diff options
Diffstat (limited to 'arch/x86/mm/mem_encrypt.c')
-rw-r--r-- | arch/x86/mm/mem_encrypt.c | 408 |
1 files changed, 37 insertions, 371 deletions
diff --git a/arch/x86/mm/mem_encrypt.c b/arch/x86/mm/mem_encrypt.c index a03614bd3e1a..9f27e14e185f 100644 --- a/arch/x86/mm/mem_encrypt.c +++ b/arch/x86/mm/mem_encrypt.c @@ -1,354 +1,17 @@ // SPDX-License-Identifier: GPL-2.0-only /* - * AMD Memory Encryption Support + * Memory Encryption Support Common Code * * Copyright (C) 2016 Advanced Micro Devices, Inc. * * Author: Tom Lendacky <thomas.lendacky@amd.com> */ -#define DISABLE_BRANCH_PROFILING - -#include <linux/linkage.h> -#include <linux/init.h> -#include <linux/mm.h> #include <linux/dma-direct.h> +#include <linux/dma-mapping.h> #include <linux/swiotlb.h> +#include <linux/cc_platform.h> #include <linux/mem_encrypt.h> -#include <linux/device.h> -#include <linux/kernel.h> -#include <linux/bitops.h> -#include <linux/dma-mapping.h> - -#include <asm/tlbflush.h> -#include <asm/fixmap.h> -#include <asm/setup.h> -#include <asm/bootparam.h> -#include <asm/set_memory.h> -#include <asm/cacheflush.h> -#include <asm/processor-flags.h> -#include <asm/msr.h> -#include <asm/cmdline.h> - -#include "mm_internal.h" - -/* - * Since SME related variables are set early in the boot process they must - * reside in the .data section so as not to be zeroed out when the .bss - * section is later cleared. - */ -u64 sme_me_mask __section(.data) = 0; -EXPORT_SYMBOL(sme_me_mask); -DEFINE_STATIC_KEY_FALSE(sev_enable_key); -EXPORT_SYMBOL_GPL(sev_enable_key); - -bool sev_enabled __section(.data); - -/* Buffer used for early in-place encryption by BSP, no locking needed */ -static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); - -/* - * This routine does not change the underlying encryption setting of the - * page(s) that map this memory. It assumes that eventually the memory is - * meant to be accessed as either encrypted or decrypted but the contents - * are currently not in the desired state. - * - * This routine follows the steps outlined in the AMD64 Architecture - * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. - */ -static void __init __sme_early_enc_dec(resource_size_t paddr, - unsigned long size, bool enc) -{ - void *src, *dst; - size_t len; - - if (!sme_me_mask) - return; - - wbinvd(); - - /* - * There are limited number of early mapping slots, so map (at most) - * one page at time. - */ - while (size) { - len = min_t(size_t, sizeof(sme_early_buffer), size); - - /* - * Create mappings for the current and desired format of - * the memory. Use a write-protected mapping for the source. - */ - src = enc ? early_memremap_decrypted_wp(paddr, len) : - early_memremap_encrypted_wp(paddr, len); - - dst = enc ? early_memremap_encrypted(paddr, len) : - early_memremap_decrypted(paddr, len); - - /* - * If a mapping can't be obtained to perform the operation, - * then eventual access of that area in the desired mode - * will cause a crash. - */ - BUG_ON(!src || !dst); - - /* - * Use a temporary buffer, of cache-line multiple size, to - * avoid data corruption as documented in the APM. - */ - memcpy(sme_early_buffer, src, len); - memcpy(dst, sme_early_buffer, len); - - early_memunmap(dst, len); - early_memunmap(src, len); - - paddr += len; - size -= len; - } -} - -void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) -{ - __sme_early_enc_dec(paddr, size, true); -} - -void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) -{ - __sme_early_enc_dec(paddr, size, false); -} - -static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, - bool map) -{ - unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; - pmdval_t pmd_flags, pmd; - - /* Use early_pmd_flags but remove the encryption mask */ - pmd_flags = __sme_clr(early_pmd_flags); - - do { - pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; - __early_make_pgtable((unsigned long)vaddr, pmd); - - vaddr += PMD_SIZE; - paddr += PMD_SIZE; - size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; - } while (size); - - __native_flush_tlb(); -} - -void __init sme_unmap_bootdata(char *real_mode_data) -{ - struct boot_params *boot_data; - unsigned long cmdline_paddr; - - if (!sme_active()) - return; - - /* Get the command line address before unmapping the real_mode_data */ - boot_data = (struct boot_params *)real_mode_data; - cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); - - __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); - - if (!cmdline_paddr) - return; - - __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); -} - -void __init sme_map_bootdata(char *real_mode_data) -{ - struct boot_params *boot_data; - unsigned long cmdline_paddr; - - if (!sme_active()) - return; - - __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); - - /* Get the command line address after mapping the real_mode_data */ - boot_data = (struct boot_params *)real_mode_data; - cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); - - if (!cmdline_paddr) - return; - - __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); -} - -void __init sme_early_init(void) -{ - unsigned int i; - - if (!sme_me_mask) - return; - - early_pmd_flags = __sme_set(early_pmd_flags); - - __supported_pte_mask = __sme_set(__supported_pte_mask); - - /* Update the protection map with memory encryption mask */ - for (i = 0; i < ARRAY_SIZE(protection_map); i++) - protection_map[i] = pgprot_encrypted(protection_map[i]); - - if (sev_active()) - swiotlb_force = SWIOTLB_FORCE; -} - -static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) -{ - pgprot_t old_prot, new_prot; - unsigned long pfn, pa, size; - pte_t new_pte; - - switch (level) { - case PG_LEVEL_4K: - pfn = pte_pfn(*kpte); - old_prot = pte_pgprot(*kpte); - break; - case PG_LEVEL_2M: - pfn = pmd_pfn(*(pmd_t *)kpte); - old_prot = pmd_pgprot(*(pmd_t *)kpte); - break; - case PG_LEVEL_1G: - pfn = pud_pfn(*(pud_t *)kpte); - old_prot = pud_pgprot(*(pud_t *)kpte); - break; - default: - return; - } - - new_prot = old_prot; - if (enc) - pgprot_val(new_prot) |= _PAGE_ENC; - else - pgprot_val(new_prot) &= ~_PAGE_ENC; - - /* If prot is same then do nothing. */ - if (pgprot_val(old_prot) == pgprot_val(new_prot)) - return; - - pa = pfn << page_level_shift(level); - size = page_level_size(level); - - /* - * We are going to perform in-place en-/decryption and change the - * physical page attribute from C=1 to C=0 or vice versa. Flush the - * caches to ensure that data gets accessed with the correct C-bit. - */ - clflush_cache_range(__va(pa), size); - - /* Encrypt/decrypt the contents in-place */ - if (enc) - sme_early_encrypt(pa, size); - else - sme_early_decrypt(pa, size); - - /* Change the page encryption mask. */ - new_pte = pfn_pte(pfn, new_prot); - set_pte_atomic(kpte, new_pte); -} - -static int __init early_set_memory_enc_dec(unsigned long vaddr, - unsigned long size, bool enc) -{ - unsigned long vaddr_end, vaddr_next; - unsigned long psize, pmask; - int split_page_size_mask; - int level, ret; - pte_t *kpte; - - vaddr_next = vaddr; - vaddr_end = vaddr + size; - - for (; vaddr < vaddr_end; vaddr = vaddr_next) { - kpte = lookup_address(vaddr, &level); - if (!kpte || pte_none(*kpte)) { - ret = 1; - goto out; - } - - if (level == PG_LEVEL_4K) { - __set_clr_pte_enc(kpte, level, enc); - vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; - continue; - } - - psize = page_level_size(level); - pmask = page_level_mask(level); - - /* - * Check whether we can change the large page in one go. - * We request a split when the address is not aligned and - * the number of pages to set/clear encryption bit is smaller - * than the number of pages in the large page. - */ - if (vaddr == (vaddr & pmask) && - ((vaddr_end - vaddr) >= psize)) { - __set_clr_pte_enc(kpte, level, enc); - vaddr_next = (vaddr & pmask) + psize; - continue; - } - - /* - * The virtual address is part of a larger page, create the next - * level page table mapping (4K or 2M). If it is part of a 2M - * page then we request a split of the large page into 4K - * chunks. A 1GB large page is split into 2M pages, resp. - */ - if (level == PG_LEVEL_2M) - split_page_size_mask = 0; - else - split_page_size_mask = 1 << PG_LEVEL_2M; - - /* - * kernel_physical_mapping_change() does not flush the TLBs, so - * a TLB flush is required after we exit from the for loop. - */ - kernel_physical_mapping_change(__pa(vaddr & pmask), - __pa((vaddr_end & pmask) + psize), - split_page_size_mask); - } - - ret = 0; - -out: - __flush_tlb_all(); - return ret; -} - -int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) -{ - return early_set_memory_enc_dec(vaddr, size, false); -} - -int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) -{ - return early_set_memory_enc_dec(vaddr, size, true); -} - -/* - * SME and SEV are very similar but they are not the same, so there are - * times that the kernel will need to distinguish between SME and SEV. The - * sme_active() and sev_active() functions are used for this. When a - * distinction isn't needed, the mem_encrypt_active() function can be used. - * - * The trampoline code is a good example for this requirement. Before - * paging is activated, SME will access all memory as decrypted, but SEV - * will access all memory as encrypted. So, when APs are being brought - * up under SME the trampoline area cannot be encrypted, whereas under SEV - * the trampoline area must be encrypted. - */ -bool sme_active(void) -{ - return sme_me_mask && !sev_enabled; -} - -bool sev_active(void) -{ - return sme_me_mask && sev_enabled; -} /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ bool force_dma_unencrypted(struct device *dev) @@ -356,7 +19,7 @@ bool force_dma_unencrypted(struct device *dev) /* * For SEV, all DMA must be to unencrypted addresses. */ - if (sev_active()) + if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) return true; /* @@ -364,7 +27,7 @@ bool force_dma_unencrypted(struct device *dev) * device does not support DMA to addresses that include the * encryption mask. */ - if (sme_active()) { + if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); @@ -376,47 +39,50 @@ bool force_dma_unencrypted(struct device *dev) return false; } -/* Architecture __weak replacement functions */ -void __init mem_encrypt_free_decrypted_mem(void) +static void print_mem_encrypt_feature_info(void) { - unsigned long vaddr, vaddr_end, npages; - int r; + pr_info("Memory Encryption Features active:"); - vaddr = (unsigned long)__start_bss_decrypted_unused; - vaddr_end = (unsigned long)__end_bss_decrypted; - npages = (vaddr_end - vaddr) >> PAGE_SHIFT; + if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) { + pr_cont(" Intel TDX\n"); + return; + } - /* - * The unused memory range was mapped decrypted, change the encryption - * attribute from decrypted to encrypted before freeing it. - */ - if (mem_encrypt_active()) { - r = set_memory_encrypted(vaddr, npages); - if (r) { - pr_warn("failed to free unused decrypted pages\n"); - return; - } + pr_cont(" AMD"); + + /* Secure Memory Encryption */ + if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) { + /* + * SME is mutually exclusive with any of the SEV + * features below. + */ + pr_cont(" SME\n"); + return; } - free_init_pages("unused decrypted", vaddr, vaddr_end); + /* Secure Encrypted Virtualization */ + if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) + pr_cont(" SEV"); + + /* Encrypted Register State */ + if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) + pr_cont(" SEV-ES"); + + /* Secure Nested Paging */ + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + pr_cont(" SEV-SNP"); + + pr_cont("\n"); } +/* Architecture __weak replacement functions */ void __init mem_encrypt_init(void) { - if (!sme_me_mask) + if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT)) return; /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ swiotlb_update_mem_attributes(); - /* - * With SEV, we need to unroll the rep string I/O instructions. - */ - if (sev_active()) - static_branch_enable(&sev_enable_key); - - pr_info("AMD %s active\n", - sev_active() ? "Secure Encrypted Virtualization (SEV)" - : "Secure Memory Encryption (SME)"); + print_mem_encrypt_feature_info(); } - |