalid_list)); - kvm_flush_remote_tlbs(vcpu->kvm); + if (ret > 0) + kvm_flush_remote_tlbs(kvm); } __clear_sp_write_flooding_count(sp); -trace_get_page: - trace_kvm_mmu_get_page(sp, false); goto out; } - ++vcpu->kvm->stat.mmu_cache_miss; + sp = NULL; + ++kvm->stat.mmu_cache_miss; + +out: + kvm_mmu_commit_zap_page(kvm, &invalid_list); + + if (collisions > kvm->stat.max_mmu_page_hash_collisions) + kvm->stat.max_mmu_page_hash_collisions = collisions; + return sp; +} - sp = kvm_mmu_alloc_page(vcpu, direct); +/* Caches used when allocating a new shadow page. */ +struct shadow_page_caches { + struct kvm_mmu_memory_cache *page_header_cache; + struct kvm_mmu_memory_cache *shadow_page_cache; + struct kvm_mmu_memory_cache *shadowed_info_cache; +}; + +static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm, + struct shadow_page_caches *caches, + gfn_t gfn, + struct hlist_head *sp_list, + union kvm_mmu_page_role role) +{ + struct kvm_mmu_page *sp; + + sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache); + sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache); + if (!role.direct) + sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache); + + set_page_private(virt_to_page(sp->spt), (unsigned long)sp); + + /* + * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() + * depends on valid pages being added to the head of the list. See + * comments in kvm_zap_obsolete_pages(). + */ + sp->mmu_valid_gen = kvm->arch.mmu_valid_gen; + list_add(&sp->link, &kvm->arch.active_mmu_pages); + kvm_account_mmu_page(kvm, sp); sp->gfn = gfn; sp->role = role; hlist_add_head(&sp->hash_link, sp_list); - if (!direct) { - account_shadowed(vcpu->kvm, sp); - if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) - kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); + if (sp_has_gptes(sp)) + account_shadowed(kvm, sp); + + return sp; +} + +/* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */ +static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm, + struct kvm_vcpu *vcpu, + struct shadow_page_caches *caches, + gfn_t gfn, + union kvm_mmu_page_role role) +{ + struct hlist_head *sp_list; + struct kvm_mmu_page *sp; + bool created = false; + + sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; + + sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role); + if (!sp) { + created = true; + sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role); } - trace_kvm_mmu_get_page(sp, true); -out: - kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); - if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) - vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; + trace_kvm_mmu_get_page(sp, created); return sp; } +static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu, + gfn_t gfn, + union kvm_mmu_page_role role) +{ + struct shadow_page_caches caches = { + .page_header_cache = &vcpu->arch.mmu_page_header_cache, + .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache, + .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache, + }; + + return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role); +} + +static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct, + unsigned int access) +{ + struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep); + union kvm_mmu_page_role role; + + role = parent_sp->role; + role.level--; + role.access = access; + role.direct = direct; + role.passthrough = 0; + + /* + * If the guest has 4-byte PTEs then that means it's using 32-bit, + * 2-level, non-PAE paging. KVM shadows such guests with PAE paging + * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must + * shadow each guest page table with multiple shadow page tables, which + * requires extra bookkeeping in the role. + * + * Specifically, to shadow the guest's page directory (which covers a + * 4GiB address space), KVM uses 4 PAE page directories, each mapping + * 1GiB of the address space. @role.quadrant encodes which quarter of + * the address space each maps. + * + * To shadow the guest's page tables (which each map a 4MiB region), KVM + * uses 2 PAE page tables, each mapping a 2MiB region. For these, + * @role.quadrant encodes which half of the region they map. + * + * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE + * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow + * PDPTEs; those 4 PAE page directories are pre-allocated and their + * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes + * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume + * bit 21 in the PTE (the child here), KVM propagates that bit to the + * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE + * covers bit 21 (see above), thus the quadrant is calculated from the + * _least_ significant bit of the PDE index. + */ + if (role.has_4_byte_gpte) { + WARN_ON_ONCE(role.level != PG_LEVEL_4K); + role.quadrant = spte_index(sptep) & 1; + } + + return role; +} + +static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu, + u64 *sptep, gfn_t gfn, + bool direct, unsigned int access) +{ + union kvm_mmu_page_role role; + + if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) + return ERR_PTR(-EEXIST); + + role = kvm_mmu_child_role(sptep, direct, access); + return kvm_mmu_get_shadow_page(vcpu, gfn, role); +} + static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, struct kvm_vcpu *vcpu, hpa_t root, u64 addr) { iterator->addr = addr; iterator->shadow_addr = root; - iterator->level = vcpu->arch.mmu->shadow_root_level; + iterator->level = vcpu->arch.mmu->root_role.level; if (iterator->level >= PT64_ROOT_4LEVEL && - vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && - !vcpu->arch.mmu->direct_map) + vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL && + !vcpu->arch.mmu->root_role.direct) iterator->level = PT32E_ROOT_LEVEL; if (iterator->level == PT32E_ROOT_LEVEL) { @@ -2187,11 +2260,11 @@ static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterato * prev_root is currently only used for 64-bit hosts. So only * the active root_hpa is valid here. */ - BUG_ON(root != vcpu->arch.mmu->root_hpa); + BUG_ON(root != vcpu->arch.mmu->root.hpa); iterator->shadow_addr = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; - iterator->shadow_addr &= PT64_BASE_ADDR_MASK; + iterator->shadow_addr &= SPTE_BASE_ADDR_MASK; --iterator->level; if (!iterator->shadow_addr) iterator->level = 0; @@ -2201,7 +2274,7 @@ static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterato static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, struct kvm_vcpu *vcpu, u64 addr) { - shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, + shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa, addr); } @@ -2210,7 +2283,7 @@ static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) if (iterator->level < PG_LEVEL_4K) return false; - iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); + iterator->index = SPTE_INDEX(iterator->addr, iterator->level); iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; return true; } @@ -2223,7 +2296,7 @@ static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, return; } - iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; + iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK; --iterator->level; } @@ -2232,23 +2305,38 @@ static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) __shadow_walk_next(iterator, *iterator->sptep); } -static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, - struct kvm_mmu_page *sp) +static void __link_shadow_page(struct kvm *kvm, + struct kvm_mmu_memory_cache *cache, u64 *sptep, + struct kvm_mmu_page *sp, bool flush) { u64 spte; BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); + /* + * If an SPTE is present already, it must be a leaf and therefore + * a large one. Drop it, and flush the TLB if needed, before + * installing sp. + */ + if (is_shadow_present_pte(*sptep)) + drop_large_spte(kvm, sptep, flush); + spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); mmu_spte_set(sptep, spte); - mmu_page_add_parent_pte(vcpu, sp, sptep); + mmu_page_add_parent_pte(cache, sp, sptep); if (sp->unsync_children || sp->unsync) mark_unsync(sptep); } +static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, + struct kvm_mmu_page *sp) +{ + __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true); +} + static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned direct_access) { @@ -2262,7 +2350,7 @@ static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, * so we should update the spte at this point to get * a new sp with the correct access. */ - child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); + child = to_shadow_page(*sptep & SPTE_BASE_ADDR_MASK); if (child->role.access == direct_access) return; @@ -2283,7 +2371,7 @@ static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, if (is_last_spte(pte, sp->role.level)) { drop_spte(kvm, spte); } else { - child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); + child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); drop_parent_pte(child, spte); /* @@ -2309,13 +2397,13 @@ static int kvm_mmu_page_unlink_children(struct kvm *kvm, int zapped = 0; unsigned i; - for (i = 0; i < PT64_ENT_PER_PAGE; ++i) + for (i = 0; i < SPTE_ENT_PER_PAGE; ++i) zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); return zapped; } -static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) +static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp) { u64 *sptep; struct rmap_iterator iter; @@ -2353,18 +2441,18 @@ static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, struct list_head *invalid_list, int *nr_zapped) { - bool list_unstable; + bool list_unstable, zapped_root = false; trace_kvm_mmu_prepare_zap_page(sp); ++kvm->stat.mmu_shadow_zapped; *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); - kvm_mmu_unlink_parents(kvm, sp); + kvm_mmu_unlink_parents(sp); /* Zapping children means active_mmu_pages has become unstable. */ list_unstable = *nr_zapped; - if (!sp->role.invalid && !sp->role.direct) + if (!sp->role.invalid && sp_has_gptes(sp)) unaccount_shadowed(kvm, sp); if (sp->unsync) @@ -2382,7 +2470,7 @@ static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, list_add(&sp->link, invalid_list); else list_move(&sp->link, invalid_list); - kvm_mod_used_mmu_pages(kvm, -1); + kvm_unaccount_mmu_page(kvm, sp); } else { /* * Remove the active root from the active page list, the root @@ -2395,14 +2483,20 @@ static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also * treats invalid shadow pages as being obsolete. */ - if (!is_obsolete_sp(kvm, sp)) - kvm_reload_remote_mmus(kvm); + zapped_root = !is_obsolete_sp(kvm, sp); } if (sp->lpage_disallowed) unaccount_huge_nx_page(kvm, sp); sp->role.invalid = 1; + + /* + * Make the request to free obsolete roots after marking the root + * invalid, otherwise other vCPUs may not see it as invalid. + */ + if (zapped_root) + kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); return list_unstable; } @@ -2436,7 +2530,7 @@ static void kvm_mmu_commit_zap_page(struct kvm *kvm, list_for_each_entry_safe(sp, nsp, invalid_list, link) { WARN_ON(!sp->role.invalid || sp->root_count); - kvm_mmu_free_page(sp); + kvm_mmu_free_shadow_page(sp); } } @@ -2538,7 +2632,7 @@ int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) pgprintk("%s: looking for gfn %llx\n", __func__, gfn); r = 0; write_lock(&kvm->mmu_lock); - for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { + for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { pgprintk("%s: gfn %llx role %x\n", __func__, gfn, sp->role.word); r = 1; @@ -2555,7 +2649,7 @@ static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) gpa_t gpa; int r; - if (vcpu->arch.mmu->direct_map) + if (vcpu->arch.mmu->root_role.direct) return 0; gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); @@ -2565,10 +2659,10 @@ static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) return r; } -static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) +static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) { trace_kvm_mmu_unsync_page(sp); - ++vcpu->kvm->stat.mmu_unsync; + ++kvm->stat.mmu_unsync; sp->unsync = 1; kvm_mmu_mark_parents_unsync(sp); @@ -2580,7 +2674,7 @@ static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must * be write-protected. */ -int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, +int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, gfn_t gfn, bool can_unsync, bool prefetch) { struct kvm_mmu_page *sp; @@ -2591,7 +2685,7 @@ int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, * track machinery is used to write-protect upper-level shadow pages, * i.e. this guards the role.level == 4K assertion below! */ - if (kvm_slot_page_track_is_active(vcpu, slot, gfn, KVM_PAGE_TRACK_WRITE)) + if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE)) return -EPERM; /* @@ -2600,7 +2694,7 @@ int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, * that case, KVM must complete emulation of the guest TLB flush before * allowing shadow pages to become unsync (writable by the guest). */ - for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { + for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) { if (!can_unsync) return -EPERM; @@ -2619,7 +2713,7 @@ int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, */ if (!locked) { locked = true; - spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock); + spin_lock(&kvm->arch.mmu_unsync_pages_lock); /* * Recheck after taking the spinlock, a different vCPU @@ -2634,10 +2728,10 @@ int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, } WARN_ON(sp->role.level != PG_LEVEL_4K); - kvm_unsync_page(vcpu, sp); + kvm_unsync_page(kvm, sp); } if (locked) - spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock); + spin_unlock(&kvm->arch.mmu_unsync_pages_lock); /* * We need to ensure that the marking of unsync pages is visible @@ -2702,6 +2796,7 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, *sptep, write_fault, gfn); if (unlikely(is_noslot_pfn(pfn))) { + vcpu->stat.pf_mmio_spte_created++; mark_mmio_spte(vcpu, sptep, gfn, pte_access); return RET_PF_EMULATE; } @@ -2715,7 +2810,7 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, struct kvm_mmu_page *child; u64 pte = *sptep; - child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); + child = to_shadow_page(pte & SPTE_BASE_ADDR_MASK); drop_parent_pte(child, sptep); flush = true; } else if (pfn != spte_to_pfn(*sptep)) { @@ -2733,8 +2828,8 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, if (*sptep == spte) { ret = RET_PF_SPURIOUS; } else { - trace_kvm_mmu_set_spte(level, gfn, sptep); flush |= mmu_spte_update(sptep, spte); + trace_kvm_mmu_set_spte(level, gfn, sptep); } if (wrprot) { @@ -2750,8 +2845,10 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, if (!was_rmapped) { WARN_ON_ONCE(ret == RET_PF_SPURIOUS); - kvm_update_page_stats(vcpu->kvm, level, 1); - rmap_add(vcpu, slot, sptep, gfn); + rmap_add(vcpu, slot, sptep, gfn, pte_access); + } else { + /* Already rmapped but the pte_access bits may have changed. */ + kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access); } return ret; @@ -2767,7 +2864,7 @@ static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, int i, ret; gfn_t gfn; - gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); + gfn = kvm_mmu_page_get_gfn(sp, spte_index(start)); slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); if (!slot) return -1; @@ -2793,7 +2890,7 @@ static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, WARN_ON(!sp->role.direct); - i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); + i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); spte = sp->spt + i; for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { @@ -2831,21 +2928,47 @@ static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) * If addresses are being invalidated, skip prefetching to avoid * accidentally prefetching those addresses. */ - if (unlikely(vcpu->kvm->mmu_notifier_count)) + if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) return; __direct_pte_prefetch(vcpu, sp, sptep); } -static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, +/* + * Lookup the mapping level for @gfn in the current mm. + * + * WARNING! Use of host_pfn_mapping_level() requires the caller and the end + * consumer to be tied into KVM's handlers for MMU notifier events! + * + * There are several ways to safely use this helper: + * + * - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before + * consuming it. In this case, mmu_lock doesn't need to be held during the + * lookup, but it does need to be held while checking the MMU notifier. + * + * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation + * event for the hva. This can be done by explicit checking the MMU notifier + * or by ensuring that KVM already has a valid mapping that covers the hva. + * + * - Do not use the result to install new mappings, e.g. use the host mapping + * level only to decide whether or not to zap an entry. In this case, it's + * not required to hold mmu_lock (though it's highly likely the caller will + * want to hold mmu_lock anyways, e.g. to modify SPTEs). + * + * Note! The lookup can still race with modifications to host page tables, but + * the above "rules" ensure KVM will not _consume_ the result of the walk if a + * race with the primary MMU occurs. + */ +static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, const struct kvm_memory_slot *slot) { + int level = PG_LEVEL_4K; unsigned long hva; - pte_t *pte; - int level; - - if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) - return PG_LEVEL_4K; + unsigned long flags; + pgd_t pgd; + p4d_t p4d; + pud_t pud; + pmd_t pmd; /* * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() @@ -2857,16 +2980,52 @@ static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, */ hva = __gfn_to_hva_memslot(slot, gfn); - pte = lookup_address_in_mm(kvm->mm, hva, &level); - if (unlikely(!pte)) - return PG_LEVEL_4K; + /* + * Disable IRQs to prevent concurrent tear down of host page tables, + * e.g. if the primary MMU promotes a P*D to a huge page and then frees + * the original page table. + */ + local_irq_save(flags); + + /* + * Read each entry once. As above, a non-leaf entry can be promoted to + * a huge page _during_ this walk. Re-reading the entry could send the + * walk into the weeks, e.g. p*d_large() returns false (sees the old + * value) and then p*d_offset() walks into the target huge page instead + * of the old page table (sees the new value). + */ + pgd = READ_ONCE(*pgd_offset(kvm->mm, hva)); + if (pgd_none(pgd)) + goto out; + p4d = READ_ONCE(*p4d_offset(&pgd, hva)); + if (p4d_none(p4d) || !p4d_present(p4d)) + goto out; + + pud = READ_ONCE(*pud_offset(&p4d, hva)); + if (pud_none(pud) || !pud_present(pud)) + goto out; + + if (pud_large(pud)) { + level = PG_LEVEL_1G; + goto out; + } + + pmd = READ_ONCE(*pmd_offset(&pud, hva)); + if (pmd_none(pmd) || !pmd_present(pmd)) + goto out; + + if (pmd_large(pmd)) + level = PG_LEVEL_2M; + +out: + local_irq_restore(flags); return level; } int kvm_mmu_max_mapping_level(struct kvm *kvm, const struct kvm_memory_slot *slot, gfn_t gfn, - kvm_pfn_t pfn, int max_level) + int max_level) { struct kvm_lpage_info *linfo; int host_level; @@ -2881,7 +3040,7 @@ int kvm_mmu_max_mapping_level(struct kvm *kvm, if (max_level == PG_LEVEL_4K) return PG_LEVEL_4K; - host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); + host_level = host_pfn_mapping_level(kvm, gfn, slot); return min(host_level, max_level); } @@ -2895,7 +3054,7 @@ void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault if (unlikely(fault->max_level == PG_LEVEL_4K)) return; - if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn)) + if (is_error_noslot_pfn(fault->pfn)) return; if (kvm_slot_dirty_track_enabled(slot)) @@ -2906,13 +3065,12 @@ void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault * level, which will be used to do precise, accurate accounting. */ fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, - fault->gfn, fault->pfn, - fault->max_level); + fault->gfn, fault->max_level); if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed) return; /* - * mmu_notifier_retry() was successful and mmu_lock is held, so + * mmu_invalidate_retry() was successful and mmu_lock is held, so * the pmd can't be split from under us. */ fault->goal_level = fault->req_level; @@ -2963,13 +3121,10 @@ static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) if (it.level == fault->goal_level) break; - drop_large_spte(vcpu, it.sptep); - if (is_shadow_present_pte(*it.sptep)) + sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL); + if (sp == ERR_PTR(-EEXIST)) continue; - sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, - it.level - 1, true, ACC_ALL); - link_shadow_page(vcpu, it.sptep, sp); if (fault->is_tdp && fault->huge_page_disallowed && fault->req_level >= it.level) @@ -2985,7 +3140,6 @@ static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) return ret; direct_pte_prefetch(vcpu, it.sptep); - ++vcpu->stat.pf_fixed; return ret; } @@ -3012,14 +3166,12 @@ static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) return -EFAULT; } -static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, - unsigned int access, int *ret_val) +static int handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, + unsigned int access) { /* The pfn is invalid, report the error! */ - if (unlikely(is_error_pfn(fault->pfn))) { - *ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); - return true; - } + if (unlikely(is_error_pfn(fault->pfn))) + return kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn); if (unlikely(!fault->slot)) { gva_t gva = fault->is_tdp ? 0 : fault->addr; @@ -3029,45 +3181,55 @@ static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fa /* * If MMIO caching is disabled, emulate immediately without * touching the shadow page tables as attempting to install an - * MMIO SPTE will just be an expensive nop. + * MMIO SPTE will just be an expensive nop. Do not cache MMIO + * whose gfn is greater than host.MAXPHYADDR, any guest that + * generates such gfns is running nested and is being tricked + * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if + * and only if L1's MAXPHYADDR is inaccurate with respect to + * the hardware's). */ - if (unlikely(!shadow_mmio_value)) { - *ret_val = RET_PF_EMULATE; - return true; - } + if (unlikely(!enable_mmio_caching) || + unlikely(fault->gfn > kvm_mmu_max_gfn())) + return RET_PF_EMULATE; } - return false; + return RET_PF_CONTINUE; } static bool page_fault_can_be_fast(struct kvm_page_fault *fault) { /* - * Do not fix the mmio spte with invalid generation number which - * need to be updated by slow page fault path. + * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only + * reach the common page fault handler if the SPTE has an invalid MMIO + * generation number. Refreshing the MMIO generation needs to go down + * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag! */ if (fault->rsvd) return false; - /* See if the page fault is due to an NX violation */ - if (unlikely(fault->exec && fault->present)) - return false; - /* * #PF can be fast if: - * 1. The shadow page table entry is not present, which could mean that - * the fault is potentially caused by access tracking (if enabled). - * 2. The shadow page table entry is present and the fault - * is caused by write-protect, that means we just need change the W - * bit of the spte which can be done out of mmu-lock. * - * However, if access tracking is disabled we know that a non-present - * page must be a genuine page fault where we have to create a new SPTE. - * So, if access tracking is disabled, we return true only for write - * accesses to a present page. + * 1. The shadow page table entry is not present and A/D bits are + * disabled _by KVM_, which could mean that the fault is potentially + * caused by access tracking (if enabled). If A/D bits are enabled + * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D + * bits for L2 and employ access tracking, but the fast page fault + * mechanism only supports direct MMUs. + * 2. The shadow page table entry is present, the access is a write, + * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e. + * the fault was caused by a write-protection violation. If the + * SPTE is MMU-writable (determined later), the fault can be fixed + * by setting the Writable bit, which can be done out of mmu_lock. */ + if (!fault->present) + return !kvm_ad_enabled(); - return shadow_acc_track_mask != 0 || (fault->write && fault->present); + /* + * Note, instruction fetches and writes are mutually exclusive, ignore + * the "exec" flag. + */ + return fault->write; } /* @@ -3090,7 +3252,7 @@ fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, * * Compare with set_spte where instead shadow_dirty_mask is set. */ - if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) + if (!try_cmpxchg64(sptep, &old_spte, new_spte)) return false; if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) @@ -3182,16 +3344,27 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) new_spte = spte; - if (is_access_track_spte(spte)) + /* + * KVM only supports fixing page faults outside of MMU lock for + * direct MMUs, nested MMUs are always indirect, and KVM always + * uses A/D bits for non-nested MMUs. Thus, if A/D bits are + * enabled, the SPTE can't be an access-tracked SPTE. + */ + if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte)) new_spte = restore_acc_track_spte(new_spte); /* - * Currently, to simplify the code, write-protection can - * be removed in the fast path only if the SPTE was - * write-protected for dirty-logging or access tracking. + * To keep things simple, only SPTEs that are MMU-writable can + * be made fully writable outside of mmu_lock, e.g. only SPTEs + * that were write-protected for dirty-logging or access + * tracking are handled here. Don't bother checking if the + * SPTE is writable to prioritize running with A/D bits enabled. + * The is_access_allowed() check above handles the common case + * of the fault being spurious, and the SPTE is known to be + * shadow-present, i.e. except for access tracking restoration + * making the new SPTE writable, the check is wasteful. */ - if (fault->write && - spte_can_locklessly_be_made_writable(spte)) { + if (fault->write && is_mmu_writable_spte(spte)) { new_spte |= PT_WRITABLE_MASK; /* @@ -3235,6 +3408,9 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) trace_fast_page_fault(vcpu, fault, sptep, spte, ret); walk_shadow_page_lockless_end(vcpu); + if (ret != RET_PF_INVALID) + vcpu->stat.pf_fast++; + return ret; } @@ -3246,7 +3422,9 @@ static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, if (!VALID_PAGE(*root_hpa)) return; - sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); + sp = to_shadow_page(*root_hpa & SPTE_BASE_ADDR_MASK); + if (WARN_ON(!sp)) + return; if (is_tdp_mmu_page(sp)) kvm_tdp_mmu_put_root(kvm, sp, false); @@ -3257,18 +3435,20 @@ static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, } /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ -void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, +void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, ulong roots_to_free) { - struct kvm *kvm = vcpu->kvm; int i; LIST_HEAD(invalid_list); - bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; + bool free_active_root; BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); /* Before acquiring the MMU lock, see if we need to do any real work. */ - if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { + free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT) + && VALID_PAGE(mmu->root.hpa); + + if (!free_active_root) { for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && VALID_PAGE(mmu->prev_roots[i].hpa)) @@ -3286,9 +3466,8 @@ void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, &invalid_list); if (free_active_root) { - if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && - (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { - mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); + if (to_shadow_page(mmu->root.hpa)) { + mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list); } else if (mmu->pae_root) { for (i = 0; i < 4; ++i) { if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) @@ -3299,8 +3478,8 @@ void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, mmu->pae_root[i] = INVALID_PAE_ROOT; } } - mmu->root_hpa = INVALID_PAGE; - mmu->root_pgd = 0; + mmu->root.hpa = INVALID_PAGE; + mmu->root.pgd = 0; } kvm_mmu_commit_zap_page(kvm, &invalid_list); @@ -3308,7 +3487,7 @@ void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, } EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); -void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) +void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu) { unsigned long roots_to_free = 0; hpa_t root_hpa; @@ -3318,7 +3497,7 @@ void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) * This should not be called while L2 is active, L2 can't invalidate * _only_ its own roots, e.g. INVVPID unconditionally exits. */ - WARN_ON_ONCE(mmu->mmu_role.base.guest_mode); + WARN_ON_ONCE(mmu->root_role.guest_mode); for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { root_hpa = mmu->prev_roots[i].hpa; @@ -3330,7 +3509,7 @@ void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); } - kvm_mmu_free_roots(vcpu, mmu, roots_to_free); + kvm_mmu_free_roots(kvm, mmu, roots_to_free); } EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots); @@ -3347,12 +3526,19 @@ static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) return ret; } -static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, - u8 level, bool direct) +static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant, + u8 level) { + union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; struct kvm_mmu_page *sp; - sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); + role.level = level; + role.quadrant = quadrant; + + WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte); + WARN_ON_ONCE(role.direct && role.has_4_byte_gpte); + + sp = kvm_mmu_get_shadow_page(vcpu, gfn, role); ++sp->root_count; return __pa(sp->spt); @@ -3361,7 +3547,7 @@ static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.mmu; - u8 shadow_root_level = mmu->shadow_root_level; + u8 shadow_root_level = mmu->root_role.level; hpa_t root; unsigned i; int r; @@ -3373,10 +3559,10 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) if (is_tdp_mmu_enabled(vcpu->kvm)) { root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); - mmu->root_hpa = root; + mmu->root.hpa = root; } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { - root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); - mmu->root_hpa = root; + root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level); + mmu->root.hpa = root; } else if (shadow_root_level == PT32E_ROOT_LEVEL) { if (WARN_ON_ONCE(!mmu->pae_root)) { r = -EIO; @@ -3386,20 +3572,20 @@ static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) for (i = 0; i < 4; ++i) { WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); - root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), - i << 30, PT32_ROOT_LEVEL, true); + root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0, + PT32_ROOT_LEVEL); mmu->pae_root[i] = root | PT_PRESENT_MASK | - shadow_me_mask; + shadow_me_value; } - mmu->root_hpa = __pa(mmu->pae_root); + mmu->root.hpa = __pa(mmu->pae_root); } else { WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); r = -EIO; goto out_unlock; } - /* root_pgd is ignored for direct MMUs. */ - mmu->root_pgd = 0; + /* root.pgd is ignored for direct MMUs. */ + mmu->root.pgd = 0; out_unlock: write_unlock(&vcpu->kvm->mmu_lock); return r; @@ -3409,7 +3595,7 @@ static int mmu_first_shadow_root_alloc(struct kvm *kvm) { struct kvm_memslots *slots; struct kvm_memory_slot *slot; - int r = 0, i; + int r = 0, i, bkt; /* * Check if this is the first shadow root being allocated before @@ -3434,7 +3620,7 @@ static int mmu_first_shadow_root_alloc(struct kvm *kvm) for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { slots = __kvm_memslots(kvm, i); - kvm_for_each_memslot(slot, slots) { + kvm_for_each_memslot(slot, bkt, slots) { /* * Both of these functions are no-ops if the target is * already allocated, so unconditionally calling both @@ -3471,9 +3657,8 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) struct kvm_mmu *mmu = vcpu->arch.mmu; u64 pdptrs[4], pm_mask; gfn_t root_gfn, root_pgd; + int quadrant, i, r; hpa_t root; - unsigned i; - int r; root_pgd = mmu->get_guest_pgd(vcpu); root_gfn = root_pgd >> PAGE_SHIFT; @@ -3485,7 +3670,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) * On SVM, reading PDPTRs might access guest memory, which might fault * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. */ - if (mmu->root_level == PT32E_ROOT_LEVEL) { + if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { for (i = 0; i < 4; ++i) { pdptrs[i] = mmu->get_pdptr(vcpu, i); if (!(pdptrs[i] & PT_PRESENT_MASK)) @@ -3509,10 +3694,10 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) * Do we shadow a long mode page table? If so we need to * write-protect the guests page table root. */ - if (mmu->root_level >= PT64_ROOT_4LEVEL) { + if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { root = mmu_alloc_root(vcpu, root_gfn, 0, - mmu->shadow_root_level, false); - mmu->root_hpa = root; + mmu->root_role.level); + mmu->root.hpa = root; goto set_root_pgd; } @@ -3526,8 +3711,8 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) * or a PAE 3-level page table. In either case we need to be aware that * the shadow page table may be a PAE or a long mode page table. */ - pm_mask = PT_PRESENT_MASK | shadow_me_mask; - if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { + pm_mask = PT_PRESENT_MASK | shadow_me_value; + if (mmu->root_role.level >= PT64_ROOT_4LEVEL) { pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; if (WARN_ON_ONCE(!mmu->pml4_root)) { @@ -3536,7 +3721,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) } mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; - if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) { + if (mmu->root_role.level == PT64_ROOT_5LEVEL) { if (WARN_ON_ONCE(!mmu->pml5_root)) { r = -EIO; goto out_unlock; @@ -3548,7 +3733,7 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) for (i = 0; i < 4; ++i) { WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); - if (mmu->root_level == PT32E_ROOT_LEVEL) { + if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) { if (!(pdptrs[i] & PT_PRESENT_MASK)) { mmu->pae_root[i] = INVALID_PAE_ROOT; continue; @@ -3556,30 +3741,37 @@ static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) root_gfn = pdptrs[i] >> PAGE_SHIFT; } - root = mmu_alloc_root(vcpu, root_gfn, i << 30, - PT32_ROOT_LEVEL, false); + /* + * If shadowing 32-bit non-PAE page tables, each PAE page + * directory maps one quarter of the guest's non-PAE page + * directory. Othwerise each PAE page direct shadows one guest + * PAE page directory so that quadrant should be 0. + */ + quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0; + + root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL); mmu->pae_root[i] = root | pm_mask; } - if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) - mmu->root_hpa = __pa(mmu->pml5_root); - else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) - mmu->root_hpa = __pa(mmu->pml4_root); + if (mmu->root_role.level == PT64_ROOT_5LEVEL) + mmu->root.hpa = __pa(mmu->pml5_root); + else if (mmu->root_role.level == PT64_ROOT_4LEVEL) + mmu->root.hpa = __pa(mmu->pml4_root); else - mmu->root_hpa = __pa(mmu->pae_root); + mmu->root.hpa = __pa(mmu->pae_root); set_root_pgd: - mmu->root_pgd = root_pgd; + mmu->root.pgd = root_pgd; out_unlock: write_unlock(&vcpu->kvm->mmu_lock); - return 0; + return r; } static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.mmu; - bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL; + bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL; u64 *pml5_root = NULL; u64 *pml4_root = NULL; u64 *pae_root; @@ -3590,8 +3782,9 @@ static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) * equivalent level in the guest's NPT to shadow. Allocate the tables * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. */ - if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || - mmu->shadow_root_level < PT64_ROOT_4LEVEL) + if (mmu->root_role.direct || + mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL || + mmu->root_role.level < PT64_ROOT_4LEVEL) return 0; /* @@ -3668,6 +3861,14 @@ static bool is_unsync_root(hpa_t root) */ smp_rmb(); sp = to_shadow_page(root); + + /* + * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the + * PDPTEs for a given PAE root need to be synchronized individually. + */ + if (WARN_ON_ONCE(!sp)) + return false; + if (sp->unsync || sp->unsync_children) return true; @@ -3679,45 +3880,39 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) int i; struct kvm_mmu_page *sp; - if (vcpu->arch.mmu->direct_map) + if (vcpu->arch.mmu->root_role.direct) return; - if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) + if (!VALID_PAGE(vcpu->arch.mmu->root.hpa)) return; vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); - if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { - hpa_t root = vcpu->arch.mmu->root_hpa; + if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) { + hpa_t root = vcpu->arch.mmu->root.hpa; sp = to_shadow_page(root); if (!is_unsync_root(root)) return; write_lock(&vcpu->kvm->mmu_lock); - kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); - mmu_sync_children(vcpu, sp, true); - - kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); write_unlock(&vcpu->kvm->mmu_lock); return; } write_lock(&vcpu->kvm->mmu_lock); - kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); for (i = 0; i < 4; ++i) { hpa_t root = vcpu->arch.mmu->pae_root[i]; if (IS_VALID_PAE_ROOT(root)) { - root &= PT64_BASE_ADDR_MASK; + root &= SPTE_BASE_ADDR_MASK; sp = to_shadow_page(root); mmu_sync_children(vcpu, sp, true); } } - kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); write_unlock(&vcpu->kvm->mmu_lock); } @@ -3731,24 +3926,16 @@ void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu) roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); /* sync prev_roots by simply freeing them */ - kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); + kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free); } -static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, - u32 access, struct x86_exception *exception) +static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + gpa_t vaddr, u64 access, + struct x86_exception *exception) { if (exception) exception->error_code = 0; - return vaddr; -} - -static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, - u32 access, - struct x86_exception *exception) -{ - if (exception) - exception->error_code = 0; - return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); + return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception); } static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) @@ -3888,7 +4075,7 @@ static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, * guest is writing the page which is write tracked which can * not be fixed by page fault handler. */ - if (kvm_slot_page_track_is_active(vcpu, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) + if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE)) return true; return false; @@ -3905,21 +4092,51 @@ static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) walk_shadow_page_lockless_end(vcpu); } +static u32 alloc_apf_token(struct kvm_vcpu *vcpu) +{ + /* make sure the token value is not 0 */ + u32 id = vcpu->arch.apf.id; + + if (id << 12 == 0) + vcpu->arch.apf.id = 1; + + return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; +} + static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, gfn_t gfn) { struct kvm_arch_async_pf arch; - arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; + arch.token = alloc_apf_token(vcpu); arch.gfn = gfn; - arch.direct_map = vcpu->arch.mmu->direct_map; + arch.direct_map = vcpu->arch.mmu->root_role.direct; arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); return kvm_setup_async_pf(vcpu, cr2_or_gpa, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); } -static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r) +void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) +{ + int r; + + if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) || + work->wakeup_all) + return; + + r = kvm_mmu_reload(vcpu); + if (unlikely(r)) + return; + + if (!vcpu->arch.mmu->root_role.direct && + work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) + return; + + kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); +} + +static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { struct kvm_memory_slot *slot = fault->slot; bool async; @@ -3930,7 +4147,7 @@ static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, * be zapped before KVM inserts a new MMIO SPTE for the gfn. */ if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) - goto out_retry; + return RET_PF_RETRY; if (!kvm_is_visible_memslot(slot)) { /* Don't expose private memslots to L2. */ @@ -3938,7 +4155,7 @@ static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, fault->slot = NULL; fault->pfn = KVM_PFN_NOSLOT; fault->map_writable = false; - return false; + return RET_PF_CONTINUE; } /* * If the APIC access page exists but is disabled, go directly @@ -3947,10 +4164,8 @@ static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, * when the AVIC is re-enabled. */ if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT && - !kvm_apicv_activated(vcpu->kvm)) { - *r = RET_PF_EMULATE; - return true; - } + !kvm_apicv_activated(vcpu->kvm)) + return RET_PF_EMULATE; } async = false; @@ -3958,26 +4173,23 @@ static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, fault->write, &fault->map_writable, &fault->hva); if (!async) - return false; /* *pfn has correct page already */ + return RET_PF_CONTINUE; /* *pfn has correct page already */ if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) { trace_kvm_try_async_get_page(fault->addr, fault->gfn); if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) { - trace_kvm_async_pf_doublefault(fault->addr, fault->gfn); + trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn); kvm_make_request(KVM_REQ_APF_HALT, vcpu); - goto out_retry; - } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) - goto out_retry; + return RET_PF_RETRY; + } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) { + return RET_PF_RETRY; + } } fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL, fault->write, &fault->map_writable, &fault->hva); - return false; - -out_retry: - *r = RET_PF_RETRY; - return true; + return RET_PF_CONTINUE; } /* @@ -3987,7 +4199,7 @@ out_retry: static bool is_page_fault_stale(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int mmu_seq) { - struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root_hpa); + struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa); /* Special roots, e.g. pae_root, are not backed by shadow pages. */ if (sp && is_obsolete_sp(vcpu->kvm, sp)) @@ -4001,11 +4213,11 @@ static bool is_page_fault_stale(struct kvm_vcpu *vcpu, * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs * to reload even if no vCPU is actively using the root. */ - if (!sp && kvm_test_request(KVM_REQ_MMU_RELOAD, vcpu)) + if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) return true; return fault->slot && - mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva); + mmu_invalidate_retry_hva(vcpu->kvm, mmu_seq, fault->hva); } static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) @@ -4029,13 +4241,15 @@ static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault if (r) return r; - mmu_seq = vcpu->kvm->mmu_notifier_seq; + mmu_seq = vcpu->kvm->mmu_invalidate_seq; smp_rmb(); - if (kvm_faultin_pfn(vcpu, fault, &r)) + r = kvm_faultin_pfn(vcpu, fault); + if (r != RET_PF_CONTINUE) return r; - if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r)) + r = handle_abnormal_pfn(vcpu, fault, ACC_ALL); + if (r != RET_PF_CONTINUE) return r; r = RET_PF_RETRY; @@ -4090,7 +4304,7 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, vcpu->arch.l1tf_flush_l1d = true; if (!flags) { - trace_kvm_page_fault(fault_address, error_code); + trace_kvm_page_fault(vcpu, fault_address, error_code); if (kvm_event_needs_reinjection(vcpu)) kvm_mmu_unprotect_page_virt(vcpu, fault_address); @@ -4111,14 +4325,26 @@ EXPORT_SYMBOL_GPL(kvm_handle_page_fault); int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { - while (fault->max_level > PG_LEVEL_4K) { - int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); - gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); - - if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) - break; + /* + * If the guest's MTRRs may be used to compute the "real" memtype, + * restrict the mapping level to ensure KVM uses a consistent memtype + * across the entire mapping. If the host MTRRs are ignored by TDP + * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA + * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype + * from the guest's MTRRs so that guest accesses to memory that is + * DMA'd aren't cached against the guest's wishes. + * + * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, + * e.g. KVM will force UC memtype for host MMIO. + */ + if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { + for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { + int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); + gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1); - --fault->max_level; + if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) + break; + } } return direct_page_fault(vcpu, fault); @@ -4130,81 +4356,111 @@ static void nonpaging_init_context(struct kvm_mmu *context) context->gva_to_gpa = nonpaging_gva_to_gpa; context->sync_page = nonpaging_sync_page; context->invlpg = NULL; - context->direct_map = true; } static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, union kvm_mmu_page_role role) { return (role.direct || pgd == root->pgd) && - VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && + VALID_PAGE(root->hpa) && role.word == to_shadow_page(root->hpa)->role.word; } /* - * Find out if a previously cached root matching the new pgd/role is available. - * The current root is also inserted into the cache. - * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is - * returned. - * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and - * false is returned. This root should now be freed by the caller. + * Find out if a previously cached root matching the new pgd/role is available, + * and insert the current root as the MRU in the cache. + * If a matching root is found, it is assigned to kvm_mmu->root and + * true is returned. + * If no match is found, kvm_mmu->root is left invalid, the LRU root is + * evicted to make room for the current root, and false is returned. */ -static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, - union kvm_mmu_page_role new_role) +static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu, + gpa_t new_pgd, + union kvm_mmu_page_role new_role) { uint i; - struct kvm_mmu_root_info root; - struct kvm_mmu *mmu = vcpu->arch.mmu; - root.pgd = mmu->root_pgd; - root.hpa = mmu->root_hpa; - - if (is_root_usable(&root, new_pgd, new_role)) + if (is_root_usable(&mmu->root, new_pgd, new_role)) return true; for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { - swap(root, mmu->prev_roots[i]); - - if (is_root_usable(&root, new_pgd, new_role)) - break; + /* + * The swaps end up rotating the cache like this: + * C 0 1 2 3 (on entry to the function) + * 0 C 1 2 3 + * 1 C 0 2 3 + * 2 C 0 1 3 + * 3 C 0 1 2 (on exit from the loop) + */ + swap(mmu->root, mmu->prev_roots[i]); + if (is_root_usable(&mmu->root, new_pgd, new_role)) + return true; } - mmu->root_hpa = root.hpa; - mmu->root_pgd = root.pgd; - - return i < KVM_MMU_NUM_PREV_ROOTS; + kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); + return false; } -static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, - union kvm_mmu_page_role new_role) +/* + * Find out if a previously cached root matching the new pgd/role is available. + * On entry, mmu->root is invalid. + * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry + * of the cache becomes invalid, and true is returned. + * If no match is found, kvm_mmu->root is left invalid and false is returned. + */ +static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu, + gpa_t new_pgd, + union kvm_mmu_page_role new_role) { - struct kvm_mmu *mmu = vcpu->arch.mmu; + uint i; + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role)) + goto hit; + + return false; +hit: + swap(mmu->root, mmu->prev_roots[i]); + /* Bubble up the remaining roots. */ + for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++) + mmu->prev_roots[i] = mmu->prev_roots[i + 1]; + mmu->prev_roots[i].hpa = INVALID_PAGE; + return true; +} + +static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu, + gpa_t new_pgd, union kvm_mmu_page_role new_role) +{ /* - * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid + * For now, limit the caching to 64-bit hosts+VMs in order to avoid * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs * later if necessary. */ - if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && - mmu->root_level >= PT64_ROOT_4LEVEL) - return cached_root_available(vcpu, new_pgd, new_role); + if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa)) + kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT); - return false; + if (VALID_PAGE(mmu->root.hpa)) + return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role); + else + return cached_root_find_without_current(kvm, mmu, new_pgd, new_role); } -static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, - union kvm_mmu_page_role new_role) +void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) { - if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { - kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); + struct kvm_mmu *mmu = vcpu->arch.mmu; + union kvm_mmu_page_role new_role = mmu->root_role; + + if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) { + /* kvm_mmu_ensure_valid_pgd will set up a new root. */ return; } /* * It's possible that the cached previous root page is obsolete because * of a change in the MMU generation number. However, changing the - * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will - * free the root set here and allocate a new one. + * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, + * which will free the root set here and allocate a new one. */ kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); @@ -4227,12 +4483,7 @@ static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, */ if (!new_role.direct) __clear_sp_write_flooding_count( - to_shadow_page(vcpu->arch.mmu->root_hpa)); -} - -void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd) -{ - __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu)); + to_shadow_page(vcpu->arch.mmu->root.hpa)); } EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); @@ -4375,12 +4626,12 @@ static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu) guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES); } -static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, - struct kvm_mmu *context) +static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu, + struct kvm_mmu *context) { __reset_rsvds_bits_mask(&context->guest_rsvd_check, vcpu->arch.reserved_gpa_bits, - context->root_level, is_efer_nx(context), + context->cpu_role.base.level, is_efer_nx(context), guest_can_use_gbpages(vcpu), is_cr4_pse(context), guest_cpuid_is_amd_or_hygon(vcpu)); @@ -4388,22 +4639,28 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, - u64 pa_bits_rsvd, bool execonly) + u64 pa_bits_rsvd, bool execonly, int huge_page_level) { u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); + u64 large_1g_rsvd = 0, large_2m_rsvd = 0; u64 bad_mt_xwr; + if (huge_page_level < PG_LEVEL_1G) + large_1g_rsvd = rsvd_bits(7, 7); + if (huge_page_level < PG_LEVEL_2M) + large_2m_rsvd = rsvd_bits(7, 7); + rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); - rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); - rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); + rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd; + rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd; rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* large page */ rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; - rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); - rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); + rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd; + rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd; rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ @@ -4419,10 +4676,11 @@ __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, } static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, - struct kvm_mmu *context, bool execonly) + struct kvm_mmu *context, bool execonly, int huge_page_level) { __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, - vcpu->arch.reserved_gpa_bits, execonly); + vcpu->arch.reserved_gpa_bits, execonly, + huge_page_level); } static inline u64 reserved_hpa_bits(void) @@ -4438,16 +4696,6 @@ static inline u64 reserved_hpa_bits(void) static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) { - /* - * KVM uses NX when TDP is disabled to handle a variety of scenarios, - * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and - * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. - * The iTLB multi-hit workaround can be toggled at any time, so assume - * NX can be used by any non-nested shadow MMU to avoid having to reset - * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. - */ - bool uses_nx = is_efer_nx(context) || !tdp_enabled; - /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */ bool is_amd = true; /* KVM doesn't use 2-level page tables for the shadow MMU. */ @@ -4455,19 +4703,28 @@ static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct rsvd_bits_validate *shadow_zero_check; int i; - WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL); + WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL); shadow_zero_check = &context->shadow_zero_check; __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), - context->shadow_root_level, uses_nx, + context->root_role.level, + context->root_role.efer_nx, guest_can_use_gbpages(vcpu), is_pse, is_amd); if (!shadow_me_mask) return; - for (i = context->shadow_root_level; --i >= 0;) { - shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; - shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; + for (i = context->root_role.level; --i >= 0;) { + /* + * So far shadow_me_value is a constant during KVM's life + * time. Bits in shadow_me_value are allowed to be set. + * Bits in shadow_me_mask but not in shadow_me_value are + * not allowed to be set. + */ + shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask; + shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask; + shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value; + shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value; } } @@ -4483,8 +4740,7 @@ static inline bool boot_cpu_is_amd(void) * possible, however, kvm currently does not do execution-protection. */ static void -reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, - struct kvm_mmu *context) +reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context) { struct rsvd_bits_validate *shadow_zero_check; int i; @@ -4493,17 +4749,18 @@ reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, if (boot_cpu_is_amd()) __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(), - context->shadow_root_level, false, + context->root_role.level, true, boot_cpu_has(X86_FEATURE_GBPAGES), false, true); else __reset_rsvds_bits_mask_ept(shadow_zero_check, - reserved_hpa_bits(), false); + reserved_hpa_bits(), false, + max_huge_page_level); if (!shadow_me_mask) return; - for (i = context->shadow_root_level; --i >= 0;) { + for (i = context->root_role.level; --i >= 0;) { shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; } @@ -4514,11 +4771,11 @@ reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, * is the shadow page table for intel nested guest. */ static void -reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, - struct kvm_mmu *context, bool execonly) +reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly) { __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, - reserved_hpa_bits(), execonly); + reserved_hpa_bits(), execonly, + max_huge_page_level); } #define BYTE_MASK(access) \ @@ -4587,11 +4844,11 @@ static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept) * - X86_CR4_SMAP is set in CR4 * - A user page is accessed * - The access is not a fetch - * - Page fault in kernel mode - * - if CPL = 3 or X86_EFLAGS_AC is clear + * - The access is supervisor mode + * - If implicit supervisor access or X86_EFLAGS_AC is clear * - * Here, we cover the first three conditions. - * The fourth is computed dynamically in permission_fault(); + * Here, we cover the first four conditions. + * The fifth is computed dynamically in permission_fault(); * PFERR_RSVD_MASK bit will be set in PFEC if the access is * *not* subject to SMAP restrictions. */ @@ -4677,7 +4934,7 @@ static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu, if (!is_cr0_pg(mmu)) return; - reset_rsvds_bits_mask(vcpu, mmu); + reset_guest_rsvds_bits_mask(vcpu, mmu); update_permission_bitmask(mmu, false); update_pkru_bitmask(mmu); } @@ -4688,7 +4945,6 @@ static void paging64_init_context(struct kvm_mmu *context) context->gva_to_gpa = paging64_gva_to_gpa; context->sync_page = paging64_sync_page; context->invlpg = paging64_invlpg; - context->direct_map = false; } static void paging32_init_context(struct kvm_mmu *context) @@ -4697,51 +4953,45 @@ static void paging32_init_context(struct kvm_mmu *context) context->gva_to_gpa = paging32_gva_to_gpa; context->sync_page = paging32_sync_page; context->invlpg = paging32_invlpg; - context->direct_map = false; } -static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu, - struct kvm_mmu_role_regs *regs) +static union kvm_cpu_role +kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs) { - union kvm_mmu_extended_role ext = {0}; - - if (____is_cr0_pg(regs)) { - ext.cr0_pg = 1; - ext.cr4_pae = ____is_cr4_pae(regs); - ext.cr4_smep = ____is_cr4_smep(regs); - ext.cr4_smap = ____is_cr4_smap(regs); - ext.cr4_pse = ____is_cr4_pse(regs); - - /* PKEY and LA57 are active iff long mode is active. */ - ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); - ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); - ext.efer_lma = ____is_efer_lma(regs); - } - - ext.valid = 1; - - return ext; -} - -static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, - struct kvm_mmu_role_regs *regs, - bool base_only) -{ - union kvm_mmu_role role = {0}; + union kvm_cpu_role role = {0}; role.base.access = ACC_ALL; - if (____is_cr0_pg(regs)) { - role.base.efer_nx = ____is_efer_nx(regs); - role.base.cr0_wp = ____is_cr0_wp(regs); - } role.base.smm = is_smm(vcpu); role.base.guest_mode = is_guest_mode(vcpu); + role.ext.valid = 1; - if (base_only) + if (!____is_cr0_pg(regs)) { + role.base.direct = 1; return role; + } + + role.base.efer_nx = ____is_efer_nx(regs); + role.base.cr0_wp = ____is_cr0_wp(regs); + role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs); + role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs); + role.base.has_4_byte_gpte = !____is_cr4_pae(regs); + + if (____is_efer_lma(regs)) + role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL + : PT64_ROOT_4LEVEL; + else if (____is_cr4_pae(regs)) + role.base.level = PT32E_ROOT_LEVEL; + else + role.base.level = PT32_ROOT_LEVEL; - role.ext = kvm_calc_mmu_role_ext(vcpu, regs); + role.ext.cr4_smep = ____is_cr4_smep(regs); + role.ext.cr4_smap = ____is_cr4_smap(regs); + role.ext.cr4_pse = ____is_cr4_pse(regs); + /* PKEY and LA57 are active iff long mode is active. */ + role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs); + role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs); + role.ext.efer_lma = ____is_efer_lma(regs); return role; } @@ -4758,40 +5008,43 @@ static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) return max_tdp_level; } -static union kvm_mmu_role +static union kvm_mmu_page_role kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, - struct kvm_mmu_role_regs *regs, bool base_only) + union kvm_cpu_role cpu_role) { - union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); + union kvm_mmu_page_role role = {0}; - role.base.ad_disabled = (shadow_accessed_mask == 0); - role.base.level = kvm_mmu_get_tdp_level(vcpu); - role.base.direct = true; - role.base.gpte_is_8_bytes = true; + role.access = ACC_ALL; + role.cr0_wp = true; + role.efer_nx = true; + role.smm = cpu_role.base.smm; + role.guest_mode = cpu_role.base.guest_mode; + role.ad_disabled = !kvm_ad_enabled(); + role.level = kvm_mmu_get_tdp_level(vcpu); + role.direct = true; + role.has_4_byte_gpte = false; return role; } -static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) +static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu, + union kvm_cpu_role cpu_role) { struct kvm_mmu *context = &vcpu->arch.root_mmu; - struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); - union kvm_mmu_role new_role = - kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false); + union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role); - if (new_role.as_u64 == context->mmu_role.as_u64) + if (cpu_role.as_u64 == context->cpu_role.as_u64 && + root_role.word == context->root_role.word) return; - context->mmu_role.as_u64 = new_role.as_u64; + context->cpu_role.as_u64 = cpu_role.as_u64; + context->root_role.word = root_role.word; context->page_fault = kvm_tdp_page_fault; context->sync_page = nonpaging_sync_page; context->invlpg = NULL; - context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); - context->direct_map = true; context->get_guest_pgd = get_cr3; context->get_pdptr = kvm_pdptr_read; context->inject_page_fault = kvm_inject_page_fault; - context->root_level = role_regs_to_root_level(®s); if (!is_cr0_pg(context)) context->gva_to_gpa = nonpaging_gva_to_gpa; @@ -4801,49 +5054,19 @@ static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) context->gva_to_gpa = paging32_gva_to_gpa; reset_guest_paging_metadata(vcpu, context); - reset_tdp_shadow_zero_bits_mask(vcpu, context); -} - -static union kvm_mmu_role -kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, - struct kvm_mmu_role_regs *regs, bool base_only) -{ - union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only); - - role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs); - role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs); - role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs); - - return role; -} - -static union kvm_mmu_role -kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, - struct kvm_mmu_role_regs *regs, bool base_only) -{ - union kvm_mmu_role role = - kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only); - - role.base.direct = !____is_cr0_pg(regs); - - if (!____is_efer_lma(regs)) - role.base.level = PT32E_ROOT_LEVEL; - else if (____is_cr4_la57(regs)) - role.base.level = PT64_ROOT_5LEVEL; - else - role.base.level = PT64_ROOT_4LEVEL; - - return role; + reset_tdp_shadow_zero_bits_mask(context); } static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, - struct kvm_mmu_role_regs *regs, - union kvm_mmu_role new_role) + union kvm_cpu_role cpu_role, + union kvm_mmu_page_role root_role) { - if (new_role.as_u64 == context->mmu_role.as_u64) + if (cpu_role.as_u64 == context->cpu_role.as_u64 && + root_role.word == context->root_role.word) return; - context->mmu_role.as_u64 = new_role.as_u64; + context->cpu_role.as_u64 = cpu_role.as_u64; + context->root_role.word = root_role.word; if (!is_cr0_pg(context)) nonpaging_init_context(context); @@ -4851,35 +5074,34 @@ static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *conte paging64_init_context(context); else paging32_init_context(context); - context->root_level = role_regs_to_root_level(regs); reset_guest_paging_metadata(vcpu, context); - context->shadow_root_level = new_role.base.level; - reset_shadow_zero_bits_mask(vcpu, context); } static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, - struct kvm_mmu_role_regs *regs) + union kvm_cpu_role cpu_role) { struct kvm_mmu *context = &vcpu->arch.root_mmu; - union kvm_mmu_role new_role = - kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false); + union kvm_mmu_page_role root_role; - shadow_mmu_init_context(vcpu, context, regs, new_role); -} + root_role = cpu_role.base; -static union kvm_mmu_role -kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu, - struct kvm_mmu_role_regs *regs) -{ - union kvm_mmu_role role = - kvm_calc_shadow_root_page_role_common(vcpu, regs, false); + /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */ + root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL); - role.base.direct = false; - role.base.level = kvm_mmu_get_tdp_level(vcpu); + /* + * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role. + * KVM uses NX when TDP is disabled to handle a variety of scenarios, + * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and + * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. + * The iTLB multi-hit workaround can be toggled at any time, so assume + * NX can be used by any non-nested shadow MMU to avoid having to reset + * MMU contexts. + */ + root_role.efer_nx = true; - return role; + shadow_mmu_init_context(vcpu, context, cpu_role, root_role); } void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, @@ -4891,33 +5113,41 @@ void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0, .cr4 = cr4 & ~X86_CR4_PKE, .efer = efer, }; - union kvm_mmu_role new_role; + union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); + union kvm_mmu_page_role root_role; - new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s); + /* NPT requires CR0.PG=1. */ + WARN_ON_ONCE(cpu_role.base.direct); - __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base); + root_role = cpu_role.base; + root_role.level = kvm_mmu_get_tdp_level(vcpu); + if (root_role.level == PT64_ROOT_5LEVEL && + cpu_role.base.level == PT64_ROOT_4LEVEL) + root_role.passthrough = 1; - shadow_mmu_init_context(vcpu, context, ®s, new_role); + shadow_mmu_init_context(vcpu, context, cpu_role, root_role); + kvm_mmu_new_pgd(vcpu, nested_cr3); } EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); -static union kvm_mmu_role +static union kvm_cpu_role kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, bool execonly, u8 level) { - union kvm_mmu_role role = {0}; - - /* SMM flag is inherited from root_mmu */ - role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; + union kvm_cpu_role role = {0}; + /* + * KVM does not support SMM transfer monitors, and consequently does not + * support the "entry to SMM" control either. role.base.smm is always 0. + */ + WARN_ON_ONCE(is_smm(vcpu)); role.base.level = level; - role.base.gpte_is_8_bytes = true; + role.base.has_4_byte_gpte = false; role.base.direct = false; role.base.ad_disabled = !accessed_dirty; role.base.guest_mode = true; role.base.access = ACC_ALL; - /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ role.ext.word = 0; role.ext.execonly = execonly; role.ext.valid = 1; @@ -4926,81 +5156,59 @@ kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, } void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, - bool accessed_dirty, gpa_t new_eptp) + int huge_page_level, bool accessed_dirty, + gpa_t new_eptp) { struct kvm_mmu *context = &vcpu->arch.guest_mmu; u8 level = vmx_eptp_page_walk_level(new_eptp); - union kvm_mmu_role new_role = + union kvm_cpu_role new_mode = kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, execonly, level); - __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base); - - if (new_role.as_u64 == context->mmu_role.as_u64) - return; + if (new_mode.as_u64 != context->cpu_role.as_u64) { + /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */ + context->cpu_role.as_u64 = new_mode.as_u64; + context->root_role.word = new_mode.base.word; - context->mmu_role.as_u64 = new_role.as_u64; + context->page_fault = ept_page_fault; + context->gva_to_gpa = ept_gva_to_gpa; + context->sync_page = ept_sync_page; + context->invlpg = ept_invlpg; - context->shadow_root_level = level; - - context->ept_ad = accessed_dirty; - context->page_fault = ept_page_fault; - context->gva_to_gpa = ept_gva_to_gpa; - context->sync_page = ept_sync_page; - context->invlpg = ept_invlpg; - context->root_level = level; - context->direct_map = false; + update_permission_bitmask(context, true); + context->pkru_mask = 0; + reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level); + reset_ept_shadow_zero_bits_mask(context, execonly); + } - update_permission_bitmask(context, true); - context->pkru_mask = 0; - reset_rsvds_bits_mask_ept(vcpu, context, execonly); - reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); + kvm_mmu_new_pgd(vcpu, new_eptp); } EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); -static void init_kvm_softmmu(struct kvm_vcpu *vcpu) +static void init_kvm_softmmu(struct kvm_vcpu *vcpu, + union kvm_cpu_role cpu_role) { struct kvm_mmu *context = &vcpu->arch.root_mmu; - struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); - kvm_init_shadow_mmu(vcpu, ®s); + kvm_init_shadow_mmu(vcpu, cpu_role); context->get_guest_pgd = get_cr3; context->get_pdptr = kvm_pdptr_read; context->inject_page_fault = kvm_inject_page_fault; } -static union kvm_mmu_role -kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs) -{ - union kvm_mmu_role role; - - role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false); - - /* - * Nested MMUs are used only for walking L2's gva->gpa, they never have - * shadow pages of their own and so "direct" has no meaning. Set it - * to "true" to try to detect bogus usage of the nested MMU. - */ - role.base.direct = true; - role.base.level = role_regs_to_root_level(regs); - return role; -} - -static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) +static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu, + union kvm_cpu_role new_mode) { - struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); - union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s); struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; - if (new_role.as_u64 == g_context->mmu_role.as_u64) + if (new_mode.as_u64 == g_context->cpu_role.as_u64) return; - g_context->mmu_role.as_u64 = new_role.as_u64; + g_context->cpu_role.as_u64 = new_mode.as_u64; g_context->get_guest_pgd = get_cr3; g_context->get_pdptr = kvm_pdptr_read; g_context->inject_page_fault = kvm_inject_page_fault; - g_context->root_level = new_role.base.level; /* * L2 page tables are never shadowed, so there is no need to sync @@ -5017,42 +5225,31 @@ static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) * the gva_to_gpa functions between mmu and nested_mmu are swapped. */ if (!is_paging(vcpu)) - g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; + g_context->gva_to_gpa = nonpaging_gva_to_gpa; else if (is_long_mode(vcpu)) - g_context->gva_to_gpa = paging64_gva_to_gpa_nested; + g_context->gva_to_gpa = paging64_gva_to_gpa; else if (is_pae(vcpu)) - g_context->gva_to_gpa = paging64_gva_to_gpa_nested; + g_context->gva_to_gpa = paging64_gva_to_gpa; else - g_context->gva_to_gpa = paging32_gva_to_gpa_nested; + g_context->gva_to_gpa = paging32_gva_to_gpa; reset_guest_paging_metadata(vcpu, g_context); } void kvm_init_mmu(struct kvm_vcpu *vcpu) { + struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); + union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, ®s); + if (mmu_is_nested(vcpu)) - init_kvm_nested_mmu(vcpu); + init_kvm_nested_mmu(vcpu, cpu_role); else if (tdp_enabled) - init_kvm_tdp_mmu(vcpu); + init_kvm_tdp_mmu(vcpu, cpu_role); else - init_kvm_softmmu(vcpu); + init_kvm_softmmu(vcpu, cpu_role); } EXPORT_SYMBOL_GPL(kvm_init_mmu); -static union kvm_mmu_page_role -kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) -{ - struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu); - union kvm_mmu_role role; - - if (tdp_enabled) - role = kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, true); - else - role = kvm_calc_shadow_mmu_root_page_role(vcpu, ®s, true); - - return role.base; -} - void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) { /* @@ -5067,9 +5264,12 @@ void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) * problem is swept under the rug; KVM's CPUID API is horrific and * it's all but impossible to solve it without introducing a new API. */ - vcpu->arch.root_mmu.mmu_role.ext.valid = 0; - vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; - vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; + vcpu->arch.root_mmu.root_role.word = 0; + vcpu->arch.guest_mmu.root_role.word = 0; + vcpu->arch.nested_mmu.root_role.word = 0; + vcpu->arch.root_mmu.cpu_role.ext.valid = 0; + vcpu->arch.guest_mmu.cpu_role.ext.valid = 0; + vcpu->arch.nested_mmu.cpu_role.ext.valid = 0; kvm_mmu_reset_context(vcpu); /* @@ -5090,13 +5290,13 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu) { int r; - r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); + r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct); if (r) goto out; r = mmu_alloc_special_roots(vcpu); if (r) goto out; - if (vcpu->arch.mmu->direct_map) + if (vcpu->arch.mmu->root_role.direct) r = mmu_alloc_direct_roots(vcpu); else r = mmu_alloc_shadow_roots(vcpu); @@ -5106,30 +5306,73 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu) kvm_mmu_sync_roots(vcpu); kvm_mmu_load_pgd(vcpu); - static_call(kvm_x86_tlb_flush_current)(vcpu); + + /* + * Flush any TLB entries for the new root, the provenance of the root + * is unknown. Even if KVM ensures there are no stale TLB entries + * for a freed root, in theory another hypervisor could have left + * stale entries. Flushing on alloc also allows KVM to skip the TLB + * flush when freeing a root (see kvm_tdp_mmu_put_root()). + */ + static_call(kvm_x86_flush_tlb_current)(vcpu); out: return r; } void kvm_mmu_unload(struct kvm_vcpu *vcpu) { - kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); - WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); - kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); - WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); + struct kvm *kvm = vcpu->kvm; + + kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); + WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa)); + kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); + WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa)); + vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); } -static bool need_remote_flush(u64 old, u64 new) +static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa) { - if (!is_shadow_present_pte(old)) + struct kvm_mmu_page *sp; + + if (!VALID_PAGE(root_hpa)) return false; - if (!is_shadow_present_pte(new)) - return true; - if ((old ^ new) & PT64_BASE_ADDR_MASK) - return true; - old ^= shadow_nx_mask; - new ^= shadow_nx_mask; - return (old & ~new & PT64_PERM_MASK) != 0; + + /* + * When freeing obsolete roots, treat roots as obsolete if they don't + * have an associated shadow page. This does mean KVM will get false + * positives and free roots that don't strictly need to be freed, but + * such false positives are relatively rare: + * + * (a) only PAE paging and nested NPT has roots without shadow pages + * (b) remote reloads due to a memslot update obsoletes _all_ roots + * (c) KVM doesn't track previous roots for PAE paging, and the guest + * is unlikely to zap an in-use PGD. + */ + sp = to_shadow_page(root_hpa); + return !sp || is_obsolete_sp(kvm, sp); +} + +static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu) +{ + unsigned long roots_to_free = 0; + int i; + + if (is_obsolete_root(kvm, mmu->root.hpa)) + roots_to_free |= KVM_MMU_ROOT_CURRENT; + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { + if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa)) + roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); + } + + if (roots_to_free) + kvm_mmu_free_roots(kvm, mmu, roots_to_free); +} + +void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) +{ + __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu); + __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); } static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, @@ -5188,7 +5431,7 @@ static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, gpa, bytes, sp->role.word); offset = offset_in_page(gpa); - pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; + pte_size = sp->role.has_4_byte_gpte ? 4 : 8; /* * Sometimes, the OS only writes the last one bytes to update status @@ -5212,7 +5455,7 @@ static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) page_offset = offset_in_page(gpa); level = sp->role.level; *nspte = 1; - if (!sp->role.gpte_is_8_bytes) { + if (sp->role.has_4_byte_gpte) { page_offset <<= 1; /* 32->64 */ /* * A 32-bit pde maps 4MB while the shadow pdes map @@ -5254,21 +5497,13 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); - /* - * No need to care whether allocation memory is successful - * or not since pte prefetch is skipped if it does not have - * enough objects in the cache. - */ - mmu_topup_memory_caches(vcpu, true); - write_lock(&vcpu->kvm->mmu_lock); gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); ++vcpu->kvm->stat.mmu_pte_write; - kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); - for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { + for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) { if (detect_write_misaligned(sp, gpa, bytes) || detect_write_flooding(sp)) { kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); @@ -5285,23 +5520,22 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); if (gentry && sp->role.level != PG_LEVEL_4K) ++vcpu->kvm->stat.mmu_pde_zapped; - if (need_remote_flush(entry, *spte)) + if (is_shadow_present_pte(entry)) flush = true; ++spte; } } kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush); - kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); write_unlock(&vcpu->kvm->mmu_lock); } -int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, +int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, void *insn, int insn_len) { int r, emulation_type = EMULTYPE_PF; - bool direct = vcpu->arch.mmu->direct_map; + bool direct = vcpu->arch.mmu->root_role.direct; - if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) + if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) return RET_PF_RETRY; r = RET_PF_INVALID; @@ -5330,7 +5564,7 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, * paging in both guests. If true, we simply unprotect the page * and resume the guest. */ - if (vcpu->arch.mmu->direct_map && + if (vcpu->arch.mmu->root_role.direct && (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); return 1; @@ -5366,14 +5600,14 @@ void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, if (is_noncanonical_address(gva, vcpu)) return; - static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); + static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); } if (!mmu->invlpg) return; if (root_hpa == INVALID_PAGE) { - mmu->invlpg(vcpu, gva, mmu->root_hpa); + mmu->invlpg(vcpu, gva, mmu->root.hpa); /* * INVLPG is required to invalidate any global mappings for the VA, @@ -5409,20 +5643,22 @@ void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) uint i; if (pcid == kvm_get_active_pcid(vcpu)) { - mmu->invlpg(vcpu, gva, mmu->root_hpa); + if (mmu->invlpg) + mmu->invlpg(vcpu, gva, mmu->root.hpa); tlb_flush = true; } for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { if (VALID_PAGE(mmu->prev_roots[i].hpa) && pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { - mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); + if (mmu->invlpg) + mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); tlb_flush = true; } } if (tlb_flush) - static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); + static_call(kvm_x86_flush_tlb_gva)(vcpu, gva); ++vcpu->stat.invlpg; @@ -5522,12 +5758,15 @@ static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) struct page *page; int i; - mmu->root_hpa = INVALID_PAGE; - mmu->root_pgd = 0; - mmu->translate_gpa = translate_gpa; + mmu->root.hpa = INVALID_PAGE; + mmu->root.pgd = 0; for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; + /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */ + if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu) + return 0; + /* * When using PAE paging, the four PDPTEs are treated as 'root' pages, * while the PDP table is a per-vCPU construct that's allocated at MMU @@ -5537,7 +5776,7 @@ static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) * generally doesn't use PAE paging and can skip allocating the PDP * table. The main exception, handled here, is SVM's 32-bit NPT. The * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit - * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). + * KVM; that horror is handled on-demand by mmu_alloc_special_roots(). */ if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) return 0; @@ -5559,7 +5798,7 @@ static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) if (!tdp_enabled) set_memory_decrypted((unsigned long)mmu->pae_root, 1); else - WARN_ON_ONCE(shadow_me_mask); + WARN_ON_ONCE(shadow_me_value); for (i = 0; i < 4; ++i) mmu->pae_root[i] = INVALID_PAE_ROOT; @@ -5582,8 +5821,6 @@ int kvm_mmu_create(struct kvm_vcpu *vcpu) vcpu->arch.mmu = &vcpu->arch.root_mmu; vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; - vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; - ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); if (ret) return ret; @@ -5603,6 +5840,7 @@ static void kvm_zap_obsolete_pages(struct kvm *kvm) { struct kvm_mmu_page *sp, *node; int nr_zapped, batch = 0; + bool unstable; restart: list_for_each_entry_safe_reverse(sp, node, @@ -5634,17 +5872,22 @@ restart: goto restart; } - if (__kvm_mmu_prepare_zap_page(kvm, sp, - &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { - batch += nr_zapped; + unstable = __kvm_mmu_prepare_zap_page(kvm, sp, + &kvm->arch.zapped_obsolete_pages, &nr_zapped); + batch += nr_zapped; + + if (unstable) goto restart; - } } /* - * Trigger a remote TLB flush before freeing the page tables to ensure - * KVM is not in the middle of a lockless shadow page table walk, which - * may reference the pages. + * Kick all vCPUs (via remote TLB flush) before freeing the page tables + * to ensure KVM is not in the middle of a lockless shadow page table + * walk, which may reference the pages. The remote TLB flush itself is + * not required and is simply a convenient way to kick vCPUs as needed. + * KVM performs a local TLB flush when allocating a new root (see + * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are + * running with an obsolete MMU. */ kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); } @@ -5674,11 +5917,11 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm) */ kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; - /* In order to ensure all threads see this change when - * handling the MMU reload signal, this must happen in the - * same critical section as kvm_reload_remote_mmus, and - * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages - * could drop the MMU lock and yield. + /* + * In order to ensure all vCPUs drop their soon-to-be invalid roots, + * invalidating TDP MMU roots must be done while holding mmu_lock for + * write and in the same critical section as making the reload request, + * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield. */ if (is_tdp_mmu_enabled(kvm)) kvm_tdp_mmu_invalidate_all_roots(kvm); @@ -5691,17 +5934,22 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm) * Note: we need to do this under the protection of mmu_lock, * otherwise, vcpu would purge shadow page but miss tlb flush. */ - kvm_reload_remote_mmus(kvm); + kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS); kvm_zap_obsolete_pages(kvm); write_unlock(&kvm->mmu_lock); - if (is_tdp_mmu_enabled(kvm)) { - read_lock(&kvm->mmu_lock); + /* + * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before + * returning to the caller, e.g. if the zap is in response to a memslot + * deletion, mmu_notifier callbacks will be unable to reach the SPTEs + * associated with the deleted memslot once the update completes, and + * Deferring the zap until the final reference to the root is put would + * lead to use-after-free. + */ + if (is_tdp_mmu_enabled(kvm)) kvm_tdp_mmu_zap_invalidated_roots(kvm); - read_unlock(&kvm->mmu_lock); - } } static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) @@ -5716,17 +5964,40 @@ static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, kvm_mmu_zap_all_fast(kvm); } -void kvm_mmu_init_vm(struct kvm *kvm) +int kvm_mmu_init_vm(struct kvm *kvm) { struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; + int r; + INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); + INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); - kvm_mmu_init_tdp_mmu(kvm); + r = kvm_mmu_init_tdp_mmu(kvm); + if (r < 0) + return r; node->track_write = kvm_mmu_pte_write; node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; kvm_page_track_register_notifier(kvm, node); + + kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache; + kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO; + + kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO; + + kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache; + kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO; + + return 0; +} + +static void mmu_free_vm_memory_caches(struct kvm *kvm) +{ + kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache); + kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache); + kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache); } void kvm_mmu_uninit_vm(struct kvm *kvm) @@ -5736,12 +6007,15 @@ void kvm_mmu_uninit_vm(struct kvm *kvm) kvm_page_track_unregister_notifier(kvm, node); kvm_mmu_uninit_tdp_mmu(kvm); + + mmu_free_vm_memory_caches(kvm); } -static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) +static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) { const struct kvm_memory_slot *memslot; struct kvm_memslots *slots; + struct kvm_memslot_iter iter; bool flush = false; gfn_t start, end; int i; @@ -5751,13 +6025,15 @@ static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { slots = __kvm_memslots(kvm, i); - kvm_for_each_memslot(memslot, slots) { + + kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) { + memslot = iter.slot; start = max(gfn_start, memslot->base_gfn); end = min(gfn_end, memslot->base_gfn + memslot->npages); - if (start >= end) + if (WARN_ON_ONCE(start >= end)) continue; - flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, + flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, start, end - 1, true, flush); } @@ -5775,23 +6051,26 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) bool flush; int i; + if (WARN_ON_ONCE(gfn_end <= gfn_start)) + return; + write_lock(&kvm->mmu_lock); - kvm_inc_notifier_count(kvm, gfn_start, gfn_end); + kvm_mmu_invalidate_begin(kvm, 0, -1ul); - flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end); + flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end); if (is_tdp_mmu_enabled(kvm)) { for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) - flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start, - gfn_end, flush); + flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start, + gfn_end, true, flush); } if (flush) kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end - gfn_start); - kvm_dec_notifier_count(kvm, gfn_start, gfn_end); + kvm_mmu_invalidate_end(kvm, 0, -1ul); write_unlock(&kvm->mmu_lock); } @@ -5800,42 +6079,306 @@ static bool slot_rmap_write_protect(struct kvm *kvm, struct kvm_rmap_head *rmap_head, const struct kvm_memory_slot *slot) { - return __rmap_write_protect(kvm, rmap_head, false); + return rmap_write_protect(rmap_head, false); } void kvm_mmu_slot_remove_write_access(struct kvm *kvm, const struct kvm_memory_slot *memslot, int start_level) { - bool flush = false; - if (kvm_memslots_have_rmaps(kvm)) { write_lock(&kvm->mmu_lock); - flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, - start_level, KVM_MAX_HUGEPAGE_LEVEL, - false); + slot_handle_level(kvm, memslot, slot_rmap_write_protect, + start_level, KVM_MAX_HUGEPAGE_LEVEL, false); write_unlock(&kvm->mmu_lock); } if (is_tdp_mmu_enabled(kvm)) { read_lock(&kvm->mmu_lock); - flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); + kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); read_unlock(&kvm->mmu_lock); } +} + +static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) +{ + return kvm_mmu_memory_cache_nr_free_objects(cache) < min; +} + +static bool need_topup_split_caches_or_resched(struct kvm *kvm) +{ + if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) + return true; /* - * We can flush all the TLBs out of the mmu lock without TLB - * corruption since we just change the spte from writable to - * readonly so that we only need to care the case of changing - * spte from present to present (changing the spte from present - * to nonpresent will flush all the TLBs immediately), in other - * words, the only case we care is mmu_spte_update() where we - * have checked Host-writable | MMU-writable instead of - * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK - * anymore. + * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed + * to split a single huge page. Calculating how many are actually needed + * is possible but not worth the complexity. + */ + return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) || + need_topup(&kvm->arch.split_page_header_cache, 1) || + need_topup(&kvm->arch.split_shadow_page_cache, 1); +} + +static int topup_split_caches(struct kvm *kvm) +{ + /* + * Allocating rmap list entries when splitting huge pages for nested + * MMUs is uncommon as KVM needs to use a list if and only if there is + * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be + * aliased by multiple L2 gfns and/or from multiple nested roots with + * different roles. Aliasing gfns when using TDP is atypical for VMMs; + * a few gfns are often aliased during boot, e.g. when remapping BIOS, + * but aliasing rarely occurs post-boot or for many gfns. If there is + * only one rmap entry, rmap->val points directly at that one entry and + * doesn't need to allocate a list. Buffer the cache by the default + * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM + * encounters an aliased gfn or two. + */ + const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS + + KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE; + int r; + + lockdep_assert_held(&kvm->slots_lock); + + r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity, + SPLIT_DESC_CACHE_MIN_NR_OBJECTS); + if (r) + return r; + + r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1); + if (r) + return r; + + return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1); +} + +static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep) +{ + struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); + struct shadow_page_caches caches = {}; + union kvm_mmu_page_role role; + unsigned int access; + gfn_t gfn; + + gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); + access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep)); + + /* + * Note, huge page splitting always uses direct shadow pages, regardless + * of whether the huge page itself is mapped by a direct or indirect + * shadow page, since the huge page region itself is being directly + * mapped with smaller pages. + */ + role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access); + + /* Direct SPs do not require a shadowed_info_cache. */ + caches.page_header_cache = &kvm->arch.split_page_header_cache; + caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache; + + /* Safe to pass NULL for vCPU since requesting a direct SP. */ + return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role); +} + +static void shadow_mmu_split_huge_page(struct kvm *kvm, + const struct kvm_memory_slot *slot, + u64 *huge_sptep) + +{ + struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache; + u64 huge_spte = READ_ONCE(*huge_sptep); + struct kvm_mmu_page *sp; + bool flush = false; + u64 *sptep, spte; + gfn_t gfn; + int index; + + sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep); + + for (index = 0; index < SPTE_ENT_PER_PAGE; index++) { + sptep = &sp->spt[index]; + gfn = kvm_mmu_page_get_gfn(sp, index); + + /* + * The SP may already have populated SPTEs, e.g. if this huge + * page is aliased by multiple sptes with the same access + * permissions. These entries are guaranteed to map the same + * gfn-to-pfn translation since the SP is direct, so no need to + * modify them. + * + * However, if a given SPTE points to a lower level page table, + * that lower level page table may only be partially populated. + * Installing such SPTEs would effectively unmap a potion of the + * huge page. Unmapping guest memory always requires a TLB flush + * since a subsequent operation on the unmapped regions would + * fail to detect the need to flush. + */ + if (is_shadow_present_pte(*sptep)) { + flush |= !is_last_spte(*sptep, sp->role.level); + continue; + } + + spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index); + mmu_spte_set(sptep, spte); + __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access); + } + + __link_shadow_page(kvm, cache, huge_sptep, sp, flush); +} + +static int shadow_mmu_try_split_huge_page(struct kvm *kvm, + const struct kvm_memory_slot *slot, + u64 *huge_sptep) +{ + struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep); + int level, r = 0; + gfn_t gfn; + u64 spte; + + /* Grab information for the tracepoint before dropping the MMU lock. */ + gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep)); + level = huge_sp->role.level; + spte = *huge_sptep; + + if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) { + r = -ENOSPC; + goto out; + } + + if (need_topup_split_caches_or_resched(kvm)) { + write_unlock(&kvm->mmu_lock); + cond_resched(); + /* + * If the topup succeeds, return -EAGAIN to indicate that the + * rmap iterator should be restarted because the MMU lock was + * dropped. + */ + r = topup_split_caches(kvm) ?: -EAGAIN; + write_lock(&kvm->mmu_lock); + goto out; + } + + shadow_mmu_split_huge_page(kvm, slot, huge_sptep); + +out: + trace_kvm_mmu_split_huge_page(gfn, spte, level, r); + return r; +} + +static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm, + struct kvm_rmap_head *rmap_head, + const struct kvm_memory_slot *slot) +{ + struct rmap_iterator iter; + struct kvm_mmu_page *sp; + u64 *huge_sptep; + int r; + +restart: + for_each_rmap_spte(rmap_head, &iter, huge_sptep) { + sp = sptep_to_sp(huge_sptep); + + /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */ + if (WARN_ON_ONCE(!sp->role.guest_mode)) + continue; + + /* The rmaps should never contain non-leaf SPTEs. */ + if (WARN_ON_ONCE(!is_large_pte(*huge_sptep))) + continue; + + /* SPs with level >PG_LEVEL_4K should never by unsync. */ + if (WARN_ON_ONCE(sp->unsync)) + continue; + + /* Don't bother splitting huge pages on invalid SPs. */ + if (sp->role.invalid) + continue; + + r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep); + + /* + * The split succeeded or needs to be retried because the MMU + * lock was dropped. Either way, restart the iterator to get it + * back into a consistent state. + */ + if (!r || r == -EAGAIN) + goto restart; + + /* The split failed and shouldn't be retried (e.g. -ENOMEM). */ + break; + } + + return false; +} + +static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm, + const struct kvm_memory_slot *slot, + gfn_t start, gfn_t end, + int target_level) +{ + int level; + + /* + * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working + * down to the target level. This ensures pages are recursively split + * all the way to the target level. There's no need to split pages + * already at the target level. + */ + for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) { + slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages, + level, level, start, end - 1, true, false); + } +} + +/* Must be called with the mmu_lock held in write-mode. */ +void kvm_mmu_try_split_huge_pages(struct kvm *kvm, + const struct kvm_memory_slot *memslot, + u64 start, u64 end, + int target_level) +{ + if (!is_tdp_mmu_enabled(kvm)) + return; + + if (kvm_memslots_have_rmaps(kvm)) + kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); + + kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false); + + /* + * A TLB flush is unnecessary at this point for the same resons as in + * kvm_mmu_slot_try_split_huge_pages(). + */ +} + +void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, + const struct kvm_memory_slot *memslot, + int target_level) +{ + u64 start = memslot->base_gfn; + u64 end = start + memslot->npages; + + if (!is_tdp_mmu_enabled(kvm)) + return; + + if (kvm_memslots_have_rmaps(kvm)) { + write_lock(&kvm->mmu_lock); + kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level); + write_unlock(&kvm->mmu_lock); + } + + read_lock(&kvm->mmu_lock); + kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true); + read_unlock(&kvm->mmu_lock); + + /* + * No TLB flush is necessary here. KVM will flush TLBs after + * write-protecting and/or clearing dirty on the newly split SPTEs to + * ensure that guest writes are reflected in the dirty log before the + * ioctl to enable dirty logging on this memslot completes. Since the + * split SPTEs retain the write and dirty bits of the huge SPTE, it is + * safe for KVM to decide if a TLB flush is necessary based on the split + * SPTEs. */ - if (flush) - kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); } static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, @@ -5845,13 +6388,11 @@ static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, u64 *sptep; struct rmap_iterator iter; int need_tlb_flush = 0; - kvm_pfn_t pfn; struct kvm_mmu_page *sp; restart: for_each_rmap_spte(rmap_head, &iter, sptep) { sp = sptep_to_sp(sptep); - pfn = spte_to_pfn(*sptep); /* * We cannot do huge page mapping for indirect shadow pages, @@ -5860,10 +6401,10 @@ restart: * the guest, and the guest page table is using 4K page size * mapping if the indirect sp has level = 1. */ - if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && + if (sp->role.direct && sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, - pfn, PG_LEVEL_NUM)) { - pte_list_remove(kvm, rmap_head, sptep); + PG_LEVEL_NUM)) { + kvm_zap_one_rmap_spte(kvm, rmap_head, sptep); if (kvm_available_flush_tlb_with_range()) kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, @@ -5878,18 +6419,24 @@ restart: return need_tlb_flush; } +static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, + const struct kvm_memory_slot *slot) +{ + /* + * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap + * pages that are already mapped at the maximum hugepage level. + */ + if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte, + PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true)) + kvm_arch_flush_remote_tlbs_memslot(kvm, slot); +} + void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, const struct kvm_memory_slot *slot) { if (kvm_memslots_have_rmaps(kvm)) { write_lock(&kvm->mmu_lock); - /* - * Zap only 4k SPTEs since the legacy MMU only supports dirty - * logging at a 4k granularity and never creates collapsible - * 2m SPTEs during dirty logging. - */ - if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true)) - kvm_arch_flush_remote_tlbs_memslot(kvm, slot); + kvm_rmap_zap_collapsible_sptes(kvm, slot); write_unlock(&kvm->mmu_lock); } @@ -5918,32 +6465,30 @@ void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, const struct kvm_memory_slot *memslot) { - bool flush = false; - if (kvm_memslots_have_rmaps(kvm)) { write_lock(&kvm->mmu_lock); /* * Clear dirty bits only on 4k SPTEs since the legacy MMU only * support dirty logging at a 4k granularity. */ - flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); + slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); write_unlock(&kvm->mmu_lock); } if (is_tdp_mmu_enabled(kvm)) { read_lock(&kvm->mmu_lock); - flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); + kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); read_unlock(&kvm->mmu_lock); } /* + * The caller will flush the TLBs after this function returns. + * * It's also safe to flush TLBs out of mmu lock here as currently this * function is only used for dirty logging, in which case flushing TLB * out of mmu lock also guarantees no dirty pages will be lost in * dirty_bitmap. */ - if (flush) - kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); } void kvm_mmu_zap_all(struct kvm *kvm) @@ -6119,13 +6664,29 @@ static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) return 0; } -int kvm_mmu_module_init(void) +/* + * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as + * its default value of -1 is technically undefined behavior for a boolean. + * Forward the module init call to SPTE code so that it too can handle module + * params that need to be resolved/snapshot. + */ +void __init kvm_mmu_x86_module_init(void) { - int ret = -ENOMEM; - if (nx_huge_pages == -1) __set_nx_huge_pages(get_nx_auto_mode()); + kvm_mmu_spte_module_init(); +} + +/* + * The bulk of the MMU initialization is deferred until the vendor module is + * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need + * to be reset when a potentially different vendor module is loaded. + */ +int kvm_mmu_vendor_module_init(void) +{ + int ret = -ENOMEM; + /* * MMU roles use union aliasing which is, generally speaking, an * undefined behavior. However, we supposedly know how compilers behave @@ -6134,7 +6695,7 @@ int kvm_mmu_module_init(void) */ BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); - BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); + BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64)); kvm_mmu_reset_all_pte_masks(); @@ -6153,41 +6714,19 @@ int kvm_mmu_module_init(void) if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) goto out; - ret = register_shrinker(&mmu_shrinker); + ret = register_shrinker(&mmu_shrinker, "x86-mmu"); if (ret) - goto out; + goto out_shrinker; return 0; +out_shrinker: + percpu_counter_destroy(&kvm_total_used_mmu_pages); out: mmu_destroy_caches(); return ret; } -/* - * Calculate mmu pages needed for kvm. - */ -unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm) -{ - unsigned long nr_mmu_pages; - unsigned long nr_pages = 0; - struct kvm_memslots *slots; - struct kvm_memory_slot *memslot; - int i; - - for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { - slots = __kvm_memslots(kvm, i); - - kvm_for_each_memslot(memslot, slots) - nr_pages += memslot->npages; - } - - nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; - nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); - - return nr_mmu_pages; -} - void kvm_mmu_destroy(struct kvm_vcpu *vcpu) { kvm_mmu_unload(vcpu); @@ -6196,12 +6735,11 @@ void kvm_mmu_destroy(struct kvm_vcpu *vcpu) mmu_free_memory_caches(vcpu); } -void kvm_mmu_module_exit(void) +void kvm_mmu_vendor_module_exit(void) { mmu_destroy_caches(); percpu_counter_destroy(&kvm_total_used_mmu_pages); unregister_shrinker(&mmu_shrinker); - mmu_audit_disable(); } /* @@ -6271,6 +6809,13 @@ static void kvm_recover_nx_lpages(struct kvm *kvm) rcu_idx = srcu_read_lock(&kvm->srcu); write_lock(&kvm->mmu_lock); + /* + * Zapping TDP MMU shadow pages, including the remote TLB flush, must + * be done under RCU protection, because the pages are freed via RCU + * callback. + */ + rcu_read_lock(); + ratio = READ_ONCE(nx_huge_pages_recovery_ratio); to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0; for ( ; to_zap; --to_zap) { @@ -6295,12 +6840,18 @@ static void kvm_recover_nx_lpages(struct kvm *kvm) if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); + rcu_read_unlock(); + cond_resched_rwlock_write(&kvm->mmu_lock); flush = false; + + rcu_read_lock(); } } kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush); + rcu_read_unlock(); + write_unlock(&kvm->mmu_lock); srcu_read_unlock(&kvm->srcu, rcu_idx); } diff --git a/arch/x86/kvm/mmu/mmu_audit.c b/arch/x86/kvm/mmu/mmu_audit.c deleted file mode 100644 index 9e7dcf999f08..000000000000 --- a/arch/x86/kvm/mmu/mmu_audit.c +++ /dev/null @@ -1,303 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-only -/* - * mmu_audit.c: - * - * Audit code for KVM MMU - * - * Copyright (C) 2006 Qumranet, Inc. - * Copyright 2010 Red Hat, Inc. and/or its affiliates. - * - * Authors: - * Yaniv Kamay <yaniv@qumranet.com> - * Avi Kivity <avi@qumranet.com> - * Marcelo Tosatti <mtosatti@redhat.com> - * Xiao Guangrong <xiaoguangrong@cn.fujitsu.com> - */ - -#include <linux/ratelimit.h> - -static char const *audit_point_name[] = { - "pre page fault", - "post page fault", - "pre pte write", - "post pte write", - "pre sync", - "post sync" -}; - -#define audit_printk(kvm, fmt, args...) \ - printk(KERN_ERR "audit: (%s) error: " \ - fmt, audit_point_name[kvm->arch.audit_point], ##args) - -typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level); - -static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, - inspect_spte_fn fn, int level) -{ - int i; - - for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { - u64 *ent = sp->spt; - - fn(vcpu, ent + i, level); - - if (is_shadow_present_pte(ent[i]) && - !is_last_spte(ent[i], level)) { - struct kvm_mmu_page *child; - - child = to_shadow_page(ent[i] & PT64_BASE_ADDR_MASK); - __mmu_spte_walk(vcpu, child, fn, level - 1); - } - } -} - -static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn) -{ - int i; - struct kvm_mmu_page *sp; - - if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) - return; - - if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { - hpa_t root = vcpu->arch.mmu->root_hpa; - - sp = to_shadow_page(root); - __mmu_spte_walk(vcpu, sp, fn, vcpu->arch.mmu->root_level); - return; - } - - for (i = 0; i < 4; ++i) { - hpa_t root = vcpu->arch.mmu->pae_root[i]; - - if (IS_VALID_PAE_ROOT(root)) { - root &= PT64_BASE_ADDR_MASK; - sp = to_shadow_page(root); - __mmu_spte_walk(vcpu, sp, fn, 2); - } - } - - return; -} - -typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp); - -static void walk_all_active_sps(struct kvm *kvm, sp_handler fn) -{ - struct kvm_mmu_page *sp; - - list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) - fn(kvm, sp); -} - -static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level) -{ - struct kvm_mmu_page *sp; - gfn_t gfn; - kvm_pfn_t pfn; - hpa_t hpa; - - sp = sptep_to_sp(sptep); - - if (sp->unsync) { - if (level != PG_LEVEL_4K) { - audit_printk(vcpu->kvm, "unsync sp: %p " - "level = %d\n", sp, level); - return; - } - } - - if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level)) - return; - - gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); - pfn = kvm_vcpu_gfn_to_pfn_atomic(vcpu, gfn); - - if (is_error_pfn(pfn)) - return; - - hpa = pfn << PAGE_SHIFT; - if ((*sptep & PT64_BASE_ADDR_MASK) != hpa) - audit_printk(vcpu->kvm, "levels %d pfn %llx hpa %llx " - "ent %llxn", vcpu->arch.mmu->root_level, pfn, - hpa, *sptep); -} - -static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep) -{ - static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); - struct kvm_rmap_head *rmap_head; - struct kvm_mmu_page *rev_sp; - struct kvm_memslots *slots; - struct kvm_memory_slot *slot; - gfn_t gfn; - - rev_sp = sptep_to_sp(sptep); - gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt); - - slots = kvm_memslots_for_spte_role(kvm, rev_sp->role); - slot = __gfn_to_memslot(slots, gfn); - if (!slot) { - if (!__ratelimit(&ratelimit_state)) - return; - audit_printk(kvm, "no memslot for gfn %llx\n", gfn); - audit_printk(kvm, "index %ld of sp (gfn=%llx)\n", - (long int)(sptep - rev_sp->spt), rev_sp->gfn); - dump_stack(); - return; - } - - rmap_head = gfn_to_rmap(gfn, rev_sp->role.level, slot); - if (!rmap_head->val) { - if (!__ratelimit(&ratelimit_state)) - return; - audit_printk(kvm, "no rmap for writable spte %llx\n", - *sptep); - dump_stack(); - } -} - -static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level) -{ - if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level)) - inspect_spte_has_rmap(vcpu->kvm, sptep); -} - -static void audit_spte_after_sync(struct kvm_vcpu *vcpu, u64 *sptep, int level) -{ - struct kvm_mmu_page *sp = sptep_to_sp(sptep); - - if (vcpu->kvm->arch.audit_point == AUDIT_POST_SYNC && sp->unsync) - audit_printk(vcpu->kvm, "meet unsync sp(%p) after sync " - "root.\n", sp); -} - -static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp) -{ - int i; - - if (sp->role.level != PG_LEVEL_4K) - return; - - for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { - if (!is_shadow_present_pte(sp->spt[i])) - continue; - - inspect_spte_has_rmap(kvm, sp->spt + i); - } -} - -static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp) -{ - struct kvm_rmap_head *rmap_head; - u64 *sptep; - struct rmap_iterator iter; - struct kvm_memslots *slots; - struct kvm_memory_slot *slot; - - if (sp->role.direct || sp->unsync || sp->role.invalid) - return; - - slots = kvm_memslots_for_spte_role(kvm, sp->role); - slot = __gfn_to_memslot(slots, sp->gfn); - rmap_head = gfn_to_rmap(sp->gfn, PG_LEVEL_4K, slot); - - for_each_rmap_spte(rmap_head, &iter, sptep) { - if (is_writable_pte(*sptep)) - audit_printk(kvm, "shadow page has writable " - "mappings: gfn %llx role %x\n", - sp->gfn, sp->role.word); - } -} - -static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp) -{ - check_mappings_rmap(kvm, sp); - audit_write_protection(kvm, sp); -} - -static void audit_all_active_sps(struct kvm *kvm) -{ - walk_all_active_sps(kvm, audit_sp); -} - -static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level) -{ - audit_sptes_have_rmaps(vcpu, sptep, level); - audit_mappings(vcpu, sptep, level); - audit_spte_after_sync(vcpu, sptep, level); -} - -static void audit_vcpu_spte(struct kvm_vcpu *vcpu) -{ - mmu_spte_walk(vcpu, audit_spte); -} - -static bool mmu_audit; -static DEFINE_STATIC_KEY_FALSE(mmu_audit_key); - -static void __kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) -{ - static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); - - if (!__ratelimit(&ratelimit_state)) - return; - - vcpu->kvm->arch.audit_point = point; - audit_all_active_sps(vcpu->kvm); - audit_vcpu_spte(vcpu); -} - -static inline void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) -{ - if (static_branch_unlikely((&mmu_audit_key))) - __kvm_mmu_audit(vcpu, point); -} - -static void mmu_audit_enable(void) -{ - if (mmu_audit) - return; - - static_branch_inc(&mmu_audit_key); - mmu_audit = true; -} - -static void mmu_audit_disable(void) -{ - if (!mmu_audit) - return; - - static_branch_dec(&mmu_audit_key); - mmu_audit = false; -} - -static int mmu_audit_set(const char *val, const struct kernel_param *kp) -{ - int ret; - unsigned long enable; - - ret = kstrtoul(val, 10, &enable); - if (ret < 0) - return -EINVAL; - - switch (enable) { - case 0: - mmu_audit_disable(); - break; - case 1: - mmu_audit_enable(); - break; - default: - return -EINVAL; - } - - return 0; -} - -static const struct kernel_param_ops audit_param_ops = { - .set = mmu_audit_set, - .get = param_get_bool, -}; - -arch_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644); diff --git a/arch/x86/kvm/mmu/mmu_internal.h b/arch/x86/kvm/mmu/mmu_internal.h index 52c6527b1a06..582def531d4d 100644 --- a/arch/x86/kvm/mmu/mmu_internal.h +++ b/arch/x86/kvm/mmu/mmu_internal.h @@ -20,6 +20,20 @@ extern bool dbg; #define MMU_WARN_ON(x) do { } while (0) #endif +/* Page table builder macros common to shadow (host) PTEs and guest PTEs. */ +#define __PT_LEVEL_SHIFT(level, bits_per_level) \ + (PAGE_SHIFT + ((level) - 1) * (bits_per_level)) +#define __PT_INDEX(address, level, bits_per_level) \ + (((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1)) + +#define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \ + ((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1)) + +#define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \ + ((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1)) + +#define __PT_ENT_PER_PAGE(bits_per_level) (1 << (bits_per_level)) + /* * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT * bit, and thus are guaranteed to be non-zero when valid. And, when a guest @@ -30,6 +44,8 @@ extern bool dbg; #define INVALID_PAE_ROOT 0 #define IS_VALID_PAE_ROOT(x) (!!(x)) +typedef u64 __rcu *tdp_ptep_t; + struct kvm_mmu_page { /* * Note, "link" through "spt" fit in a single 64 byte cache line on @@ -51,16 +67,38 @@ struct kvm_mmu_page { gfn_t gfn; u64 *spt; - /* hold the gfn of each spte inside spt */ - gfn_t *gfns; + + /* + * Stores the result of the guest translation being shadowed by each + * SPTE. KVM shadows two types of guest translations: nGPA -> GPA + * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both + * cases the result of the translation is a GPA and a set of access + * constraints. + * + * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed + * access permissions are stored in the lower bits. Note, for + * convenience and uniformity across guests, the access permissions are + * stored in KVM format (e.g. ACC_EXEC_MASK) not the raw guest format. + */ + u64 *shadowed_translation; + /* Currently serving as active root */ union { int root_count; refcount_t tdp_mmu_root_count; }; unsigned int unsync_children; - struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */ - DECLARE_BITMAP(unsync_child_bitmap, 512); + union { + struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */ + tdp_ptep_t ptep; + }; + union { + DECLARE_BITMAP(unsync_child_bitmap, 512); + struct { + struct work_struct tdp_mmu_async_work; + void *tdp_mmu_async_data; + }; + }; struct list_head lpage_disallowed_link; #ifdef CONFIG_X86_32 @@ -104,7 +142,7 @@ static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp) return kvm_mmu_role_as_id(sp->role); } -static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu) +static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp) { /* * When using the EPT page-modification log, the GPAs in the CPU dirty @@ -112,13 +150,12 @@ static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu) * on write protection to record dirty pages, which bypasses PML, since * writes now result in a vmexit. Note, the check on CPU dirty logging * being enabled is mandatory as the bits used to denote WP-only SPTEs - * are reserved for NPT w/ PAE (32-bit KVM). + * are reserved for PAE paging (32-bit KVM). */ - return vcpu->arch.mmu == &vcpu->arch.guest_mmu && - kvm_x86_ops.cpu_dirty_log_size; + return kvm_x86_ops.cpu_dirty_log_size && sp->role.guest_mode; } -int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot, +int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot, gfn_t gfn, bool can_unsync, bool prefetch); void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn); @@ -130,9 +167,72 @@ void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, u64 start_gfn, u64 pages); unsigned int pte_list_count(struct kvm_rmap_head *rmap_head); +extern int nx_huge_pages; +static inline bool is_nx_huge_page_enabled(struct kvm *kvm) +{ + return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages; +} + +struct kvm_page_fault { + /* arguments to kvm_mmu_do_page_fault. */ + const gpa_t addr; + const u32 error_code; + const bool prefetch; + + /* Derived from error_code. */ + const bool exec; + const bool write; + const bool present; + const bool rsvd; + const bool user; + + /* Derived from mmu and global state. */ + const bool is_tdp; + const bool nx_huge_page_workaround_enabled; + + /* + * Whether a >4KB mapping can be created or is forbidden due to NX + * hugepages. + */ + bool huge_page_disallowed; + + /* + * Maximum page size that can be created for this fault; input to + * FNAME(fetch), __direct_map and kvm_tdp_mmu_map. + */ + u8 max_level; + + /* + * Page size that can be created based on the max_level and the + * page size used by the host mapping. + */ + u8 req_level; + + /* + * Page size that will be created based on the req_level and + * huge_page_disallowed. + */ + u8 goal_level; + + /* Shifted addr, or result of guest page table walk if addr is a gva. */ + gfn_t gfn; + + /* The memslot containing gfn. May be NULL. */ + struct kvm_memory_slot *slot; + + /* Outputs of kvm_faultin_pfn. */ + kvm_pfn_t pfn; + hva_t hva; + bool map_writable; +}; + +int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); + /* - * Return values of handle_mmio_page_fault, mmu.page_fault, and fast_page_fault(). + * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(), + * and of course kvm_mmu_do_page_fault(). * + * RET_PF_CONTINUE: So far, so good, keep handling the page fault. * RET_PF_RETRY: let CPU fault again on the address. * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. @@ -141,18 +241,75 @@ unsigned int pte_list_count(struct kvm_rmap_head *rmap_head); * * Any names added to this enum should be exported to userspace for use in * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h + * + * Note, all values must be greater than or equal to zero so as not to encroach + * on -errno return values. Somewhat arbitrarily use '0' for CONTINUE, which + * will allow for efficient machine code when checking for CONTINUE, e.g. + * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero. */ enum { - RET_PF_RETRY = 0, + RET_PF_CONTINUE = 0, + RET_PF_RETRY, RET_PF_EMULATE, RET_PF_INVALID, RET_PF_FIXED, RET_PF_SPURIOUS, }; +static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, + u32 err, bool prefetch) +{ + struct kvm_page_fault fault = { + .addr = cr2_or_gpa, + .error_code = err, + .exec = err & PFERR_FETCH_MASK, + .write = err & PFERR_WRITE_MASK, + .present = err & PFERR_PRESENT_MASK, + .rsvd = err & PFERR_RSVD_MASK, + .user = err & PFERR_USER_MASK, + .prefetch = prefetch, + .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault), + .nx_huge_page_workaround_enabled = + is_nx_huge_page_enabled(vcpu->kvm), + + .max_level = KVM_MAX_HUGEPAGE_LEVEL, + .req_level = PG_LEVEL_4K, + .goal_level = PG_LEVEL_4K, + }; + int r; + + /* + * Async #PF "faults", a.k.a. prefetch faults, are not faults from the + * guest perspective and have already been counted at the time of the + * original fault. + */ + if (!prefetch) + vcpu->stat.pf_taken++; + + if (IS_ENABLED(CONFIG_RETPOLINE) && fault.is_tdp) + r = kvm_tdp_page_fault(vcpu, &fault); + else + r = vcpu->arch.mmu->page_fault(vcpu, &fault); + + /* + * Similar to above, prefetch faults aren't truly spurious, and the + * async #PF path doesn't do emulation. Do count faults that are fixed + * by the async #PF handler though, otherwise they'll never be counted. + */ + if (r == RET_PF_FIXED) + vcpu->stat.pf_fixed++; + else if (prefetch) + ; + else if (r == RET_PF_EMULATE) + vcpu->stat.pf_emulate++; + else if (r == RET_PF_SPURIOUS) + vcpu->stat.pf_spurious++; + return r; +} + int kvm_mmu_max_mapping_level(struct kvm *kvm, const struct kvm_memory_slot *slot, gfn_t gfn, - kvm_pfn_t pfn, int max_level); + int max_level); void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level); diff --git a/arch/x86/kvm/mmu/mmutrace.h b/arch/x86/kvm/mmu/mmutrace.h index b8151bbca36a..ae86820cef69 100644 --- a/arch/x86/kvm/mmu/mmutrace.h +++ b/arch/x86/kvm/mmu/mmutrace.h @@ -35,7 +35,7 @@ " %snxe %sad root %u %s%c", \ __entry->mmu_valid_gen, \ __entry->gfn, role.level, \ - role.gpte_is_8_bytes ? 8 : 4, \ + role.has_4_byte_gpte ? 4 : 8, \ role.quadrant, \ role.direct ? " direct" : "", \ access_str[role.access], \ @@ -54,6 +54,7 @@ { PFERR_RSVD_MASK, "RSVD" }, \ { PFERR_FETCH_MASK, "F" } +TRACE_DEFINE_ENUM(RET_PF_CONTINUE); TRACE_DEFINE_ENUM(RET_PF_RETRY); TRACE_DEFINE_ENUM(RET_PF_EMULATE); TRACE_DEFINE_ENUM(RET_PF_INVALID); @@ -416,6 +417,29 @@ TRACE_EVENT( ) ); +TRACE_EVENT( + kvm_mmu_split_huge_page, + TP_PROTO(u64 gfn, u64 spte, int level, int errno), + TP_ARGS(gfn, spte, level, errno), + + TP_STRUCT__entry( + __field(u64, gfn) + __field(u64, spte) + __field(int, level) + __field(int, errno) + ), + + TP_fast_assign( + __entry->gfn = gfn; + __entry->spte = spte; + __entry->level = level; + __entry->errno = errno; + ), + + TP_printk("gfn %llx spte %llx level %d errno %d", + __entry->gfn, __entry->spte, __entry->level, __entry->errno) +); + #endif /* _TRACE_KVMMMU_H */ #undef TRACE_INCLUDE_PATH diff --git a/arch/x86/kvm/mmu/page_track.c b/arch/x86/kvm/mmu/page_track.c index cc4eb5b7fb76..2e09d1b6249f 100644 --- a/arch/x86/kvm/mmu/page_track.c +++ b/arch/x86/kvm/mmu/page_track.c @@ -47,8 +47,8 @@ int kvm_page_track_create_memslot(struct kvm *kvm, continue; slot->arch.gfn_track[i] = - kvcalloc(npages, sizeof(*slot->arch.gfn_track[i]), - GFP_KERNEL_ACCOUNT); + __vcalloc(npages, sizeof(*slot->arch.gfn_track[i]), + GFP_KERNEL_ACCOUNT); if (!slot->arch.gfn_track[i]) goto track_free; } @@ -75,7 +75,8 @@ int kvm_page_track_write_tracking_alloc(struct kvm_memory_slot *slot) if (slot->arch.gfn_track[KVM_PAGE_TRACK_WRITE]) return 0; - gfn_track = kvcalloc(slot->npages, sizeof(*gfn_track), GFP_KERNEL_ACCOUNT); + gfn_track = __vcalloc(slot->npages, sizeof(*gfn_track), + GFP_KERNEL_ACCOUNT); if (gfn_track == NULL) return -ENOMEM; @@ -173,9 +174,9 @@ EXPORT_SYMBOL_GPL(kvm_slot_page_track_remove_page); /* * check if the corresponding access on the specified guest page is tracked. */ -bool kvm_slot_page_track_is_active(struct kvm_vcpu *vcpu, - struct kvm_memory_slot *slot, gfn_t gfn, - enum kvm_page_track_mode mode) +bool kvm_slot_page_track_is_active(struct kvm *kvm, + const struct kvm_memory_slot *slot, + gfn_t gfn, enum kvm_page_track_mode mode) { int index; @@ -186,7 +187,7 @@ bool kvm_slot_page_track_is_active(struct kvm_vcpu *vcpu, return false; if (mode == KVM_PAGE_TRACK_WRITE && - !kvm_page_track_write_tracking_enabled(vcpu->kvm)) + !kvm_page_track_write_tracking_enabled(kvm)) return false; index = gfn_to_index(gfn, slot->base_gfn, PG_LEVEL_4K); diff --git a/arch/x86/kvm/mmu/paging.h b/arch/x86/kvm/mmu/paging.h deleted file mode 100644 index de8ab323bb70..000000000000 --- a/arch/x86/kvm/mmu/paging.h +++ /dev/null @@ -1,14 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0-only */ -/* Shadow paging constants/helpers that don't need to be #undef'd. */ -#ifndef __KVM_X86_PAGING_H -#define __KVM_X86_PAGING_H - -#define GUEST_PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) -#define PT64_LVL_ADDR_MASK(level) \ - (GUEST_PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ - * PT64_LEVEL_BITS))) - 1)) -#define PT64_LVL_OFFSET_MASK(level) \ - (GUEST_PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ - * PT64_LEVEL_BITS))) - 1)) -#endif /* __KVM_X86_PAGING_H */ - diff --git a/arch/x86/kvm/mmu/paging_tmpl.h b/arch/x86/kvm/mmu/paging_tmpl.h index 708a5d297fe1..5ab5f94dcb6f 100644 --- a/arch/x86/kvm/mmu/paging_tmpl.h +++ b/arch/x86/kvm/mmu/paging_tmpl.h @@ -16,61 +16,57 @@ */ /* - * We need the mmu code to access both 32-bit and 64-bit guest ptes, - * so the code in this file is compiled twice, once per pte size. + * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables, + * as well as guest EPT tables, so the code in this file is compiled thrice, + * once per guest PTE type. The per-type defines are #undef'd at the end. */ #if PTTYPE == 64 #define pt_element_t u64 #define guest_walker guest_walker64 #define FNAME(name) paging##64_##name - #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK - #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) - #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) - #define PT_INDEX(addr, level) PT64_INDEX(addr, level) - #define PT_LEVEL_BITS PT64_LEVEL_BITS + #define PT_LEVEL_BITS 9 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT #define PT_HAVE_ACCESSED_DIRTY(mmu) true #ifdef CONFIG_X86_64 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL - #define CMPXCHG cmpxchg #else - #define CMPXCHG cmpxchg64 #define PT_MAX_FULL_LEVELS 2 #endif #elif PTTYPE == 32 #define pt_element_t u32 #define guest_walker guest_walker32 #define FNAME(name) paging##32_##name - #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK - #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) - #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) - #define PT_INDEX(addr, level) PT32_INDEX(addr, level) - #define PT_LEVEL_BITS PT32_LEVEL_BITS + #define PT_LEVEL_BITS 10 #define PT_MAX_FULL_LEVELS 2 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT #define PT_HAVE_ACCESSED_DIRTY(mmu) true - #define CMPXCHG cmpxchg + + #define PT32_DIR_PSE36_SIZE 4 + #define PT32_DIR_PSE36_SHIFT 13 + #define PT32_DIR_PSE36_MASK \ + (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) #elif PTTYPE == PTTYPE_EPT #define pt_element_t u64 #define guest_walker guest_walkerEPT #define FNAME(name) ept_##name - #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK - #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) - #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) - #define PT_INDEX(addr, level) PT64_INDEX(addr, level) - #define PT_LEVEL_BITS PT64_LEVEL_BITS + #define PT_LEVEL_BITS 9 #define PT_GUEST_DIRTY_SHIFT 9 #define PT_GUEST_ACCESSED_SHIFT 8 - #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) - #define CMPXCHG cmpxchg64 + #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled) #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL #else #error Invalid PTTYPE value #endif +/* Common logic, but per-type values. These also need to be undefined. */ +#define PT_BASE_ADDR_MASK ((pt_element_t)(((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))) +#define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) +#define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) +#define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS) + #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) @@ -96,6 +92,15 @@ struct guest_walker { struct x86_exception fault; }; +#if PTTYPE == 32 +static inline gfn_t pse36_gfn_delta(u32 gpte) +{ + int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; + + return (gpte & PT32_DIR_PSE36_MASK) << shift; +} +#endif + static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) { return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; @@ -143,49 +148,6 @@ static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); } -static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, - pt_element_t __user *ptep_user, unsigned index, - pt_element_t orig_pte, pt_element_t new_pte) -{ - int npages; - pt_element_t ret; - pt_element_t *table; - struct page *page; - - npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page); - if (likely(npages == 1)) { - table = kmap_atomic(page); - ret = CMPXCHG(&table[index], orig_pte, new_pte); - kunmap_atomic(table); - - kvm_release_page_dirty(page); - } else { - struct vm_area_struct *vma; - unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK; - unsigned long pfn; - unsigned long paddr; - - mmap_read_lock(current->mm); - vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE); - if (!vma || !(vma->vm_flags & VM_PFNMAP)) { - mmap_read_unlock(current->mm); - return -EFAULT; - } - pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; - paddr = pfn << PAGE_SHIFT; - table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB); - if (!table) { - mmap_read_unlock(current->mm); - return -EFAULT; - } - ret = CMPXCHG(&table[index], orig_pte, new_pte); - memunmap(table); - mmap_read_unlock(current->mm); - } - - return (ret != orig_pte); -} - static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, u64 gpte) @@ -193,7 +155,7 @@ static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, if (!FNAME(is_present_gpte)(gpte)) goto no_present; - /* if accessed bit is not supported prefetch non accessed gpte */ + /* Prefetch only accessed entries (unless A/D bits are disabled). */ if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK)) goto no_present; @@ -284,7 +246,7 @@ static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, if (unlikely(!walker->pte_writable[level - 1])) continue; - ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); + ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault); if (ret) return ret; @@ -323,7 +285,7 @@ static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, * is not reserved and does not indicate a large page at this level, * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. */ - gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse); + gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse); #endif /* * PG_LEVEL_4K always terminates. The RHS has bit 7 set @@ -339,7 +301,7 @@ static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, */ static int FNAME(walk_addr_generic)(struct guest_walker *walker, struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, - gpa_t addr, u32 access) + gpa_t addr, u64 access) { int ret; pt_element_t pte; @@ -347,7 +309,7 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker, gfn_t table_gfn; u64 pt_access, pte_access; unsigned index, accessed_dirty, pte_pkey; - unsigned nested_access; + u64 nested_access; gpa_t pte_gpa; bool have_ad; int offset; @@ -361,7 +323,7 @@ static int FNAME(walk_addr_generic)(struct guest_walker *walker, trace_kvm_mmu_pagetable_walk(addr, access); retry_walk: - walker->level = mmu->root_level; + walker->level = mmu->cpu_role.base.level; pte = mmu->get_guest_pgd(vcpu); have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); @@ -403,9 +365,8 @@ retry_walk: walker->table_gfn[walker->level - 1] = table_gfn; walker->pte_gpa[walker->level - 1] = pte_gpa; - real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), - nested_access, - &walker->fault); + real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn), + nested_access, &walker->fault); /* * FIXME: This can happen if emulation (for of an INS/OUTS @@ -417,7 +378,7 @@ retry_walk: * information to fix the exit_qualification or exit_info_1 * fields. */ - if (unlikely(real_gpa == UNMAPPED_GVA)) + if (unlikely(real_gpa == INVALID_GPA)) return 0; host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa), @@ -464,11 +425,13 @@ retry_walk: gfn = gpte_to_gfn_lvl(pte, walker->level); gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; - if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) +#if PTTYPE == 32 + if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) gfn += pse36_gfn_delta(pte); +#endif - real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); - if (real_gpa == UNMAPPED_GVA) + real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault); + if (real_gpa == INVALID_GPA) return 0; walker->gfn = real_gpa >> PAGE_SHIFT; @@ -509,7 +472,7 @@ error: #if PTTYPE == PTTYPE_EPT /* - * Use PFERR_RSVD_MASK in error_code to to tell if EPT + * Use PFERR_RSVD_MASK in error_code to tell if EPT * misconfiguration requires to be injected. The detection is * done by is_rsvd_bits_set() above. * @@ -522,14 +485,21 @@ error: * The other bits are set to 0. */ if (!(errcode & PFERR_RSVD_MASK)) { - vcpu->arch.exit_qualification &= 0x180; + vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID | + EPT_VIOLATION_GVA_TRANSLATED); if (write_fault) vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; if (user_fault) vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; if (fetch_fault) vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; - vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; + + /* + * Note, pte_access holds the raw RWX bits from the EPTE, not + * ACC_*_MASK flags! + */ + vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) << + EPT_VIOLATION_RWX_SHIFT; } #endif walker->fault.address = addr; @@ -541,22 +511,12 @@ error: } static int FNAME(walk_addr)(struct guest_walker *walker, - struct kvm_vcpu *vcpu, gpa_t addr, u32 access) + struct kvm_vcpu *vcpu, gpa_t addr, u64 access) { return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, access); } -#if PTTYPE != PTTYPE_EPT -static int FNAME(walk_addr_nested)(struct guest_walker *walker, - struct kvm_vcpu *vcpu, gva_t addr, - u32 access) -{ - return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, - addr, access); -} -#endif - static bool FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, pt_element_t gpte, bool no_dirty_log) @@ -629,13 +589,13 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, * If addresses are being invalidated, skip prefetching to avoid * accidentally prefetching those addresses. */ - if (unlikely(vcpu->kvm->mmu_notifier_count)) + if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) return; if (sp->role.direct) return __direct_pte_prefetch(vcpu, sp, sptep); - i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); + i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); spte = sp->spt + i; for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { @@ -667,7 +627,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, WARN_ON_ONCE(gw->gfn != base_gfn); direct_access = gw->pte_access; - top_level = vcpu->arch.mmu->root_level; + top_level = vcpu->arch.mmu->cpu_role.base.level; if (top_level == PT32E_ROOT_LEVEL) top_level = PT32_ROOT_LEVEL; /* @@ -679,7 +639,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, if (FNAME(gpte_changed)(vcpu, gw, top_level)) goto out_gpte_changed; - if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) + if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) goto out_gpte_changed; for (shadow_walk_init(&it, vcpu, fault->addr); @@ -688,14 +648,13 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, gfn_t table_gfn; clear_sp_write_flooding_count(it.sptep); - drop_large_spte(vcpu, it.sptep); - - sp = NULL; - if (!is_shadow_present_pte(*it.sptep)) { - table_gfn = gw->table_gfn[it.level - 2]; - access = gw->pt_access[it.level - 2]; - sp = kvm_mmu_get_page(vcpu, table_gfn, fault->addr, - it.level-1, false, access); + + table_gfn = gw->table_gfn[it.level - 2]; + access = gw->pt_access[it.level - 2]; + sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn, + false, access); + + if (sp != ERR_PTR(-EEXIST)) { /* * We must synchronize the pagetable before linking it * because the guest doesn't need to flush tlb when @@ -724,7 +683,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) goto out_gpte_changed; - if (sp) + if (sp != ERR_PTR(-EEXIST)) link_shadow_page(vcpu, it.sptep, sp); } @@ -748,16 +707,15 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, validate_direct_spte(vcpu, it.sptep, direct_access); - drop_large_spte(vcpu, it.sptep); + sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, + true, direct_access); + if (sp == ERR_PTR(-EEXIST)) + continue; - if (!is_shadow_present_pte(*it.sptep)) { - sp = kvm_mmu_get_page(vcpu, base_gfn, fault->addr, - it.level - 1, true, direct_access); - link_shadow_page(vcpu, it.sptep, sp); - if (fault->huge_page_disallowed && - fault->req_level >= it.level) - account_huge_nx_page(vcpu->kvm, sp); - } + link_shadow_page(vcpu, it.sptep, sp); + if (fault->huge_page_disallowed && + fault->req_level >= it.level) + account_huge_nx_page(vcpu->kvm, sp); } if (WARN_ON_ONCE(it.level != fault->goal_level)) @@ -769,7 +727,6 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, return ret; FNAME(pte_prefetch)(vcpu, gw, it.sptep); - ++vcpu->stat.pf_fixed; return ret; out_gpte_changed: @@ -881,13 +838,15 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault else fault->max_level = walker.level; - mmu_seq = vcpu->kvm->mmu_notifier_seq; + mmu_seq = vcpu->kvm->mmu_invalidate_seq; smp_rmb(); - if (kvm_faultin_pfn(vcpu, fault, &r)) + r = kvm_faultin_pfn(vcpu, fault); + if (r != RET_PF_CONTINUE) return r; - if (handle_abnormal_pfn(vcpu, fault, walker.pte_access, &r)) + r = handle_abnormal_pfn(vcpu, fault, walker.pte_access); + if (r != RET_PF_CONTINUE) return r; /* @@ -915,12 +874,10 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault if (is_page_fault_stale(vcpu, fault, mmu_seq)) goto out_unlock; - kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); r = make_mmu_pages_available(vcpu); if (r) goto out_unlock; r = FNAME(fetch)(vcpu, fault, &walker); - kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); out_unlock: write_unlock(&vcpu->kvm->mmu_lock); @@ -935,7 +892,7 @@ static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) WARN_ON(sp->role.level != PG_LEVEL_4K); if (PTTYPE == 32) - offset = sp->role.quadrant << PT64_LEVEL_BITS; + offset = sp->role.quadrant << SPTE_LEVEL_BITS; return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); } @@ -976,7 +933,7 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) break; pte_gpa = FNAME(get_level1_sp_gpa)(sp); - pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); + pte_gpa += spte_index(sptep) * sizeof(pt_element_t); mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL); if (is_shadow_present_pte(old_spte)) @@ -1000,53 +957,33 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) } /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ -static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access, +static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + gpa_t addr, u64 access, struct x86_exception *exception) { struct guest_walker walker; - gpa_t gpa = UNMAPPED_GVA; - int r; - - r = FNAME(walk_addr)(&walker, vcpu, addr, access); - - if (r) { - gpa = gfn_to_gpa(walker.gfn); - gpa |= addr & ~PAGE_MASK; - } else if (exception) - *exception = walker.fault; - - return gpa; -} - -#if PTTYPE != PTTYPE_EPT -/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */ -static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr, - u32 access, - struct x86_exception *exception) -{ - struct guest_walker walker; - gpa_t gpa = UNMAPPED_GVA; + gpa_t gpa = INVALID_GPA; int r; #ifndef CONFIG_X86_64 /* A 64-bit GVA should be impossible on 32-bit KVM. */ - WARN_ON_ONCE(vaddr >> 32); + WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu); #endif - r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); + r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access); if (r) { gpa = gfn_to_gpa(walker.gfn); - gpa |= vaddr & ~PAGE_MASK; + gpa |= addr & ~PAGE_MASK; } else if (exception) *exception = walker.fault; return gpa; } -#endif /* - * Using the cached information from sp->gfns is safe because: + * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is + * safe because: * - The spte has a reference to the struct page, so the pfn for a given gfn * can't change unless all sptes pointing to it are nuked first. * @@ -1057,7 +994,7 @@ static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr, */ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) { - union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base; + union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role; int i; bool host_writable; gpa_t first_pte_gpa; @@ -1076,6 +1013,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) .level = 0xf, .access = 0x7, .quadrant = 0x3, + .passthrough = 0x1, }; /* @@ -1085,12 +1023,12 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) * reserved bits checks will be wrong, etc... */ if (WARN_ON_ONCE(sp->role.direct || - (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word)) + (sp->role.word ^ root_role.word) & ~sync_role_ign.word)) return -1; first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); - for (i = 0; i < PT64_ENT_PER_PAGE; i++) { + for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { u64 *sptep, spte; struct kvm_memory_slot *slot; unsigned pte_access; @@ -1120,12 +1058,23 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) continue; - if (gfn != sp->gfns[i]) { + /* + * Drop the SPTE if the new protections would result in a RWX=0 + * SPTE or if the gfn is changing. The RWX=0 case only affects + * EPT with execute-only support, i.e. EPT without an effective + * "present" bit, as all other paging modes will create a + * read-only SPTE if pte_access is zero. + */ + if ((!pte_access && !shadow_present_mask) || + gfn != kvm_mmu_page_get_gfn(sp, i)) { drop_spte(vcpu->kvm, &sp->spt[i]); flush = true; continue; } + /* Update the shadowed access bits in case they changed. */ + kvm_mmu_page_set_access(sp, i, pte_access); + sptep = &sp->spt[i]; spte = *sptep; host_writable = spte & shadow_host_writable_mask; @@ -1137,6 +1086,15 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) flush |= mmu_spte_update(sptep, spte); } + /* + * Note, any flush is purely for KVM's correctness, e.g. when dropping + * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier + * unmap or dirty logging event doesn't fail to flush. The guest is + * responsible for flushing the TLB to ensure any changes in protection + * bits are recognized, i.e. until the guest flushes or page faults on + * a relevant address, KVM is architecturally allowed to let vCPUs use + * cached translations with the old protection bits. + */ return flush; } @@ -1151,7 +1109,6 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) #undef PT_MAX_FULL_LEVELS #undef gpte_to_gfn #undef gpte_to_gfn_lvl -#undef CMPXCHG #undef PT_GUEST_ACCESSED_MASK #undef PT_GUEST_DIRTY_MASK #undef PT_GUEST_DIRTY_SHIFT diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c index fad546df0bba..2e08b2a45361 100644 --- a/arch/x86/kvm/mmu/spte.c +++ b/arch/x86/kvm/mmu/spte.c @@ -19,8 +19,10 @@ #include <asm/memtype.h> #include <asm/vmx.h> -static bool __read_mostly enable_mmio_caching = true; +bool __read_mostly enable_mmio_caching = true; +static bool __ro_after_init allow_mmio_caching; module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); +EXPORT_SYMBOL_GPL(enable_mmio_caching); u64 __read_mostly shadow_host_writable_mask; u64 __read_mostly shadow_mmu_writable_mask; @@ -33,6 +35,8 @@ u64 __read_mostly shadow_mmio_value; u64 __read_mostly shadow_mmio_mask; u64 __read_mostly shadow_mmio_access_mask; u64 __read_mostly shadow_present_mask; +u64 __read_mostly shadow_memtype_mask; +u64 __read_mostly shadow_me_value; u64 __read_mostly shadow_me_mask; u64 __read_mostly shadow_acc_track_mask; @@ -41,6 +45,18 @@ u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; u8 __read_mostly shadow_phys_bits; +void __init kvm_mmu_spte_module_init(void) +{ + /* + * Snapshot userspace's desire to allow MMIO caching. Whether or not + * KVM can actually enable MMIO caching depends on vendor-specific + * hardware capabilities and other module params that can't be resolved + * until the vendor module is loaded, i.e. enable_mmio_caching can and + * will change when the vendor module is (re)loaded. + */ + allow_mmio_caching = enable_mmio_caching; +} + static u64 generation_mmio_spte_mask(u64 gen) { u64 mask; @@ -90,8 +106,36 @@ static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) E820_TYPE_RAM); } +/* + * Returns true if the SPTE has bits that may be set without holding mmu_lock. + * The caller is responsible for checking if the SPTE is shadow-present, and + * for determining whether or not the caller cares about non-leaf SPTEs. + */ +bool spte_has_volatile_bits(u64 spte) +{ + /* + * Always atomically update spte if it can be updated + * out of mmu-lock, it can ensure dirty bit is not lost, + * also, it can help us to get a stable is_writable_pte() + * to ensure tlb flush is not missed. + */ + if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) + return true; + + if (is_access_track_spte(spte)) + return true; + + if (spte_ad_enabled(spte)) { + if (!(spte & shadow_accessed_mask) || + (is_writable_pte(spte) && !(spte & shadow_dirty_mask))) + return true; + } + + return false; +} + bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, - struct kvm_memory_slot *slot, + const struct kvm_memory_slot *slot, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool prefetch, bool can_unsync, bool host_writable, u64 *new_spte) @@ -100,9 +144,11 @@ bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 spte = SPTE_MMU_PRESENT_MASK; bool wrprot = false; + WARN_ON_ONCE(!pte_access && !shadow_present_mask); + if (sp->role.ad_disabled) spte |= SPTE_TDP_AD_DISABLED_MASK; - else if (kvm_vcpu_ad_need_write_protect(vcpu)) + else if (kvm_mmu_page_ad_need_write_protect(sp)) spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK; /* @@ -116,7 +162,7 @@ bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, spte |= spte_shadow_accessed_mask(spte); if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && - is_nx_huge_page_enabled()) { + is_nx_huge_page_enabled(vcpu->kvm)) { pte_access &= ~ACC_EXEC_MASK; } @@ -130,17 +176,17 @@ bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, if (level > PG_LEVEL_4K) spte |= PT_PAGE_SIZE_MASK; - if (tdp_enabled) - spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn, - kvm_is_mmio_pfn(pfn)); + if (shadow_memtype_mask) + spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn, + kvm_is_mmio_pfn(pfn)); if (host_writable) spte |= shadow_host_writable_mask; else pte_access &= ~ACC_WRITE_MASK; - if (!kvm_is_mmio_pfn(pfn)) - spte |= shadow_me_mask; + if (shadow_me_value && !kvm_is_mmio_pfn(pfn)) + spte |= shadow_me_value; spte |= (u64)pfn << PAGE_SHIFT; @@ -162,7 +208,7 @@ bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, * e.g. it's write-tracked (upper-level SPs) or has one or more * shadow pages and unsync'ing pages is not allowed. */ - if (mmu_try_to_unsync_pages(vcpu, slot, gfn, can_unsync, prefetch)) { + if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) { pgprintk("%s: found shadow page for %llx, marking ro\n", __func__, gfn); wrprot = true; @@ -192,12 +238,71 @@ out: return wrprot; } +static u64 make_spte_executable(u64 spte) +{ + bool is_access_track = is_access_track_spte(spte); + + if (is_access_track) + spte = restore_acc_track_spte(spte); + + spte &= ~shadow_nx_mask; + spte |= shadow_x_mask; + + if (is_access_track) + spte = mark_spte_for_access_track(spte); + + return spte; +} + +/* + * Construct an SPTE that maps a sub-page of the given huge page SPTE where + * `index` identifies which sub-page. + * + * This is used during huge page splitting to build the SPTEs that make up the + * new page table. + */ +u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role, + int index) +{ + u64 child_spte; + + if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte))) + return 0; + + if (WARN_ON_ONCE(!is_large_pte(huge_spte))) + return 0; + + child_spte = huge_spte; + + /* + * The child_spte already has the base address of the huge page being + * split. So we just have to OR in the offset to the page at the next + * lower level for the given index. + */ + child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT; + + if (role.level == PG_LEVEL_4K) { + child_spte &= ~PT_PAGE_SIZE_MASK; + + /* + * When splitting to a 4K page where execution is allowed, mark + * the page executable as the NX hugepage mitigation no longer + * applies. + */ + if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm)) + child_spte = make_spte_executable(child_spte); + } + + return child_spte; +} + + u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) { u64 spte = SPTE_MMU_PRESENT_MASK; spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | - shadow_user_mask | shadow_x_mask | shadow_me_mask; + shadow_user_mask | shadow_x_mask | shadow_me_value; if (ad_disabled) spte |= SPTE_TDP_AD_DISABLED_MASK; @@ -211,36 +316,18 @@ u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) { u64 new_spte; - new_spte = old_spte & ~PT64_BASE_ADDR_MASK; + new_spte = old_spte & ~SPTE_BASE_ADDR_MASK; new_spte |= (u64)new_pfn << PAGE_SHIFT; new_spte &= ~PT_WRITABLE_MASK; new_spte &= ~shadow_host_writable_mask; + new_spte &= ~shadow_mmu_writable_mask; new_spte = mark_spte_for_access_track(new_spte); return new_spte; } -static u8 kvm_get_shadow_phys_bits(void) -{ - /* - * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected - * in CPU detection code, but the processor treats those reduced bits as - * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at - * the physical address bits reported by CPUID. - */ - if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) - return cpuid_eax(0x80000008) & 0xff; - - /* - * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with - * custom CPUID. Proceed with whatever the kernel found since these features - * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). - */ - return boot_cpu_data.x86_phys_bits; -} - u64 mark_spte_for_access_track(u64 spte) { if (spte_ad_enabled(spte)) @@ -249,14 +336,7 @@ u64 mark_spte_for_access_track(u64 spte) if (is_access_track_spte(spte)) return spte; - /* - * Making an Access Tracking PTE will result in removal of write access - * from the PTE. So, verify that we will be able to restore the write - * access in the fast page fault path later on. - */ - WARN_ONCE((spte & PT_WRITABLE_MASK) && - !spte_can_locklessly_be_made_writable(spte), - "kvm: Writable SPTE is not locklessly dirty-trackable\n"); + check_spte_writable_invariants(spte); WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), @@ -274,10 +354,24 @@ void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) BUG_ON((u64)(unsigned)access_mask != access_mask); WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); + /* + * Reset to the original module param value to honor userspace's desire + * to (dis)allow MMIO caching. Update the param itself so that + * userspace can see whether or not KVM is actually using MMIO caching. + */ + enable_mmio_caching = allow_mmio_caching; if (!enable_mmio_caching) mmio_value = 0; /* + * The mask must contain only bits that are carved out specifically for + * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO + * generation. + */ + if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK)) + mmio_value = 0; + + /* * Disable MMIO caching if the MMIO value collides with the bits that * are used to hold the relocated GFN when the L1TF mitigation is * enabled. This should never fire as there is no known hardware that @@ -298,12 +392,26 @@ void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value)) mmio_value = 0; + if (!mmio_value) + enable_mmio_caching = false; + shadow_mmio_value = mmio_value; shadow_mmio_mask = mmio_mask; shadow_mmio_access_mask = access_mask; } EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); +void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) +{ + /* shadow_me_value must be a subset of shadow_me_mask */ + if (WARN_ON(me_value & ~me_mask)) + me_value = me_mask = 0; + + shadow_me_value = me_value; + shadow_me_mask = me_mask; +} +EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask); + void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) { shadow_user_mask = VMX_EPT_READABLE_MASK; @@ -312,9 +420,14 @@ void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) shadow_nx_mask = 0ull; shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK; + /* + * EPT overrides the host MTRRs, and so KVM must program the desired + * memtype directly into the SPTEs. Note, this mask is just the mask + * of all bits that factor into the memtype, the actual memtype must be + * dynamically calculated, e.g. to ensure host MMIO is mapped UC. + */ + shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT; shadow_acc_track_mask = VMX_EPT_RWX_MASK; - shadow_me_mask = 0ull; - shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; @@ -364,11 +477,19 @@ void kvm_mmu_reset_all_pte_masks(void) shadow_nx_mask = PT64_NX_MASK; shadow_x_mask = 0; shadow_present_mask = PT_PRESENT_MASK; + + /* + * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB + * memtype in the SPTEs, i.e. relies on host MTRRs to provide the + * correct memtype (WB is the "weakest" memtype). + */ + shadow_memtype_mask = 0; shadow_acc_track_mask = 0; - shadow_me_mask = sme_me_mask; + shadow_me_mask = 0; + shadow_me_value = 0; - shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITEABLE; - shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITEABLE; + shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE; + shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE; /* * Set a reserved PA bit in MMIO SPTEs to generate page faults with diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h index cc432f9a966b..7670c13ce251 100644 --- a/arch/x86/kvm/mmu/spte.h +++ b/arch/x86/kvm/mmu/spte.h @@ -34,12 +34,12 @@ static_assert(SPTE_TDP_AD_ENABLED_MASK == 0); #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK -#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) +#define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) #else -#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) +#define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) #endif -#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ +#define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ | shadow_x_mask | shadow_nx_mask | shadow_me_mask) #define ACC_EXEC_MASK 1 @@ -48,21 +48,13 @@ static_assert(SPTE_TDP_AD_ENABLED_MASK == 0); #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) /* The mask for the R/X bits in EPT PTEs */ -#define PT64_EPT_READABLE_MASK 0x1ull -#define PT64_EPT_EXECUTABLE_MASK 0x4ull +#define SPTE_EPT_READABLE_MASK 0x1ull +#define SPTE_EPT_EXECUTABLE_MASK 0x4ull -#define PT64_LEVEL_BITS 9 - -#define PT64_LEVEL_SHIFT(level) \ - (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) - -#define PT64_INDEX(address, level)\ - (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) -#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) - -/* Bits 9 and 10 are ignored by all non-EPT PTEs. */ -#define DEFAULT_SPTE_HOST_WRITEABLE BIT_ULL(9) -#define DEFAULT_SPTE_MMU_WRITEABLE BIT_ULL(10) +#define SPTE_LEVEL_BITS 9 +#define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS) +#define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS) +#define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS) /* * The mask/shift to use for saving the original R/X bits when marking the PTE @@ -71,14 +63,23 @@ static_assert(SPTE_TDP_AD_ENABLED_MASK == 0); * restored only when a write is attempted to the page. This mask obviously * must not overlap the A/D type mask. */ -#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \ - PT64_EPT_EXECUTABLE_MASK) +#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \ + SPTE_EPT_EXECUTABLE_MASK) #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54 #define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \ SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK)); /* + * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given + * SPTE is write-protected. See is_writable_pte() for details. + */ + +/* Bits 9 and 10 are ignored by all non-EPT PTEs. */ +#define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9) +#define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10) + +/* * Low ignored bits are at a premium for EPT, use high ignored bits, taking care * to not overlap the A/D type mask or the saved access bits of access-tracked * SPTEs when A/D bits are disabled. @@ -122,6 +123,20 @@ static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); static_assert(!(SPTE_MMU_PRESENT_MASK & (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); +/* + * The SPTE MMIO mask must NOT overlap the MMIO generation bits or the + * MMU-present bit. The generation obviously co-exists with the magic MMIO + * mask/value, and MMIO SPTEs are considered !MMU-present. + * + * The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT + * RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO + * and so they're off-limits for generation; additional checks ensure the mask + * doesn't overlap legal PA bits), and bit 63 (carved out for future usage). + */ +#define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0)) +static_assert(!(SPTE_MMIO_ALLOWED_MASK & + (SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); + #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) @@ -144,6 +159,8 @@ extern u64 __read_mostly shadow_mmio_value; extern u64 __read_mostly shadow_mmio_mask; extern u64 __read_mostly shadow_mmio_access_mask; extern u64 __read_mostly shadow_present_mask; +extern u64 __read_mostly shadow_memtype_mask; +extern u64 __read_mostly shadow_me_value; extern u64 __read_mostly shadow_me_mask; /* @@ -186,6 +203,12 @@ static inline bool is_removed_spte(u64 spte) return spte == REMOVED_SPTE; } +/* Get an SPTE's index into its parent's page table (and the spt array). */ +static inline int spte_index(u64 *sptep) +{ + return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1); +} + /* * In some cases, we need to preserve the GFN of a non-present or reserved * SPTE when we usurp the upper five bits of the physical address space to @@ -196,16 +219,10 @@ static inline bool is_removed_spte(u64 spte) */ extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; -/* - * The number of non-reserved physical address bits irrespective of features - * that repurpose legal bits, e.g. MKTME. - */ -extern u8 __read_mostly shadow_phys_bits; - static inline bool is_mmio_spte(u64 spte) { return (spte & shadow_mmio_mask) == shadow_mmio_value && - likely(shadow_mmio_value); + likely(enable_mmio_caching); } static inline bool is_shadow_present_pte(u64 pte) @@ -213,6 +230,17 @@ static inline bool is_shadow_present_pte(u64 pte) return !!(pte & SPTE_MMU_PRESENT_MASK); } +/* + * Returns true if A/D bits are supported in hardware and are enabled by KVM. + * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can + * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the + * scenario where KVM is using A/D bits for L1, but not L2. + */ +static inline bool kvm_ad_enabled(void) +{ + return !!shadow_accessed_mask; +} + static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) { return sp->role.ad_disabled; @@ -269,7 +297,7 @@ static inline bool is_executable_pte(u64 spte) static inline kvm_pfn_t spte_to_pfn(u64 pte) { - return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; + return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT; } static inline bool is_accessed_spte(u64 spte) @@ -314,10 +342,92 @@ static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, __is_rsvd_bits_set(rsvd_check, spte, level); } -static inline bool spte_can_locklessly_be_made_writable(u64 spte) +/* + * A shadow-present leaf SPTE may be non-writable for 4 possible reasons: + * + * 1. To intercept writes for dirty logging. KVM write-protects huge pages + * so that they can be split be split down into the dirty logging + * granularity (4KiB) whenever the guest writes to them. KVM also + * write-protects 4KiB pages so that writes can be recorded in the dirty log + * (e.g. if not using PML). SPTEs are write-protected for dirty logging + * during the VM-iotcls that enable dirty logging. + * + * 2. To intercept writes to guest page tables that KVM is shadowing. When a + * guest writes to its page table the corresponding shadow page table will + * be marked "unsync". That way KVM knows which shadow page tables need to + * be updated on the next TLB flush, INVLPG, etc. and which do not. + * + * 3. To prevent guest writes to read-only memory, such as for memory in a + * read-only memslot or guest memory backed by a read-only VMA. Writes to + * such pages are disallowed entirely. + * + * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this + * case, the SPTE is access-protected, not just write-protected! + * + * For cases #1 and #4, KVM can safely make such SPTEs writable without taking + * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it. + * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits + * in the SPTE: + * + * shadow_mmu_writable_mask, aka MMU-writable - + * Cleared on SPTEs that KVM is currently write-protecting for shadow paging + * purposes (case 2 above). + * + * shadow_host_writable_mask, aka Host-writable - + * Cleared on SPTEs that are not host-writable (case 3 above) + * + * Note, not all possible combinations of PT_WRITABLE_MASK, + * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given + * SPTE can be in only one of the following states, which map to the + * aforementioned 3 cases: + * + * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK + * ------------------------- | ------------------------ | ---------------- + * 1 | 1 | 1 (writable) + * 1 | 1 | 0 (case 1) + * 1 | 0 | 0 (case 2) + * 0 | 0 | 0 (case 3) + * + * The valid combinations of these bits are checked by + * check_spte_writable_invariants() whenever an SPTE is modified. + * + * Clearing the MMU-writable bit is always done under the MMU lock and always + * accompanied by a TLB flush before dropping the lock to avoid corrupting the + * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging + * (which does not clear the MMU-writable bit), does not flush TLBs before + * dropping the lock, as it only needs to synchronize guest writes with the + * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for + * access-tracking via the clear_young() MMU notifier also does not flush TLBs. + * + * So, there is the problem: clearing the MMU-writable bit can encounter a + * write-protected SPTE while CPUs still have writable mappings for that SPTE + * cached in their TLB. To address this, KVM always flushes TLBs when + * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE. + * + * The Host-writable bit is not modified on present SPTEs, it is only set or + * cleared when an SPTE is first faulted in from non-present and then remains + * immutable. + */ +static inline bool is_writable_pte(unsigned long pte) +{ + return pte & PT_WRITABLE_MASK; +} + +/* Note: spte must be a shadow-present leaf SPTE. */ +static inline void check_spte_writable_invariants(u64 spte) { - return (spte & shadow_host_writable_mask) && - (spte & shadow_mmu_writable_mask); + if (spte & shadow_mmu_writable_mask) + WARN_ONCE(!(spte & shadow_host_writable_mask), + "kvm: MMU-writable SPTE is not Host-writable: %llx", + spte); + else + WARN_ONCE(is_writable_pte(spte), + "kvm: Writable SPTE is not MMU-writable: %llx", spte); +} + +static inline bool is_mmu_writable_spte(u64 spte) +{ + return spte & shadow_mmu_writable_mask; } static inline u64 get_mmio_spte_generation(u64 spte) @@ -329,16 +439,36 @@ static inline u64 get_mmio_spte_generation(u64 spte) return gen; } +bool spte_has_volatile_bits(u64 spte); + bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, - struct kvm_memory_slot *slot, + const struct kvm_memory_slot *slot, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool prefetch, bool can_unsync, bool host_writable, u64 *new_spte); +u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, + union kvm_mmu_page_role role, int index); u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); u64 mark_spte_for_access_track(u64 spte); + +/* Restore an acc-track PTE back to a regular PTE */ +static inline u64 restore_acc_track_spte(u64 spte) +{ + u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) + & SHADOW_ACC_TRACK_SAVED_BITS_MASK; + + spte &= ~shadow_acc_track_mask; + spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << + SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); + spte |= saved_bits; + + return spte; +} + u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); +void __init kvm_mmu_spte_module_init(void); void kvm_mmu_reset_all_pte_masks(void); #endif diff --git a/arch/x86/kvm/mmu/tdp_iter.c b/arch/x86/kvm/mmu/tdp_iter.c index caa96c270b95..39b48e7d7d1a 100644 --- a/arch/x86/kvm/mmu/tdp_iter.c +++ b/arch/x86/kvm/mmu/tdp_iter.c @@ -11,8 +11,8 @@ static void tdp_iter_refresh_sptep(struct tdp_iter *iter) { iter->sptep = iter->pt_path[iter->level - 1] + - SHADOW_PT_INDEX(iter->gfn << PAGE_SHIFT, iter->level); - iter->old_spte = READ_ONCE(*rcu_dereference(iter->sptep)); + SPTE_INDEX(iter->gfn << PAGE_SHIFT, iter->level); + iter->old_spte = kvm_tdp_mmu_read_spte(iter->sptep); } static gfn_t round_gfn_for_level(gfn_t gfn, int level) @@ -40,17 +40,19 @@ void tdp_iter_restart(struct tdp_iter *iter) * Sets a TDP iterator to walk a pre-order traversal of the paging structure * rooted at root_pt, starting with the walk to translate next_last_level_gfn. */ -void tdp_iter_start(struct tdp_iter *iter, u64 *root_pt, int root_level, +void tdp_iter_start(struct tdp_iter *iter, struct kvm_mmu_page *root, int min_level, gfn_t next_last_level_gfn) { + int root_level = root->role.level; + WARN_ON(root_level < 1); WARN_ON(root_level > PT64_ROOT_MAX_LEVEL); iter->next_last_level_gfn = next_last_level_gfn; iter->root_level = root_level; iter->min_level = min_level; - iter->pt_path[iter->root_level - 1] = (tdp_ptep_t)root_pt; - iter->as_id = kvm_mmu_page_as_id(sptep_to_sp(root_pt)); + iter->pt_path[iter->root_level - 1] = (tdp_ptep_t)root->spt; + iter->as_id = kvm_mmu_page_as_id(root); tdp_iter_restart(iter); } @@ -87,7 +89,7 @@ static bool try_step_down(struct tdp_iter *iter) * Reread the SPTE before stepping down to avoid traversing into page * tables that are no longer linked from this entry. */ - iter->old_spte = READ_ONCE(*rcu_dereference(iter->sptep)); + iter->old_spte = kvm_tdp_mmu_read_spte(iter->sptep); child_pt = spte_to_child_pt(iter->old_spte, iter->level); if (!child_pt) @@ -114,14 +116,14 @@ static bool try_step_side(struct tdp_iter *iter) * Check if the iterator is already at the end of the current page * table. */ - if (SHADOW_PT_INDEX(iter->gfn << PAGE_SHIFT, iter->level) == - (PT64_ENT_PER_PAGE - 1)) + if (SPTE_INDEX(iter->gfn << PAGE_SHIFT, iter->level) == + (SPTE_ENT_PER_PAGE - 1)) return false; iter->gfn += KVM_PAGES_PER_HPAGE(iter->level); iter->next_last_level_gfn = iter->gfn; iter->sptep++; - iter->old_spte = READ_ONCE(*rcu_dereference(iter->sptep)); + iter->old_spte = kvm_tdp_mmu_read_spte(iter->sptep); return true; } diff --git a/arch/x86/kvm/mmu/tdp_iter.h b/arch/x86/kvm/mmu/tdp_iter.h index e19cabbcb65c..f0af385c56e0 100644 --- a/arch/x86/kvm/mmu/tdp_iter.h +++ b/arch/x86/kvm/mmu/tdp_iter.h @@ -6,8 +6,51 @@ #include <linux/kvm_host.h> #include "mmu.h" +#include "spte.h" -typedef u64 __rcu *tdp_ptep_t; +/* + * TDP MMU SPTEs are RCU protected to allow paging structures (non-leaf SPTEs) + * to be zapped while holding mmu_lock for read, and to allow TLB flushes to be + * batched without having to collect the list of zapped SPs. Flows that can + * remove SPs must service pending TLB flushes prior to dropping RCU protection. + */ +static inline u64 kvm_tdp_mmu_read_spte(tdp_ptep_t sptep) +{ + return READ_ONCE(*rcu_dereference(sptep)); +} + +static inline u64 kvm_tdp_mmu_write_spte_atomic(tdp_ptep_t sptep, u64 new_spte) +{ + return xchg(rcu_dereference(sptep), new_spte); +} + +static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte) +{ + WRITE_ONCE(*rcu_dereference(sptep), new_spte); +} + +static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte, + u64 new_spte, int level) +{ + /* + * Atomically write the SPTE if it is a shadow-present, leaf SPTE with + * volatile bits, i.e. has bits that can be set outside of mmu_lock. + * The Writable bit can be set by KVM's fast page fault handler, and + * Accessed and Dirty bits can be set by the CPU. + * + * Note, non-leaf SPTEs do have Accessed bits and those bits are + * technically volatile, but KVM doesn't consume the Accessed bit of + * non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This + * logic needs to be reassessed if KVM were to use non-leaf Accessed + * bits, e.g. to skip stepping down into child SPTEs when aging SPTEs. + */ + if (is_shadow_present_pte(old_spte) && is_last_spte(old_spte, level) && + spte_has_volatile_bits(old_spte)) + return kvm_tdp_mmu_write_spte_atomic(sptep, new_spte); + + __kvm_tdp_mmu_write_spte(sptep, new_spte); + return old_spte; +} /* * A TDP iterator performs a pre-order walk over a TDP paging structure. @@ -57,17 +100,17 @@ struct tdp_iter { * Iterates over every SPTE mapping the GFN range [start, end) in a * preorder traversal. */ -#define for_each_tdp_pte_min_level(iter, root, root_level, min_level, start, end) \ - for (tdp_iter_start(&iter, root, root_level, min_level, start); \ +#define for_each_tdp_pte_min_level(iter, root, min_level, start, end) \ + for (tdp_iter_start(&iter, root, min_level, start); \ iter.valid && iter.gfn < end; \ tdp_iter_next(&iter)) -#define for_each_tdp_pte(iter, root, root_level, start, end) \ - for_each_tdp_pte_min_level(iter, root, root_level, PG_LEVEL_4K, start, end) +#define for_each_tdp_pte(iter, root, start, end) \ + for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) tdp_ptep_t spte_to_child_pt(u64 pte, int level); -void tdp_iter_start(struct tdp_iter *iter, u64 *root_pt, int root_level, +void tdp_iter_start(struct tdp_iter *iter, struct kvm_mmu_page *root, int min_level, gfn_t next_last_level_gfn); void tdp_iter_next(struct tdp_iter *iter); void tdp_iter_restart(struct tdp_iter *iter); diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c index 1beb4ca90560..672f0432d777 100644 --- a/arch/x86/kvm/mmu/tdp_mmu.c +++ b/arch/x86/kvm/mmu/tdp_mmu.c @@ -14,28 +14,36 @@ static bool __read_mostly tdp_mmu_enabled = true; module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644); /* Initializes the TDP MMU for the VM, if enabled. */ -bool kvm_mmu_init_tdp_mmu(struct kvm *kvm) +int kvm_mmu_init_tdp_mmu(struct kvm *kvm) { + struct workqueue_struct *wq; + if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled)) - return false; + return 0; + + wq = alloc_workqueue("kvm", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 0); + if (!wq) + return -ENOMEM; /* This should not be changed for the lifetime of the VM. */ kvm->arch.tdp_mmu_enabled = true; - INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages); - - return true; + kvm->arch.tdp_mmu_zap_wq = wq; + return 1; } -static __always_inline void kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, +/* Arbitrarily returns true so that this may be used in if statements. */ +static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, bool shared) { if (shared) lockdep_assert_held_read(&kvm->mmu_lock); else lockdep_assert_held_write(&kvm->mmu_lock); + + return true; } void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) @@ -43,20 +51,20 @@ void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) if (!kvm->arch.tdp_mmu_enabled) return; + /* Also waits for any queued work items. */ + destroy_workqueue(kvm->arch.tdp_mmu_zap_wq); + WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages)); WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); /* * Ensure that all the outstanding RCU callbacks to free shadow pages - * can run before the VM is torn down. + * can run before the VM is torn down. Work items on tdp_mmu_zap_wq + * can call kvm_tdp_mmu_put_root and create new callbacks. */ rcu_barrier(); } -static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, - gfn_t start, gfn_t end, bool can_yield, bool flush, - bool shared); - static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) { free_page((unsigned long)sp->spt); @@ -79,6 +87,56 @@ static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) tdp_mmu_free_sp(sp); } +static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, + bool shared); + +static void tdp_mmu_zap_root_work(struct work_struct *work) +{ + struct kvm_mmu_page *root = container_of(work, struct kvm_mmu_page, + tdp_mmu_async_work); + struct kvm *kvm = root->tdp_mmu_async_data; + + read_lock(&kvm->mmu_lock); + + /* + * A TLB flush is not necessary as KVM performs a local TLB flush when + * allocating a new root (see kvm_mmu_load()), and when migrating vCPU + * to a different pCPU. Note, the local TLB flush on reuse also + * invalidates any paging-structure-cache entries, i.e. TLB entries for + * intermediate paging structures, that may be zapped, as such entries + * are associated with the ASID on both VMX and SVM. + */ + tdp_mmu_zap_root(kvm, root, true); + + /* + * Drop the refcount using kvm_tdp_mmu_put_root() to test its logic for + * avoiding an infinite loop. By design, the root is reachable while + * it's being asynchronously zapped, thus a different task can put its + * last reference, i.e. flowing through kvm_tdp_mmu_put_root() for an + * asynchronously zapped root is unavoidable. + */ + kvm_tdp_mmu_put_root(kvm, root, true); + + read_unlock(&kvm->mmu_lock); +} + +static void tdp_mmu_schedule_zap_root(struct kvm *kvm, struct kvm_mmu_page *root) +{ + root->tdp_mmu_async_data = kvm; + INIT_WORK(&root->tdp_mmu_async_work, tdp_mmu_zap_root_work); + queue_work(kvm->arch.tdp_mmu_zap_wq, &root->tdp_mmu_async_work); +} + +static inline bool kvm_tdp_root_mark_invalid(struct kvm_mmu_page *page) +{ + union kvm_mmu_page_role role = page->role; + role.invalid = true; + + /* No need to use cmpxchg, only the invalid bit can change. */ + role.word = xchg(&page->role.word, role.word); + return role.invalid; +} + void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, bool shared) { @@ -89,25 +147,63 @@ void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, WARN_ON(!root->tdp_mmu_page); + /* + * The root now has refcount=0. It is valid, but readers already + * cannot acquire a reference to it because kvm_tdp_mmu_get_root() + * rejects it. This remains true for the rest of the execution + * of this function, because readers visit valid roots only + * (except for tdp_mmu_zap_root_work(), which however + * does not acquire any reference itself). + * + * Even though there are flows that need to visit all roots for + * correctness, they all take mmu_lock for write, so they cannot yet + * run concurrently. The same is true after kvm_tdp_root_mark_invalid, + * since the root still has refcount=0. + * + * However, tdp_mmu_zap_root can yield, and writers do not expect to + * see refcount=0 (see for example kvm_tdp_mmu_invalidate_all_roots()). + * So the root temporarily gets an extra reference, going to refcount=1 + * while staying invalid. Readers still cannot acquire any reference; + * but writers are now allowed to run if tdp_mmu_zap_root yields and + * they might take an extra reference if they themselves yield. + * Therefore, when the reference is given back by the worker, + * there is no guarantee that the refcount is still 1. If not, whoever + * puts the last reference will free the page, but they will not have to + * zap the root because a root cannot go from invalid to valid. + */ + if (!kvm_tdp_root_mark_invalid(root)) { + refcount_set(&root->tdp_mmu_root_count, 1); + + /* + * Zapping the root in a worker is not just "nice to have"; + * it is required because kvm_tdp_mmu_invalidate_all_roots() + * skips already-invalid roots. If kvm_tdp_mmu_put_root() did + * not add the root to the workqueue, kvm_tdp_mmu_zap_all_fast() + * might return with some roots not zapped yet. + */ + tdp_mmu_schedule_zap_root(kvm, root); + return; + } + spin_lock(&kvm->arch.tdp_mmu_pages_lock); list_del_rcu(&root->link); spin_unlock(&kvm->arch.tdp_mmu_pages_lock); - - zap_gfn_range(kvm, root, 0, -1ull, false, false, shared); - call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); } /* - * Finds the next valid root after root (or the first valid root if root - * is NULL), takes a reference on it, and returns that next root. If root - * is not NULL, this thread should have already taken a reference on it, and - * that reference will be dropped. If no valid root is found, this - * function will return NULL. + * Returns the next root after @prev_root (or the first root if @prev_root is + * NULL). A reference to the returned root is acquired, and the reference to + * @prev_root is released (the caller obviously must hold a reference to + * @prev_root if it's non-NULL). + * + * If @only_valid is true, invalid roots are skipped. + * + * Returns NULL if the end of tdp_mmu_roots was reached. */ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, struct kvm_mmu_page *prev_root, - bool shared) + bool shared, bool only_valid) { struct kvm_mmu_page *next_root; @@ -121,9 +217,14 @@ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, typeof(*next_root), link); - while (next_root && !kvm_tdp_mmu_get_root(kvm, next_root)) + while (next_root) { + if ((!only_valid || !next_root->role.invalid) && + kvm_tdp_mmu_get_root(next_root)) + break; + next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, &next_root->link, typeof(*next_root), link); + } rcu_read_unlock(); @@ -143,71 +244,91 @@ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, * mode. In the unlikely event that this thread must free a root, the lock * will be temporarily dropped and reacquired in write mode. */ -#define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared) \ - for (_root = tdp_mmu_next_root(_kvm, NULL, _shared); \ - _root; \ - _root = tdp_mmu_next_root(_kvm, _root, _shared)) \ - if (kvm_mmu_page_as_id(_root) != _as_id) { \ - } else - -#define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ - list_for_each_entry_rcu(_root, &_kvm->arch.tdp_mmu_roots, link, \ - lockdep_is_held_type(&kvm->mmu_lock, 0) || \ - lockdep_is_held(&kvm->arch.tdp_mmu_pages_lock)) \ - if (kvm_mmu_page_as_id(_root) != _as_id) { \ +#define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\ + for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid); \ + _root; \ + _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid)) \ + if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) && \ + kvm_mmu_page_as_id(_root) != _as_id) { \ } else -static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu, - int level) -{ - union kvm_mmu_page_role role; +#define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared) \ + __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true) - role = vcpu->arch.mmu->mmu_role.base; - role.level = level; - role.direct = true; - role.gpte_is_8_bytes = true; - role.access = ACC_ALL; - role.ad_disabled = !shadow_accessed_mask; +#define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ + __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, false, false) - return role; -} +/* + * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, + * the implication being that any flow that holds mmu_lock for read is + * inherently yield-friendly and should use the yield-safe variant above. + * Holding mmu_lock for write obviates the need for RCU protection as the list + * is guaranteed to be stable. + */ +#define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ + list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ + if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ + kvm_mmu_page_as_id(_root) != _as_id) { \ + } else -static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn, - int level) +static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) { struct kvm_mmu_page *sp; sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); + + return sp; +} + +static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, + gfn_t gfn, union kvm_mmu_page_role role) +{ set_page_private(virt_to_page(sp->spt), (unsigned long)sp); - sp->role.word = page_role_for_level(vcpu, level).word; + sp->role = role; sp->gfn = gfn; + sp->ptep = sptep; sp->tdp_mmu_page = true; trace_kvm_mmu_get_page(sp, true); +} - return sp; +static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, + struct tdp_iter *iter) +{ + struct kvm_mmu_page *parent_sp; + union kvm_mmu_page_role role; + + parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); + + role = parent_sp->role; + role.level--; + + tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); } hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) { - union kvm_mmu_page_role role; + union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; struct kvm *kvm = vcpu->kvm; struct kvm_mmu_page *root; lockdep_assert_held_write(&kvm->mmu_lock); - role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level); - - /* Check for an existing root before allocating a new one. */ + /* + * Check for an existing root before allocating a new one. Note, the + * role check prevents consuming an invalid root. + */ for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) { if (root->role.word == role.word && - kvm_tdp_mmu_get_root(kvm, root)) + kvm_tdp_mmu_get_root(root)) goto out; } - root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level); + root = tdp_mmu_alloc_sp(vcpu); + tdp_mmu_init_sp(root, NULL, 0, role); + refcount_set(&root->tdp_mmu_root_count, 1); spin_lock(&kvm->arch.tdp_mmu_pages_lock); @@ -251,26 +372,18 @@ static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn, } } -/** - * tdp_mmu_link_page - Add a new page to the list of pages used by the TDP MMU - * - * @kvm: kvm instance - * @sp: the new page - * @account_nx: This page replaces a NX large page and should be marked for - * eventual reclaim. - */ -static void tdp_mmu_link_page(struct kvm *kvm, struct kvm_mmu_page *sp, - bool account_nx) +static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) { - spin_lock(&kvm->arch.tdp_mmu_pages_lock); - list_add(&sp->link, &kvm->arch.tdp_mmu_pages); - if (account_nx) - account_huge_nx_page(kvm, sp); - spin_unlock(&kvm->arch.tdp_mmu_pages_lock); + kvm_account_pgtable_pages((void *)sp->spt, +1); +} + +static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + kvm_account_pgtable_pages((void *)sp->spt, -1); } /** - * tdp_mmu_unlink_page - Remove page from the list of pages used by the TDP MMU + * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages * * @kvm: kvm instance * @sp: the page to be removed @@ -278,9 +391,10 @@ static void tdp_mmu_link_page(struct kvm *kvm, struct kvm_mmu_page *sp, * the MMU lock and the operation must synchronize with other * threads that might be adding or removing pages. */ -static void tdp_mmu_unlink_page(struct kvm *kvm, struct kvm_mmu_page *sp, - bool shared) +static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp, + bool shared) { + tdp_unaccount_mmu_page(kvm, sp); if (shared) spin_lock(&kvm->arch.tdp_mmu_pages_lock); else @@ -295,7 +409,7 @@ static void tdp_mmu_unlink_page(struct kvm *kvm, struct kvm_mmu_page *sp, } /** - * handle_removed_tdp_mmu_page - handle a pt removed from the TDP structure + * handle_removed_pt() - handle a page table removed from the TDP structure * * @kvm: kvm instance * @pt: the page removed from the paging structure @@ -311,8 +425,7 @@ static void tdp_mmu_unlink_page(struct kvm *kvm, struct kvm_mmu_page *sp, * this thread will be responsible for ensuring the page is freed. Hence the * early rcu_dereferences in the function. */ -static void handle_removed_tdp_mmu_page(struct kvm *kvm, tdp_ptep_t pt, - bool shared) +static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) { struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); int level = sp->role.level; @@ -321,12 +434,12 @@ static void handle_removed_tdp_mmu_page(struct kvm *kvm, tdp_ptep_t pt, trace_kvm_mmu_prepare_zap_page(sp); - tdp_mmu_unlink_page(kvm, sp, shared); + tdp_mmu_unlink_sp(kvm, sp, shared); - for (i = 0; i < PT64_ENT_PER_PAGE; i++) { - u64 *sptep = rcu_dereference(pt) + i; + for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { + tdp_ptep_t sptep = pt + i; gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); - u64 old_child_spte; + u64 old_spte; if (shared) { /* @@ -338,8 +451,8 @@ static void handle_removed_tdp_mmu_page(struct kvm *kvm, tdp_ptep_t pt, * value to the removed SPTE value. */ for (;;) { - old_child_spte = xchg(sptep, REMOVED_SPTE); - if (!is_removed_spte(old_child_spte)) + old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE); + if (!is_removed_spte(old_spte)) break; cpu_relax(); } @@ -353,28 +466,45 @@ static void handle_removed_tdp_mmu_page(struct kvm *kvm, tdp_ptep_t pt, * are guarded by the memslots generation, not by being * unreachable. */ - old_child_spte = READ_ONCE(*sptep); - if (!is_shadow_present_pte(old_child_spte)) + old_spte = kvm_tdp_mmu_read_spte(sptep); + if (!is_shadow_present_pte(old_spte)) continue; /* - * Marking the SPTE as a removed SPTE is not - * strictly necessary here as the MMU lock will - * stop other threads from concurrently modifying - * this SPTE. Using the removed SPTE value keeps - * the two branches consistent and simplifies - * the function. + * Use the common helper instead of a raw WRITE_ONCE as + * the SPTE needs to be updated atomically if it can be + * modified by a different vCPU outside of mmu_lock. + * Even though the parent SPTE is !PRESENT, the TLB + * hasn't yet been flushed, and both Intel and AMD + * document that A/D assists can use upper-level PxE + * entries that are cached in the TLB, i.e. the CPU can + * still access the page and mark it dirty. + * + * No retry is needed in the atomic update path as the + * sole concern is dropping a Dirty bit, i.e. no other + * task can zap/remove the SPTE as mmu_lock is held for + * write. Marking the SPTE as a removed SPTE is not + * strictly necessary for the same reason, but using + * the remove SPTE value keeps the shared/exclusive + * paths consistent and allows the handle_changed_spte() + * call below to hardcode the new value to REMOVED_SPTE. + * + * Note, even though dropping a Dirty bit is the only + * scenario where a non-atomic update could result in a + * functional bug, simply checking the Dirty bit isn't + * sufficient as a fast page fault could read the upper + * level SPTE before it is zapped, and then make this + * target SPTE writable, resume the guest, and set the + * Dirty bit between reading the SPTE above and writing + * it here. */ - WRITE_ONCE(*sptep, REMOVED_SPTE); + old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, + REMOVED_SPTE, level); } handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, - old_child_spte, REMOVED_SPTE, level, - shared); + old_spte, REMOVED_SPTE, level, shared); } - kvm_flush_remote_tlbs_with_address(kvm, base_gfn, - KVM_PAGES_PER_HPAGE(level + 1)); - call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); } @@ -435,6 +565,9 @@ static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); + if (is_leaf) + check_spte_writable_invariants(new_spte); + /* * The only times a SPTE should be changed from a non-present to * non-present state is when an MMIO entry is installed/modified/ @@ -469,11 +602,13 @@ static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, /* * Recursively handle child PTs if the change removed a subtree from - * the paging structure. + * the paging structure. Note the WARN on the PFN changing without the + * SPTE being converted to a hugepage (leaf) or being zapped. Shadow + * pages are kernel allocations and should never be migrated. */ - if (was_present && !was_leaf && (pfn_changed || !is_present)) - handle_removed_tdp_mmu_page(kvm, - spte_to_child_pt(old_spte, level), shared); + if (was_present && !was_leaf && + (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) + handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); } static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, @@ -492,76 +627,88 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, * and handle the associated bookkeeping. Do not mark the page dirty * in KVM's dirty bitmaps. * + * If setting the SPTE fails because it has changed, iter->old_spte will be + * refreshed to the current value of the spte. + * * @kvm: kvm instance * @iter: a tdp_iter instance currently on the SPTE that should be set * @new_spte: The value the SPTE should be set to - * Returns: true if the SPTE was set, false if it was not. If false is returned, - * this function will have no side-effects. + * Return: + * * 0 - If the SPTE was set. + * * -EBUSY - If the SPTE cannot be set. In this case this function will have + * no side-effects other than setting iter->old_spte to the last + * known value of the spte. */ -static inline bool tdp_mmu_set_spte_atomic(struct kvm *kvm, - struct tdp_iter *iter, - u64 new_spte) +static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm, + struct tdp_iter *iter, + u64 new_spte) { - WARN_ON_ONCE(iter->yielded); - - lockdep_assert_held_read(&kvm->mmu_lock); + u64 *sptep = rcu_dereference(iter->sptep); /* - * Do not change removed SPTEs. Only the thread that froze the SPTE - * may modify it. + * The caller is responsible for ensuring the old SPTE is not a REMOVED + * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE, + * and pre-checking before inserting a new SPTE is advantageous as it + * avoids unnecessary work. */ - if (is_removed_spte(iter->old_spte)) - return false; + WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte)); + + lockdep_assert_held_read(&kvm->mmu_lock); /* * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and * does not hold the mmu_lock. */ - if (cmpxchg64(rcu_dereference(iter->sptep), iter->old_spte, - new_spte) != iter->old_spte) - return false; + if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) + return -EBUSY; __handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, new_spte, iter->level, true); handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level); - return true; + return 0; } -static inline bool tdp_mmu_zap_spte_atomic(struct kvm *kvm, - struct tdp_iter *iter) +static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm, + struct tdp_iter *iter) { + int ret; + /* * Freeze the SPTE by setting it to a special, * non-present value. This will stop other threads from * immediately installing a present entry in its place * before the TLBs are flushed. */ - if (!tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE)) - return false; + ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE); + if (ret) + return ret; kvm_flush_remote_tlbs_with_address(kvm, iter->gfn, KVM_PAGES_PER_HPAGE(iter->level)); /* - * No other thread can overwrite the removed SPTE as they - * must either wait on the MMU lock or use - * tdp_mmu_set_spte_atomic which will not overwrite the - * special removed SPTE value. No bookkeeping is needed - * here since the SPTE is going from non-present - * to non-present. + * No other thread can overwrite the removed SPTE as they must either + * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not + * overwrite the special removed SPTE value. No bookkeeping is needed + * here since the SPTE is going from non-present to non-present. Use + * the raw write helper to avoid an unnecessary check on volatile bits. */ - WRITE_ONCE(*rcu_dereference(iter->sptep), 0); + __kvm_tdp_mmu_write_spte(iter->sptep, 0); - return true; + return 0; } /* * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping - * @kvm: kvm instance - * @iter: a tdp_iter instance currently on the SPTE that should be set - * @new_spte: The value the SPTE should be set to + * @kvm: KVM instance + * @as_id: Address space ID, i.e. regular vs. SMM + * @sptep: Pointer to the SPTE + * @old_spte: The current value of the SPTE + * @new_spte: The new value that will be set for the SPTE + * @gfn: The base GFN that was (or will be) mapped by the SPTE + * @level: The level _containing_ the SPTE (its parent PT's level) * @record_acc_track: Notify the MM subsystem of changes to the accessed state * of the page. Should be set unless handling an MMU * notifier for access tracking. Leaving record_acc_track @@ -572,59 +719,71 @@ static inline bool tdp_mmu_zap_spte_atomic(struct kvm *kvm, * unless performing certain dirty logging operations. * Leaving record_dirty_log unset in that case prevents page * writes from being double counted. + * + * Returns the old SPTE value, which _may_ be different than @old_spte if the + * SPTE had voldatile bits. */ -static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, - u64 new_spte, bool record_acc_track, - bool record_dirty_log) +static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, + u64 old_spte, u64 new_spte, gfn_t gfn, int level, + bool record_acc_track, bool record_dirty_log) { - WARN_ON_ONCE(iter->yielded); - lockdep_assert_held_write(&kvm->mmu_lock); /* - * No thread should be using this function to set SPTEs to the + * No thread should be using this function to set SPTEs to or from the * temporary removed SPTE value. * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic * should be used. If operating under the MMU lock in write mode, the * use of the removed SPTE should not be necessary. */ - WARN_ON(is_removed_spte(iter->old_spte)); + WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte)); - WRITE_ONCE(*rcu_dereference(iter->sptep), new_spte); + old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); + + __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); - __handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, - new_spte, iter->level, false); if (record_acc_track) - handle_changed_spte_acc_track(iter->old_spte, new_spte, - iter->level); + handle_changed_spte_acc_track(old_spte, new_spte, level); if (record_dirty_log) - handle_changed_spte_dirty_log(kvm, iter->as_id, iter->gfn, - iter->old_spte, new_spte, - iter->level); + handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, + new_spte, level); + return old_spte; +} + +static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, + u64 new_spte, bool record_acc_track, + bool record_dirty_log) +{ + WARN_ON_ONCE(iter->yielded); + + iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, + iter->old_spte, new_spte, + iter->gfn, iter->level, + record_acc_track, record_dirty_log); } static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, u64 new_spte) { - __tdp_mmu_set_spte(kvm, iter, new_spte, true, true); + _tdp_mmu_set_spte(kvm, iter, new_spte, true, true); } static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm, struct tdp_iter *iter, u64 new_spte) { - __tdp_mmu_set_spte(kvm, iter, new_spte, false, true); + _tdp_mmu_set_spte(kvm, iter, new_spte, false, true); } static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm, struct tdp_iter *iter, u64 new_spte) { - __tdp_mmu_set_spte(kvm, iter, new_spte, true, false); + _tdp_mmu_set_spte(kvm, iter, new_spte, true, false); } #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ - for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end) + for_each_tdp_pte(_iter, _root, _start, _end) #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ tdp_root_for_each_pte(_iter, _root, _start, _end) \ @@ -634,8 +793,7 @@ static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm, else #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ - for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \ - _mmu->shadow_root_level, _start, _end) + for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end) /* * Yield if the MMU lock is contended or this thread needs to return control @@ -662,11 +820,11 @@ static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, return false; if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { - rcu_read_unlock(); - if (flush) kvm_flush_remote_tlbs(kvm); + rcu_read_unlock(); + if (shared) cond_resched_rwlock_read(&kvm->mmu_lock); else @@ -682,200 +840,203 @@ static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, return iter->yielded; } -/* - * Tears down the mappings for the range of gfns, [start, end), and frees the - * non-root pages mapping GFNs strictly within that range. Returns true if - * SPTEs have been cleared and a TLB flush is needed before releasing the - * MMU lock. - * - * If can_yield is true, will release the MMU lock and reschedule if the - * scheduler needs the CPU or there is contention on the MMU lock. If this - * function cannot yield, it will not release the MMU lock or reschedule and - * the caller must ensure it does not supply too large a GFN range, or the - * operation can cause a soft lockup. - * - * If shared is true, this thread holds the MMU lock in read mode and must - * account for the possibility that other threads are modifying the paging - * structures concurrently. If shared is false, this thread should hold the - * MMU lock in write mode. - */ -static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, - gfn_t start, gfn_t end, bool can_yield, bool flush, - bool shared) +static inline gfn_t tdp_mmu_max_gfn_exclusive(void) { - gfn_t max_gfn_host = 1ULL << (shadow_phys_bits - PAGE_SHIFT); - bool zap_all = (start == 0 && end >= max_gfn_host); - struct tdp_iter iter; - /* - * No need to try to step down in the iterator when zapping all SPTEs, - * zapping the top-level non-leaf SPTEs will recurse on their children. + * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with + * a gpa range that would exceed the max gfn, and KVM does not create + * MMIO SPTEs for "impossible" gfns, instead sending such accesses down + * the slow emulation path every time. */ - int min_level = zap_all ? root->role.level : PG_LEVEL_4K; - - /* - * Bound the walk at host.MAXPHYADDR, guest accesses beyond that will - * hit a #PF(RSVD) and never get to an EPT Violation/Misconfig / #NPF, - * and so KVM will never install a SPTE for such addresses. - */ - end = min(end, max_gfn_host); + return kvm_mmu_max_gfn() + 1; +} - kvm_lockdep_assert_mmu_lock_held(kvm, shared); +static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, + bool shared, int zap_level) +{ + struct tdp_iter iter; - rcu_read_lock(); + gfn_t end = tdp_mmu_max_gfn_exclusive(); + gfn_t start = 0; - for_each_tdp_pte_min_level(iter, root->spt, root->role.level, - min_level, start, end) { + for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { retry: - if (can_yield && - tdp_mmu_iter_cond_resched(kvm, &iter, flush, shared)) { - flush = false; + if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) continue; - } if (!is_shadow_present_pte(iter.old_spte)) continue; - /* - * If this is a non-last-level SPTE that covers a larger range - * than should be zapped, continue, and zap the mappings at a - * lower level, except when zapping all SPTEs. - */ - if (!zap_all && - (iter.gfn < start || - iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) && - !is_last_spte(iter.old_spte, iter.level)) + if (iter.level > zap_level) continue; - if (!shared) { + if (!shared) tdp_mmu_set_spte(kvm, &iter, 0); - flush = true; - } else if (!tdp_mmu_zap_spte_atomic(kvm, &iter)) { - /* - * The iter must explicitly re-read the SPTE because - * the atomic cmpxchg failed. - */ - iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep)); + else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0)) goto retry; - } } - - rcu_read_unlock(); - return flush; } -/* - * Tears down the mappings for the range of gfns, [start, end), and frees the - * non-root pages mapping GFNs strictly within that range. Returns true if - * SPTEs have been cleared and a TLB flush is needed before releasing the - * MMU lock. - */ -bool __kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, int as_id, gfn_t start, - gfn_t end, bool can_yield, bool flush) +static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, + bool shared) { - struct kvm_mmu_page *root; - for_each_tdp_mmu_root_yield_safe(kvm, root, as_id, false) - flush = zap_gfn_range(kvm, root, start, end, can_yield, flush, - false); + /* + * The root must have an elevated refcount so that it's reachable via + * mmu_notifier callbacks, which allows this path to yield and drop + * mmu_lock. When handling an unmap/release mmu_notifier command, KVM + * must drop all references to relevant pages prior to completing the + * callback. Dropping mmu_lock with an unreachable root would result + * in zapping SPTEs after a relevant mmu_notifier callback completes + * and lead to use-after-free as zapping a SPTE triggers "writeback" of + * dirty accessed bits to the SPTE's associated struct page. + */ + WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); - return flush; -} + kvm_lockdep_assert_mmu_lock_held(kvm, shared); -void kvm_tdp_mmu_zap_all(struct kvm *kvm) -{ - bool flush = false; - int i; + rcu_read_lock(); - for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) - flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, 0, -1ull, flush); + /* + * To avoid RCU stalls due to recursively removing huge swaths of SPs, + * split the zap into two passes. On the first pass, zap at the 1gb + * level, and then zap top-level SPs on the second pass. "1gb" is not + * arbitrary, as KVM must be able to zap a 1gb shadow page without + * inducing a stall to allow in-place replacement with a 1gb hugepage. + * + * Because zapping a SP recurses on its children, stepping down to + * PG_LEVEL_4K in the iterator itself is unnecessary. + */ + __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); + __tdp_mmu_zap_root(kvm, root, shared, root->role.level); - if (flush) - kvm_flush_remote_tlbs(kvm); + rcu_read_unlock(); } -static struct kvm_mmu_page *next_invalidated_root(struct kvm *kvm, - struct kvm_mmu_page *prev_root) +bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) { - struct kvm_mmu_page *next_root; + u64 old_spte; - if (prev_root) - next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, - &prev_root->link, - typeof(*prev_root), link); - else - next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, - typeof(*next_root), link); + /* + * This helper intentionally doesn't allow zapping a root shadow page, + * which doesn't have a parent page table and thus no associated entry. + */ + if (WARN_ON_ONCE(!sp->ptep)) + return false; - while (next_root && !(next_root->role.invalid && - refcount_read(&next_root->tdp_mmu_root_count))) - next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, - &next_root->link, - typeof(*next_root), link); + old_spte = kvm_tdp_mmu_read_spte(sp->ptep); + if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) + return false; - return next_root; + __tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0, + sp->gfn, sp->role.level + 1, true, true); + + return true; } /* - * Since kvm_tdp_mmu_zap_all_fast has acquired a reference to each - * invalidated root, they will not be freed until this function drops the - * reference. Before dropping that reference, tear down the paging - * structure so that whichever thread does drop the last reference - * only has to do a trivial amount of work. Since the roots are invalid, - * no new SPTEs should be created under them. + * If can_yield is true, will release the MMU lock and reschedule if the + * scheduler needs the CPU or there is contention on the MMU lock. If this + * function cannot yield, it will not release the MMU lock or reschedule and + * the caller must ensure it does not supply too large a GFN range, or the + * operation can cause a soft lockup. */ -void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) +static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end, bool can_yield, bool flush) { - struct kvm_mmu_page *next_root; - struct kvm_mmu_page *root; - bool flush = false; + struct tdp_iter iter; - lockdep_assert_held_read(&kvm->mmu_lock); + end = min(end, tdp_mmu_max_gfn_exclusive()); + + lockdep_assert_held_write(&kvm->mmu_lock); rcu_read_lock(); - root = next_invalidated_root(kvm, NULL); + for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { + if (can_yield && + tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { + flush = false; + continue; + } - while (root) { - next_root = next_invalidated_root(kvm, root); + if (!is_shadow_present_pte(iter.old_spte) || + !is_last_spte(iter.old_spte, iter.level)) + continue; - rcu_read_unlock(); + tdp_mmu_set_spte(kvm, &iter, 0); + flush = true; + } - flush = zap_gfn_range(kvm, root, 0, -1ull, true, flush, true); + rcu_read_unlock(); - /* - * Put the reference acquired in - * kvm_tdp_mmu_invalidate_roots - */ - kvm_tdp_mmu_put_root(kvm, root, true); + /* + * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need + * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. + */ + return flush; +} - root = next_root; +/* + * Zap leaf SPTEs for the range of gfns, [start, end), for all roots. Returns + * true if a TLB flush is needed before releasing the MMU lock, i.e. if one or + * more SPTEs were zapped since the MMU lock was last acquired. + */ +bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end, + bool can_yield, bool flush) +{ + struct kvm_mmu_page *root; - rcu_read_lock(); - } + for_each_tdp_mmu_root_yield_safe(kvm, root, as_id) + flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush); - rcu_read_unlock(); + return flush; +} + +void kvm_tdp_mmu_zap_all(struct kvm *kvm) +{ + struct kvm_mmu_page *root; + int i; + + /* + * Zap all roots, including invalid roots, as all SPTEs must be dropped + * before returning to the caller. Zap directly even if the root is + * also being zapped by a worker. Walking zapped top-level SPTEs isn't + * all that expensive and mmu_lock is already held, which means the + * worker has yielded, i.e. flushing the work instead of zapping here + * isn't guaranteed to be any faster. + * + * A TLB flush is unnecessary, KVM zaps everything if and only the VM + * is being destroyed or the userspace VMM has exited. In both cases, + * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. + */ + for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { + for_each_tdp_mmu_root_yield_safe(kvm, root, i) + tdp_mmu_zap_root(kvm, root, false); + } +} - if (flush) - kvm_flush_remote_tlbs(kvm); +/* + * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast + * zap" completes. + */ +void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) +{ + flush_workqueue(kvm->arch.tdp_mmu_zap_wq); } /* - * Mark each TDP MMU root as invalid so that other threads - * will drop their references and allow the root count to - * go to 0. + * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that + * is about to be zapped, e.g. in response to a memslots update. The actual + * zapping is performed asynchronously, so a reference is taken on all roots. + * Using a separate workqueue makes it easy to ensure that the destruction is + * performed before the "fast zap" completes, without keeping a separate list + * of invalidated roots; the list is effectively the list of work items in + * the workqueue. * - * Also take a reference on all roots so that this thread - * can do the bulk of the work required to free the roots - * once they are invalidated. Without this reference, a - * vCPU thread might drop the last reference to a root and - * get stuck with tearing down the entire paging structure. - * - * Roots which have a zero refcount should be skipped as - * they're already being torn down. - * Already invalid roots should be referenced again so that - * they aren't freed before kvm_tdp_mmu_zap_all_fast is - * done with them. + * Get a reference even if the root is already invalid, the asynchronous worker + * assumes it was gifted a reference to the root it processes. Because mmu_lock + * is held for write, it should be impossible to observe a root with zero refcount, + * i.e. the list of roots cannot be stale. * * This has essentially the same effect for the TDP MMU * as updating mmu_valid_gen does for the shadow MMU. @@ -885,9 +1046,13 @@ void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) struct kvm_mmu_page *root; lockdep_assert_held_write(&kvm->mmu_lock); - list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) - if (refcount_inc_not_zero(&root->tdp_mmu_root_count)) + list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { + if (!root->role.invalid && + !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) { root->role.invalid = true; + tdp_mmu_schedule_zap_root(kvm, root); + } + } } /* @@ -913,8 +1078,12 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, if (new_spte == iter->old_spte) ret = RET_PF_SPURIOUS; - else if (!tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) + else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) return RET_PF_RETRY; + else if (is_shadow_present_pte(iter->old_spte) && + !is_last_spte(iter->old_spte, iter->level)) + kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(iter->level + 1)); /* * If the page fault was caused by a write but the page is write @@ -928,6 +1097,7 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ if (unlikely(is_mmio_spte(new_spte))) { + vcpu->stat.pf_mmio_spte_created++; trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, new_spte); ret = RET_PF_EMULATE; @@ -936,17 +1106,49 @@ static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, rcu_dereference(iter->sptep)); } - /* - * Increase pf_fixed in both RET_PF_EMULATE and RET_PF_FIXED to be - * consistent with legacy MMU behavior. - */ - if (ret != RET_PF_SPURIOUS) - vcpu->stat.pf_fixed++; - return ret; } /* + * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the + * provided page table. + * + * @kvm: kvm instance + * @iter: a tdp_iter instance currently on the SPTE that should be set + * @sp: The new TDP page table to install. + * @account_nx: True if this page table is being installed to split a + * non-executable huge page. + * @shared: This operation is running under the MMU lock in read mode. + * + * Returns: 0 if the new page table was installed. Non-0 if the page table + * could not be installed (e.g. the atomic compare-exchange failed). + */ +static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, + struct kvm_mmu_page *sp, bool account_nx, + bool shared) +{ + u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled()); + int ret = 0; + + if (shared) { + ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); + if (ret) + return ret; + } else { + tdp_mmu_set_spte(kvm, iter, spte); + } + + spin_lock(&kvm->arch.tdp_mmu_pages_lock); + list_add(&sp->link, &kvm->arch.tdp_mmu_pages); + if (account_nx) + account_huge_nx_page(kvm, sp); + spin_unlock(&kvm->arch.tdp_mmu_pages_lock); + tdp_account_mmu_page(kvm, sp); + + return 0; +} + +/* * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing * page tables and SPTEs to translate the faulting guest physical address. */ @@ -955,8 +1157,6 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) struct kvm_mmu *mmu = vcpu->arch.mmu; struct tdp_iter iter; struct kvm_mmu_page *sp; - u64 *child_pt; - u64 new_spte; int ret; kvm_mmu_hugepage_adjust(vcpu, fault); @@ -979,7 +1179,7 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) */ if (is_shadow_present_pte(iter.old_spte) && is_large_pte(iter.old_spte)) { - if (!tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter)) + if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter)) break; /* @@ -987,10 +1187,13 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) * because the new value informs the !present * path below. */ - iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep)); + iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep); } if (!is_shadow_present_pte(iter.old_spte)) { + bool account_nx = fault->huge_page_disallowed && + fault->req_level >= iter.level; + /* * If SPTE has been frozen by another thread, just * give up and retry, avoiding unnecessary page table @@ -999,26 +1202,21 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) if (is_removed_spte(iter.old_spte)) break; - sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level - 1); - child_pt = sp->spt; - - new_spte = make_nonleaf_spte(child_pt, - !shadow_accessed_mask); + sp = tdp_mmu_alloc_sp(vcpu); + tdp_mmu_init_child_sp(sp, &iter); - if (tdp_mmu_set_spte_atomic(vcpu->kvm, &iter, new_spte)) { - tdp_mmu_link_page(vcpu->kvm, sp, - fault->huge_page_disallowed && - fault->req_level >= iter.level); - - trace_kvm_mmu_get_page(sp, true); - } else { + if (tdp_mmu_link_sp(vcpu->kvm, &iter, sp, account_nx, true)) { tdp_mmu_free_sp(sp); break; } } } - if (iter.level != fault->goal_level) { + /* + * Force the guest to retry the access if the upper level SPTEs aren't + * in place, or if the target leaf SPTE is frozen by another CPU. + */ + if (iter.level != fault->goal_level || is_removed_spte(iter.old_spte)) { rcu_read_unlock(); return RET_PF_RETRY; } @@ -1032,13 +1230,8 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, bool flush) { - struct kvm_mmu_page *root; - - for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false) - flush = zap_gfn_range(kvm, root, range->start, range->end, - range->may_block, flush, false); - - return flush; + return kvm_tdp_mmu_zap_leafs(kvm, range->slot->as_id, range->start, + range->end, range->may_block, flush); } typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter, @@ -1052,18 +1245,18 @@ static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, struct tdp_iter iter; bool ret = false; - rcu_read_lock(); - /* * Don't support rescheduling, none of the MMU notifiers that funnel * into this helper allow blocking; it'd be dead, wasteful code. */ for_each_tdp_mmu_root(kvm, root, range->slot->as_id) { + rcu_read_lock(); + tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) ret |= handler(kvm, &iter, range); - } - rcu_read_unlock(); + rcu_read_unlock(); + } return ret; } @@ -1155,13 +1348,12 @@ static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter, */ bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { - bool flush = kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn); - - /* FIXME: return 'flush' instead of flushing here. */ - if (flush) - kvm_flush_remote_tlbs_with_address(kvm, range->start, 1); - - return false; + /* + * No need to handle the remote TLB flush under RCU protection, the + * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a + * shadow page. See the WARN on pfn_changed in __handle_changed_spte(). + */ + return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn); } /* @@ -1180,8 +1372,7 @@ static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); - for_each_tdp_pte_min_level(iter, root->spt, root->role.level, - min_level, start, end) { + for_each_tdp_pte_min_level(iter, root, min_level, start, end) { retry: if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) continue; @@ -1193,14 +1384,9 @@ retry: new_spte = iter.old_spte & ~PT_WRITABLE_MASK; - if (!tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) { - /* - * The iter must explicitly re-read the SPTE because - * the atomic cmpxchg failed. - */ - iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep)); + if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) goto retry; - } + spte_set = true; } @@ -1221,13 +1407,197 @@ bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, lockdep_assert_held_read(&kvm->mmu_lock); - for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, slot->base_gfn + slot->npages, min_level); return spte_set; } +static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp) +{ + struct kvm_mmu_page *sp; + + gfp |= __GFP_ZERO; + + sp = kmem_cache_alloc(mmu_page_header_cache, gfp); + if (!sp) + return NULL; + + sp->spt = (void *)__get_free_page(gfp); + if (!sp->spt) { + kmem_cache_free(mmu_page_header_cache, sp); + return NULL; + } + + return sp; +} + +static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm, + struct tdp_iter *iter, + bool shared) +{ + struct kvm_mmu_page *sp; + + /* + * Since we are allocating while under the MMU lock we have to be + * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct + * reclaim and to avoid making any filesystem callbacks (which can end + * up invoking KVM MMU notifiers, resulting in a deadlock). + * + * If this allocation fails we drop the lock and retry with reclaim + * allowed. + */ + sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT); + if (sp) + return sp; + + rcu_read_unlock(); + + if (shared) + read_unlock(&kvm->mmu_lock); + else + write_unlock(&kvm->mmu_lock); + + iter->yielded = true; + sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT); + + if (shared) + read_lock(&kvm->mmu_lock); + else + write_lock(&kvm->mmu_lock); + + rcu_read_lock(); + + return sp; +} + +static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, + struct kvm_mmu_page *sp, bool shared) +{ + const u64 huge_spte = iter->old_spte; + const int level = iter->level; + int ret, i; + + tdp_mmu_init_child_sp(sp, iter); + + /* + * No need for atomics when writing to sp->spt since the page table has + * not been linked in yet and thus is not reachable from any other CPU. + */ + for (i = 0; i < SPTE_ENT_PER_PAGE; i++) + sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i); + + /* + * Replace the huge spte with a pointer to the populated lower level + * page table. Since we are making this change without a TLB flush vCPUs + * will see a mix of the split mappings and the original huge mapping, + * depending on what's currently in their TLB. This is fine from a + * correctness standpoint since the translation will be the same either + * way. + */ + ret = tdp_mmu_link_sp(kvm, iter, sp, false, shared); + if (ret) + goto out; + + /* + * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we + * are overwriting from the page stats. But we have to manually update + * the page stats with the new present child pages. + */ + kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE); + +out: + trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); + return ret; +} + +static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, + struct kvm_mmu_page *root, + gfn_t start, gfn_t end, + int target_level, bool shared) +{ + struct kvm_mmu_page *sp = NULL; + struct tdp_iter iter; + int ret = 0; + + rcu_read_lock(); + + /* + * Traverse the page table splitting all huge pages above the target + * level into one lower level. For example, if we encounter a 1GB page + * we split it into 512 2MB pages. + * + * Since the TDP iterator uses a pre-order traversal, we are guaranteed + * to visit an SPTE before ever visiting its children, which means we + * will correctly recursively split huge pages that are more than one + * level above the target level (e.g. splitting a 1GB to 512 2MB pages, + * and then splitting each of those to 512 4KB pages). + */ + for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { +retry: + if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) + continue; + + if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) + continue; + + if (!sp) { + sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared); + if (!sp) { + ret = -ENOMEM; + trace_kvm_mmu_split_huge_page(iter.gfn, + iter.old_spte, + iter.level, ret); + break; + } + + if (iter.yielded) + continue; + } + + if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) + goto retry; + + sp = NULL; + } + + rcu_read_unlock(); + + /* + * It's possible to exit the loop having never used the last sp if, for + * example, a vCPU doing HugePage NX splitting wins the race and + * installs its own sp in place of the last sp we tried to split. + */ + if (sp) + tdp_mmu_free_sp(sp); + + return ret; +} + + +/* + * Try to split all huge pages mapped by the TDP MMU down to the target level. + */ +void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, + const struct kvm_memory_slot *slot, + gfn_t start, gfn_t end, + int target_level, bool shared) +{ + struct kvm_mmu_page *root; + int r = 0; + + kvm_lockdep_assert_mmu_lock_held(kvm, shared); + + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) { + r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); + if (r) { + kvm_tdp_mmu_put_root(kvm, root, shared); + break; + } + } +} + /* * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. @@ -1249,6 +1619,9 @@ retry: if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) continue; + if (!is_shadow_present_pte(iter.old_spte)) + continue; + if (spte_ad_need_write_protect(iter.old_spte)) { if (is_writable_pte(iter.old_spte)) new_spte = iter.old_spte & ~PT_WRITABLE_MASK; @@ -1261,14 +1634,9 @@ retry: continue; } - if (!tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) { - /* - * The iter must explicitly re-read the SPTE because - * the atomic cmpxchg failed. - */ - iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep)); + if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) goto retry; - } + spte_set = true; } @@ -1291,7 +1659,7 @@ bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, lockdep_assert_held_read(&kvm->mmu_lock); - for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, slot->base_gfn + slot->npages); @@ -1361,10 +1729,6 @@ void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); } -/* - * Clear leaf entries which could be replaced by large mappings, for - * GFNs within the slot. - */ static void zap_collapsible_spte_range(struct kvm *kvm, struct kvm_mmu_page *root, const struct kvm_memory_slot *slot) @@ -1372,42 +1736,53 @@ static void zap_collapsible_spte_range(struct kvm *kvm, gfn_t start = slot->base_gfn; gfn_t end = start + slot->npages; struct tdp_iter iter; - kvm_pfn_t pfn; + int max_mapping_level; rcu_read_lock(); - tdp_root_for_each_pte(iter, root, start, end) { + for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) { retry: if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) continue; - if (!is_shadow_present_pte(iter.old_spte) || - !is_last_spte(iter.old_spte, iter.level)) + if (iter.level > KVM_MAX_HUGEPAGE_LEVEL || + !is_shadow_present_pte(iter.old_spte)) continue; - pfn = spte_to_pfn(iter.old_spte); - if (kvm_is_reserved_pfn(pfn) || - iter.level >= kvm_mmu_max_mapping_level(kvm, slot, iter.gfn, - pfn, PG_LEVEL_NUM)) + /* + * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with + * a large page size, then its parent would have been zapped + * instead of stepping down. + */ + if (is_last_spte(iter.old_spte, iter.level)) + continue; + + /* + * If iter.gfn resides outside of the slot, i.e. the page for + * the current level overlaps but is not contained by the slot, + * then the SPTE can't be made huge. More importantly, trying + * to query that info from slot->arch.lpage_info will cause an + * out-of-bounds access. + */ + if (iter.gfn < start || iter.gfn >= end) + continue; + + max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, + iter.gfn, PG_LEVEL_NUM); + if (max_mapping_level < iter.level) continue; /* Note, a successful atomic zap also does a remote TLB flush. */ - if (!tdp_mmu_zap_spte_atomic(kvm, &iter)) { - /* - * The iter must explicitly re-read the SPTE because - * the atomic cmpxchg failed. - */ - iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep)); + if (tdp_mmu_zap_spte_atomic(kvm, &iter)) goto retry; - } } rcu_read_unlock(); } /* - * Clear non-leaf entries (and free associated page tables) which could - * be replaced by large mappings, for GFNs within the slot. + * Zap non-leaf SPTEs (and free their associated page tables) which could + * be replaced by huge pages, for GFNs within the slot. */ void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, const struct kvm_memory_slot *slot) @@ -1416,7 +1791,7 @@ void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, lockdep_assert_held_read(&kvm->mmu_lock); - for_each_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) zap_collapsible_spte_range(kvm, root, slot); } @@ -1436,18 +1811,17 @@ static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, rcu_read_lock(); - for_each_tdp_pte_min_level(iter, root->spt, root->role.level, - min_level, gfn, gfn + 1) { + for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { if (!is_shadow_present_pte(iter.old_spte) || !is_last_spte(iter.old_spte, iter.level)) continue; - if (!is_writable_pte(iter.old_spte)) - break; - new_spte = iter.old_spte & ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); + if (new_spte == iter.old_spte) + break; + tdp_mmu_set_spte(kvm, &iter, new_spte); spte_set = true; } @@ -1490,7 +1864,7 @@ int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, gfn_t gfn = addr >> PAGE_SHIFT; int leaf = -1; - *root_level = vcpu->arch.mmu->shadow_root_level; + *root_level = vcpu->arch.mmu->root_role.level; tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { leaf = iter.level; diff --git a/arch/x86/kvm/mmu/tdp_mmu.h b/arch/x86/kvm/mmu/tdp_mmu.h index 3899004a5d91..c163f7cc23ca 100644 --- a/arch/x86/kvm/mmu/tdp_mmu.h +++ b/arch/x86/kvm/mmu/tdp_mmu.h @@ -7,43 +7,17 @@ hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu); -__must_check static inline bool kvm_tdp_mmu_get_root(struct kvm *kvm, - struct kvm_mmu_page *root) +__must_check static inline bool kvm_tdp_mmu_get_root(struct kvm_mmu_page *root) { - if (root->role.invalid) - return false; - return refcount_inc_not_zero(&root->tdp_mmu_root_count); } void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, bool shared); -bool __kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, int as_id, gfn_t start, +bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end, bool can_yield, bool flush); -static inline bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, int as_id, - gfn_t start, gfn_t end, bool flush) -{ - return __kvm_tdp_mmu_zap_gfn_range(kvm, as_id, start, end, true, flush); -} -static inline bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) -{ - gfn_t end = sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level + 1); - - /* - * Don't allow yielding, as the caller may have a flush pending. Note, - * if mmu_lock is held for write, zapping will never yield in this case, - * but explicitly disallow it for safety. The TDP MMU does not yield - * until it has made forward progress (steps sideways), and when zapping - * a single shadow page that it's guaranteed to see (thus the mmu_lock - * requirement), its "step sideways" will always step beyond the bounds - * of the shadow page's gfn range and stop iterating before yielding. - */ - lockdep_assert_held_write(&kvm->mmu_lock); - return __kvm_tdp_mmu_zap_gfn_range(kvm, kvm_mmu_page_as_id(sp), - sp->gfn, end, false, false); -} - +bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp); void kvm_tdp_mmu_zap_all(struct kvm *kvm); void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm); void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm); @@ -71,6 +45,11 @@ bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn, int min_level); +void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, + const struct kvm_memory_slot *slot, + gfn_t start, gfn_t end, + int target_level, bool shared); + static inline void kvm_tdp_mmu_walk_lockless_begin(void) { rcu_read_lock(); @@ -87,14 +66,14 @@ u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr, u64 *spte); #ifdef CONFIG_X86_64 -bool kvm_mmu_init_tdp_mmu(struct kvm *kvm); +int kvm_mmu_init_tdp_mmu(struct kvm *kvm); void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm); static inline bool is_tdp_mmu_page(struct kvm_mmu_page *sp) { return sp->tdp_mmu_page; } static inline bool is_tdp_mmu(struct kvm_mmu *mmu) { struct kvm_mmu_page *sp; - hpa_t hpa = mmu->root_hpa; + hpa_t hpa = mmu->root.hpa; if (WARN_ON(!VALID_PAGE(hpa))) return false; @@ -108,7 +87,7 @@ static inline bool is_tdp_mmu(struct kvm_mmu *mmu) return sp && is_tdp_mmu_page(sp) && sp->root_count; } #else -static inline bool kvm_mmu_init_tdp_mmu(struct kvm *kvm) { return false; } +static inline int kvm_mmu_init_tdp_mmu(struct kvm *kvm) { return 0; } static inline void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) {} static inline bool is_tdp_mmu_page(struct kvm_mmu_page *sp) { return false; } static inline bool is_tdp_mmu(struct kvm_mmu *mmu) { return false; } |