aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000e/phy.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/e1000e/phy.c')
-rw-r--r--drivers/net/e1000e/phy.c3377
1 files changed, 0 insertions, 3377 deletions
diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
deleted file mode 100644
index 8666476cb9be..000000000000
--- a/drivers/net/e1000e/phy.c
+++ /dev/null
@@ -1,3377 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include <linux/delay.h>
-
-#include "e1000.h"
-
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
-static s32 e1000_wait_autoneg(struct e1000_hw *hw);
-static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
-static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read, bool page_set);
-static u32 e1000_get_phy_addr_for_hv_page(u32 page);
-static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read);
-
-/* Cable length tables */
-static const u16 e1000_m88_cable_length_table[] = {
- 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
-#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
- ARRAY_SIZE(e1000_m88_cable_length_table)
-
-static const u16 e1000_igp_2_cable_length_table[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
- 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
- 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
- 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
- 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
- 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
- 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
- 124};
-#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
- ARRAY_SIZE(e1000_igp_2_cable_length_table)
-
-#define BM_PHY_REG_PAGE(offset) \
- ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
-#define BM_PHY_REG_NUM(offset) \
- ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
- (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
- ~MAX_PHY_REG_ADDRESS)))
-
-#define HV_INTC_FC_PAGE_START 768
-#define I82578_ADDR_REG 29
-#define I82577_ADDR_REG 16
-#define I82577_CFG_REG 22
-#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
-#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
-#define I82577_CTRL_REG 23
-
-/* 82577 specific PHY registers */
-#define I82577_PHY_CTRL_2 18
-#define I82577_PHY_STATUS_2 26
-#define I82577_PHY_DIAG_STATUS 31
-
-/* I82577 PHY Status 2 */
-#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
-#define I82577_PHY_STATUS2_MDIX 0x0800
-#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
-#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
-
-/* I82577 PHY Control 2 */
-#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
-#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
-
-/* I82577 PHY Diagnostics Status */
-#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
-#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
-
-/* BM PHY Copper Specific Control 1 */
-#define BM_CS_CTRL1 16
-
-#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
-#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
-#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
-
-/**
- * e1000e_check_reset_block_generic - Check if PHY reset is blocked
- * @hw: pointer to the HW structure
- *
- * Read the PHY management control register and check whether a PHY reset
- * is blocked. If a reset is not blocked return 0, otherwise
- * return E1000_BLK_PHY_RESET (12).
- **/
-s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
-{
- u32 manc;
-
- manc = er32(MANC);
-
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : 0;
-}
-
-/**
- * e1000e_get_phy_id - Retrieve the PHY ID and revision
- * @hw: pointer to the HW structure
- *
- * Reads the PHY registers and stores the PHY ID and possibly the PHY
- * revision in the hardware structure.
- **/
-s32 e1000e_get_phy_id(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = 0;
- u16 phy_id;
- u16 retry_count = 0;
-
- if (!(phy->ops.read_reg))
- goto out;
-
- while (retry_count < 2) {
- ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
- if (ret_val)
- goto out;
-
- phy->id = (u32)(phy_id << 16);
- udelay(20);
- ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
- if (ret_val)
- goto out;
-
- phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
- phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
-
- if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
- goto out;
-
- retry_count++;
- }
-out:
- return ret_val;
-}
-
-/**
- * e1000e_phy_reset_dsp - Reset PHY DSP
- * @hw: pointer to the HW structure
- *
- * Reset the digital signal processor.
- **/
-s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
- if (ret_val)
- return ret_val;
-
- return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
-}
-
-/**
- * e1000e_read_phy_reg_mdic - Read MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the MDI control register in the PHY at offset and stores the
- * information read to data.
- **/
-s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- e_dbg("PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /*
- * Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- ew32(MDIC, mdic);
-
- /*
- * Poll the ready bit to see if the MDI read completed
- * Increasing the time out as testing showed failures with
- * the lower time out
- */
- for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
- udelay(50);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- e_dbg("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- e_dbg("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *data = (u16) mdic;
-
- /*
- * Allow some time after each MDIC transaction to avoid
- * reading duplicate data in the next MDIC transaction.
- */
- if (hw->mac.type == e1000_pch2lan)
- udelay(100);
-
- return 0;
-}
-
-/**
- * e1000e_write_phy_reg_mdic - Write MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write to register at offset
- *
- * Writes data to MDI control register in the PHY at offset.
- **/
-s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- e_dbg("PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /*
- * Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = (((u32)data) |
- (offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- ew32(MDIC, mdic);
-
- /*
- * Poll the ready bit to see if the MDI read completed
- * Increasing the time out as testing showed failures with
- * the lower time out
- */
- for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
- udelay(50);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- e_dbg("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- e_dbg("MDI Error\n");
- return -E1000_ERR_PHY;
- }
-
- /*
- * Allow some time after each MDIC transaction to avoid
- * reading duplicate data in the next MDIC transaction.
- */
- if (hw->mac.type == e1000_pch2lan)
- udelay(100);
-
- return 0;
-}
-
-/**
- * e1000e_read_phy_reg_m88 - Read m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000e_write_phy_reg_m88 - Write m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_set_page_igp - Set page as on IGP-like PHY(s)
- * @hw: pointer to the HW structure
- * @page: page to set (shifted left when necessary)
- *
- * Sets PHY page required for PHY register access. Assumes semaphore is
- * already acquired. Note, this function sets phy.addr to 1 so the caller
- * must set it appropriately (if necessary) after this function returns.
- **/
-s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
-{
- e_dbg("Setting page 0x%x\n", page);
-
- hw->phy.addr = 1;
-
- return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
-}
-
-/**
- * __e1000e_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and stores the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
-{
- s32 ret_val = 0;
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = e1000e_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
- if (!locked)
- hw->phy.ops.release(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000e_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset and stores the
- * retrieved information in data.
- * Release the acquired semaphore before exiting.
- **/
-s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000e_read_phy_reg_igp(hw, offset, data, false);
-}
-
-/**
- * e1000e_read_phy_reg_igp_locked - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired.
- **/
-s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000e_read_phy_reg_igp(hw, offset, data, true);
-}
-
-/**
- * e1000e_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
-{
- s32 ret_val = 0;
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = e1000e_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000e_write_phy_reg_igp(hw, offset, data, false);
-}
-
-/**
- * e1000e_write_phy_reg_igp_locked - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset.
- * Assumes semaphore already acquired.
- **/
-s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000e_write_phy_reg_igp(hw, offset, data, true);
-}
-
-/**
- * __e1000_read_kmrn_reg - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary. Then reads the PHY register at offset
- * using the kumeran interface. The information retrieved is stored in data.
- * Release any acquired semaphores before exiting.
- **/
-static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
-{
- u32 kmrnctrlsta;
- s32 ret_val = 0;
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
- ew32(KMRNCTRLSTA, kmrnctrlsta);
- e1e_flush();
-
- udelay(2);
-
- kmrnctrlsta = er32(KMRNCTRLSTA);
- *data = (u16)kmrnctrlsta;
-
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_read_kmrn_reg - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset using the
- * kumeran interface. The information retrieved is stored in data.
- * Release the acquired semaphore before exiting.
- **/
-s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_kmrn_reg(hw, offset, data, false);
-}
-
-/**
- * e1000e_read_kmrn_reg_locked - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the kumeran interface. The
- * information retrieved is stored in data.
- * Assumes semaphore already acquired.
- **/
-s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_kmrn_reg(hw, offset, data, true);
-}
-
-/**
- * __e1000_write_kmrn_reg - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary. Then write the data to PHY register
- * at the offset using the kumeran interface. Release any acquired semaphores
- * before exiting.
- **/
-static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
-{
- u32 kmrnctrlsta;
- s32 ret_val = 0;
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
- ew32(KMRNCTRLSTA, kmrnctrlsta);
- e1e_flush();
-
- udelay(2);
-
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_write_kmrn_reg - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to the PHY register at the offset
- * using the kumeran interface. Release the acquired semaphore before exiting.
- **/
-s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_kmrn_reg(hw, offset, data, false);
-}
-
-/**
- * e1000e_write_kmrn_reg_locked - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Write the data to PHY register at the offset using the kumeran interface.
- * Assumes semaphore already acquired.
- **/
-s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_kmrn_reg(hw, offset, data, true);
-}
-
-/**
- * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up Carrier-sense on Transmit and downshift values.
- **/
-s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
-
- /* Enable downshift */
- phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
-
- ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
- * and downshift values are set also.
- **/
-s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* For BM PHY this bit is downshift enable */
- if (phy->type != e1000_phy_bm)
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /*
- * Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (phy->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /*
- * Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (phy->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
- /* Enable downshift on BM (disabled by default) */
- if (phy->type == e1000_phy_bm)
- phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
-
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if ((phy->type == e1000_phy_m88) &&
- (phy->revision < E1000_REVISION_4) &&
- (phy->id != BME1000_E_PHY_ID_R2)) {
- /*
- * Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((phy->revision == 2) &&
- (phy->id == M88E1111_I_PHY_ID)) {
- /* 82573L PHY - set the downshift counter to 5x. */
- phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- }
- ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
- /* Set PHY page 0, register 29 to 0x0003 */
- ret_val = e1e_wphy(hw, 29, 0x0003);
- if (ret_val)
- return ret_val;
-
- /* Set PHY page 0, register 30 to 0x0000 */
- ret_val = e1e_wphy(hw, 30, 0x0000);
- if (ret_val)
- return ret_val;
- }
-
- /* Commit the changes. */
- ret_val = e1000e_commit_phy(hw);
- if (ret_val) {
- e_dbg("Error committing the PHY changes\n");
- return ret_val;
- }
-
- if (phy->type == e1000_phy_82578) {
- ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* 82578 PHY - set the downshift count to 1x. */
- phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
- phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
- ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return 0;
-}
-
-/**
- * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
- * igp PHY's.
- **/
-s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val) {
- e_dbg("Error resetting the PHY.\n");
- return ret_val;
- }
-
- /*
- * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
- * timeout issues when LFS is enabled.
- */
- msleep(100);
-
- /* disable lplu d0 during driver init */
- ret_val = e1000_set_d0_lplu_state(hw, false);
- if (ret_val) {
- e_dbg("Error Disabling LPLU D0\n");
- return ret_val;
- }
- /* Configure mdi-mdix settings */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (phy->mdix) {
- case 1:
- data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if (hw->mac.autoneg) {
- /*
- * when autonegotiation advertisement is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default.
- */
- if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
-
- /* Set auto Master/Slave resolution process */
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~CR_1000T_MS_ENABLE;
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- /* load defaults for future use */
- phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
- ((data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) :
- e1000_ms_auto;
-
- switch (phy->ms_type) {
- case e1000_ms_force_master:
- data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- data |= CR_1000T_MS_ENABLE;
- data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
- * @hw: pointer to the HW structure
- *
- * Reads the MII auto-neg advertisement register and/or the 1000T control
- * register and if the PHY is already setup for auto-negotiation, then
- * return successful. Otherwise, setup advertisement and flow control to
- * the appropriate values for the wanted auto-negotiation.
- **/
-static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 mii_autoneg_adv_reg;
- u16 mii_1000t_ctrl_reg = 0;
-
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- /*
- * Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /*
- * First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
- NWAY_AR_100TX_HD_CAPS |
- NWAY_AR_10T_FD_CAPS |
- NWAY_AR_10T_HD_CAPS);
- mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
-
- e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
- e_dbg("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
- e_dbg("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
- e_dbg("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
- e_dbg("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
- e_dbg("Advertise 1000mb Half duplex request denied!\n");
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
- e_dbg("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /*
- * Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
- * negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /*
- * Flow control (Rx & Tx) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled, and Tx Flow control is
- * disabled, by a software over-ride.
- *
- * Since there really isn't a way to advertise that we are
- * capable of Rx Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric Rx PAUSE. Later
- * (in e1000e_config_fc_after_link_up) we will disable the
- * hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- return ret_val;
- }
-
- ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL)
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
-
- return ret_val;
-}
-
-/**
- * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
- * @hw: pointer to the HW structure
- *
- * Performs initial bounds checking on autoneg advertisement parameter, then
- * configure to advertise the full capability. Setup the PHY to autoneg
- * and restart the negotiation process between the link partner. If
- * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
- **/
-static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_ctrl;
-
- /*
- * Perform some bounds checking on the autoneg advertisement
- * parameter.
- */
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /*
- * If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (phy->autoneg_advertised == 0)
- phy->autoneg_advertised = phy->autoneg_mask;
-
- e_dbg("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- e_dbg("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- e_dbg("Restarting Auto-Neg\n");
-
- /*
- * Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- return ret_val;
-
- phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- return ret_val;
-
- /*
- * Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (phy->autoneg_wait_to_complete) {
- ret_val = e1000_wait_autoneg(hw);
- if (ret_val) {
- e_dbg("Error while waiting for "
- "autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->mac.get_link_status = 1;
-
- return ret_val;
-}
-
-/**
- * e1000e_setup_copper_link - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Calls the appropriate function to configure the link for auto-neg or forced
- * speed and duplex. Then we check for link, once link is established calls
- * to configure collision distance and flow control are called. If link is
- * not established, we return -E1000_ERR_PHY (-2).
- **/
-s32 e1000e_setup_copper_link(struct e1000_hw *hw)
-{
- s32 ret_val;
- bool link;
-
- if (hw->mac.autoneg) {
- /*
- * Setup autoneg and flow control advertisement and perform
- * autonegotiation.
- */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /*
- * PHY will be set to 10H, 10F, 100H or 100F
- * depending on user settings.
- */
- e_dbg("Forcing Speed and Duplex\n");
- ret_val = e1000_phy_force_speed_duplex(hw);
- if (ret_val) {
- e_dbg("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /*
- * Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- ret_val = e1000e_phy_has_link_generic(hw,
- COPPER_LINK_UP_LIMIT,
- 10,
- &link);
- if (ret_val)
- return ret_val;
-
- if (link) {
- e_dbg("Valid link established!!!\n");
- e1000e_config_collision_dist(hw);
- ret_val = e1000e_config_fc_after_link_up(hw);
- } else {
- e_dbg("Unable to establish link!!!\n");
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Waits for link and returns
- * successful if link up is successful, else -E1000_ERR_PHY (-2).
- **/
-s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- e_dbg("IGP PSCR: %X\n", phy_data);
-
- udelay(1);
-
- if (phy->autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- e_dbg("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- return ret_val;
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Resets the PHY to commit the
- * changes. If time expires while waiting for link up, we reset the DSP.
- * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
- * successful completion, else return corresponding error code.
- **/
-s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- /*
- * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- e_dbg("M88E1000 PSCR: %X\n", phy_data);
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Reset the phy to commit changes. */
- ret_val = e1000e_commit_phy(hw);
- if (ret_val)
- return ret_val;
-
- if (phy->autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- if (hw->phy.type != e1000_phy_m88) {
- e_dbg("Link taking longer than expected.\n");
- } else {
- /*
- * We didn't get link.
- * Reset the DSP and cross our fingers.
- */
- ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
- 0x001d);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_phy_reset_dsp(hw);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->phy.type != e1000_phy_m88)
- return 0;
-
- ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * Resetting the phy means we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock from
- * the reset value of 2.5MHz.
- */
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * In addition, we must re-enable CRS on Tx for both half and full
- * duplex.
- */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
- * @hw: pointer to the HW structure
- *
- * Forces the speed and duplex settings of the PHY.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
- if (ret_val)
- goto out;
-
- e1000e_phy_force_speed_duplex_setup(hw, &data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, data);
- if (ret_val)
- goto out;
-
- /* Disable MDI-X support for 10/100 */
- ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- goto out;
-
- data &= ~IFE_PMC_AUTO_MDIX;
- data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
- if (ret_val)
- goto out;
-
- e_dbg("IFE PMC: %X\n", data);
-
- udelay(1);
-
- if (phy->autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
-
- if (!link)
- e_dbg("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
- * @hw: pointer to the HW structure
- * @phy_ctrl: pointer to current value of PHY_CONTROL
- *
- * Forces speed and duplex on the PHY by doing the following: disable flow
- * control, force speed/duplex on the MAC, disable auto speed detection,
- * disable auto-negotiation, configure duplex, configure speed, configure
- * the collision distance, write configuration to CTRL register. The
- * caller must write to the PHY_CONTROL register for these settings to
- * take affect.
- **/
-void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl;
-
- /* Turn off flow control when forcing speed/duplex */
- hw->fc.current_mode = e1000_fc_none;
-
- /* Force speed/duplex on the mac */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~E1000_CTRL_SPD_SEL;
-
- /* Disable Auto Speed Detection */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Disable autoneg on the phy */
- *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
-
- /* Forcing Full or Half Duplex? */
- if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
- ctrl &= ~E1000_CTRL_FD;
- *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
- e_dbg("Half Duplex\n");
- } else {
- ctrl |= E1000_CTRL_FD;
- *phy_ctrl |= MII_CR_FULL_DUPLEX;
- e_dbg("Full Duplex\n");
- }
-
- /* Forcing 10mb or 100mb? */
- if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
- ctrl |= E1000_CTRL_SPD_100;
- *phy_ctrl |= MII_CR_SPEED_100;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- e_dbg("Forcing 100mb\n");
- } else {
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- *phy_ctrl |= MII_CR_SPEED_10;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- e_dbg("Forcing 10mb\n");
- }
-
- e1000e_config_collision_dist(hw);
-
- ew32(CTRL, ctrl);
-}
-
-/**
- * e1000e_set_d3_lplu_state - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is true, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- return ret_val;
-
- if (!active) {
- data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- if (ret_val)
- return ret_val;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= IGP02E1000_PM_D3_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_check_downshift - Checks whether a downshift in speed occurred
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns 1
- *
- * A downshift is detected by querying the PHY link health.
- **/
-s32 e1000e_check_downshift(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- switch (phy->type) {
- case e1000_phy_m88:
- case e1000_phy_gg82563:
- case e1000_phy_bm:
- case e1000_phy_82578:
- offset = M88E1000_PHY_SPEC_STATUS;
- mask = M88E1000_PSSR_DOWNSHIFT;
- break;
- case e1000_phy_igp_2:
- case e1000_phy_igp_3:
- offset = IGP01E1000_PHY_LINK_HEALTH;
- mask = IGP01E1000_PLHR_SS_DOWNGRADE;
- break;
- default:
- /* speed downshift not supported */
- phy->speed_downgraded = false;
- return 0;
- }
-
- ret_val = e1e_rphy(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->speed_downgraded = (phy_data & mask);
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_m88 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_igp - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY port status register, and the
- * current speed (since there is no polarity at 100Mbps).
- **/
-s32 e1000_check_polarity_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data, offset, mask;
-
- /*
- * Polarity is determined based on the speed of
- * our connection.
- */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- offset = IGP01E1000_PHY_PCS_INIT_REG;
- mask = IGP01E1000_PHY_POLARITY_MASK;
- } else {
- /*
- * This really only applies to 10Mbps since
- * there is no polarity for 100Mbps (always 0).
- */
- offset = IGP01E1000_PHY_PORT_STATUS;
- mask = IGP01E1000_PSSR_POLARITY_REVERSED;
- }
-
- ret_val = e1e_rphy(hw, offset, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_ife - Check cable polarity for IFE PHY
- * @hw: pointer to the HW structure
- *
- * Polarity is determined on the polarity reversal feature being enabled.
- **/
-s32 e1000_check_polarity_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- /*
- * Polarity is determined based on the reversal feature being enabled.
- */
- if (phy->polarity_correction) {
- offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
- mask = IFE_PESC_POLARITY_REVERSED;
- } else {
- offset = IFE_PHY_SPECIAL_CONTROL;
- mask = IFE_PSC_FORCE_POLARITY;
- }
-
- ret_val = e1e_rphy(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->cable_polarity = (phy_data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_wait_autoneg - Wait for auto-neg completion
- * @hw: pointer to the HW structure
- *
- * Waits for auto-negotiation to complete or for the auto-negotiation time
- * limit to expire, which ever happens first.
- **/
-static s32 e1000_wait_autoneg(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 i, phy_status;
-
- /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
- for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_AUTONEG_COMPLETE)
- break;
- msleep(100);
- }
-
- /*
- * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
- * has completed.
- */
- return ret_val;
-}
-
-/**
- * e1000e_phy_has_link_generic - Polls PHY for link
- * @hw: pointer to the HW structure
- * @iterations: number of times to poll for link
- * @usec_interval: delay between polling attempts
- * @success: pointer to whether polling was successful or not
- *
- * Polls the PHY status register for link, 'iterations' number of times.
- **/
-s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success)
-{
- s32 ret_val = 0;
- u16 i, phy_status;
-
- for (i = 0; i < iterations; i++) {
- /*
- * Some PHYs require the PHY_STATUS register to be read
- * twice due to the link bit being sticky. No harm doing
- * it across the board.
- */
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- /*
- * If the first read fails, another entity may have
- * ownership of the resources, wait and try again to
- * see if they have relinquished the resources yet.
- */
- udelay(usec_interval);
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_LINK_STATUS)
- break;
- if (usec_interval >= 1000)
- mdelay(usec_interval/1000);
- else
- udelay(usec_interval);
- }
-
- *success = (i < iterations);
-
- return ret_val;
-}
-
-/**
- * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the PHY specific status register to retrieve the cable length
- * information. The cable length is determined by averaging the minimum and
- * maximum values to get the "average" cable length. The m88 PHY has four
- * possible cable length values, which are:
- * Register Value Cable Length
- * 0 < 50 meters
- * 1 50 - 80 meters
- * 2 80 - 110 meters
- * 3 110 - 140 meters
- * 4 > 140 meters
- **/
-s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, index;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
- if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- phy->min_cable_length = e1000_m88_cable_length_table[index];
- phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
- * @hw: pointer to the HW structure
- *
- * The automatic gain control (agc) normalizes the amplitude of the
- * received signal, adjusting for the attenuation produced by the
- * cable. By reading the AGC registers, which represent the
- * combination of coarse and fine gain value, the value can be put
- * into a lookup table to obtain the approximate cable length
- * for each channel.
- **/
-s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, i, agc_value = 0;
- u16 cur_agc_index, max_agc_index = 0;
- u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
- static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
- IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D
- };
-
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * Getting bits 15:9, which represent the combination of
- * coarse and fine gain values. The result is a number
- * that can be put into the lookup table to obtain the
- * approximate cable length.
- */
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0))
- return -E1000_ERR_PHY;
-
- /* Remove min & max AGC values from calculation. */
- if (e1000_igp_2_cable_length_table[min_agc_index] >
- e1000_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (e1000_igp_2_cable_length_table[max_agc_index] <
- e1000_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
- }
-
- agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
- e1000_igp_2_cable_length_table[max_agc_index]);
- agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
- /* Calculate cable length with the error range of +/- 10 meters. */
- phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
- phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
- return ret_val;
-}
-
-/**
- * e1000e_get_phy_info_m88 - Retrieve PHY information
- * @hw: pointer to the HW structure
- *
- * Valid for only copper links. Read the PHY status register (sticky read)
- * to verify that link is up. Read the PHY special control register to
- * determine the polarity and 10base-T extended distance. Read the PHY
- * special status register to determine MDI/MDIx and current speed. If
- * speed is 1000, then determine cable length, local and remote receiver.
- **/
-s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- if (phy->media_type != e1000_media_type_copper) {
- e_dbg("Phy info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- e_dbg("Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->polarity_correction = (phy_data &
- M88E1000_PSCR_POLARITY_REVERSAL);
-
- ret_val = e1000_check_polarity_m88(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- ret_val = e1000_get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- /* Set values to "undefined" */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_get_phy_info_igp - Retrieve igp PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- e_dbg("Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- phy->polarity_correction = true;
-
- ret_val = e1000_check_polarity_igp(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- ret_val = e1000_get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_ife - Retrieves various IFE PHY states
- * @hw: pointer to the HW structure
- *
- * Populates "phy" structure with various feature states.
- **/
-s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- e_dbg("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
- if (ret_val)
- goto out;
- phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
- ? false : true;
-
- if (phy->polarity_correction) {
- ret_val = e1000_check_polarity_ife(hw);
- if (ret_val)
- goto out;
- } else {
- /* Polarity is forced */
- phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
- }
-
- ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- goto out;
-
- phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
-
- /* The following parameters are undefined for 10/100 operation. */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_phy_sw_reset - PHY software reset
- * @hw: pointer to the HW structure
- *
- * Does a software reset of the PHY by reading the PHY control register and
- * setting/write the control register reset bit to the PHY.
- **/
-s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_ctrl;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- return ret_val;
-
- phy_ctrl |= MII_CR_RESET;
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- return ret_val;
-
- udelay(1);
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_hw_reset_generic - PHY hardware reset
- * @hw: pointer to the HW structure
- *
- * Verify the reset block is not blocking us from resetting. Acquire
- * semaphore (if necessary) and read/set/write the device control reset
- * bit in the PHY. Wait the appropriate delay time for the device to
- * reset and release the semaphore (if necessary).
- **/
-s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u32 ctrl;
-
- ret_val = e1000_check_reset_block(hw);
- if (ret_val)
- return 0;
-
- ret_val = phy->ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
- e1e_flush();
-
- udelay(phy->reset_delay_us);
-
- ew32(CTRL, ctrl);
- e1e_flush();
-
- udelay(150);
-
- phy->ops.release(hw);
-
- return e1000_get_phy_cfg_done(hw);
-}
-
-/**
- * e1000e_get_cfg_done - Generic configuration done
- * @hw: pointer to the HW structure
- *
- * Generic function to wait 10 milli-seconds for configuration to complete
- * and return success.
- **/
-s32 e1000e_get_cfg_done(struct e1000_hw *hw)
-{
- mdelay(10);
- return 0;
-}
-
-/**
- * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
- * @hw: pointer to the HW structure
- *
- * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
- **/
-s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
-{
- e_dbg("Running IGP 3 PHY init script\n");
-
- /* PHY init IGP 3 */
- /* Enable rise/fall, 10-mode work in class-A */
- e1e_wphy(hw, 0x2F5B, 0x9018);
- /* Remove all caps from Replica path filter */
- e1e_wphy(hw, 0x2F52, 0x0000);
- /* Bias trimming for ADC, AFE and Driver (Default) */
- e1e_wphy(hw, 0x2FB1, 0x8B24);
- /* Increase Hybrid poly bias */
- e1e_wphy(hw, 0x2FB2, 0xF8F0);
- /* Add 4% to Tx amplitude in Gig mode */
- e1e_wphy(hw, 0x2010, 0x10B0);
- /* Disable trimming (TTT) */
- e1e_wphy(hw, 0x2011, 0x0000);
- /* Poly DC correction to 94.6% + 2% for all channels */
- e1e_wphy(hw, 0x20DD, 0x249A);
- /* ABS DC correction to 95.9% */
- e1e_wphy(hw, 0x20DE, 0x00D3);
- /* BG temp curve trim */
- e1e_wphy(hw, 0x28B4, 0x04CE);
- /* Increasing ADC OPAMP stage 1 currents to max */
- e1e_wphy(hw, 0x2F70, 0x29E4);
- /* Force 1000 ( required for enabling PHY regs configuration) */
- e1e_wphy(hw, 0x0000, 0x0140);
- /* Set upd_freq to 6 */
- e1e_wphy(hw, 0x1F30, 0x1606);
- /* Disable NPDFE */
- e1e_wphy(hw, 0x1F31, 0xB814);
- /* Disable adaptive fixed FFE (Default) */
- e1e_wphy(hw, 0x1F35, 0x002A);
- /* Enable FFE hysteresis */
- e1e_wphy(hw, 0x1F3E, 0x0067);
- /* Fixed FFE for short cable lengths */
- e1e_wphy(hw, 0x1F54, 0x0065);
- /* Fixed FFE for medium cable lengths */
- e1e_wphy(hw, 0x1F55, 0x002A);
- /* Fixed FFE for long cable lengths */
- e1e_wphy(hw, 0x1F56, 0x002A);
- /* Enable Adaptive Clip Threshold */
- e1e_wphy(hw, 0x1F72, 0x3FB0);
- /* AHT reset limit to 1 */
- e1e_wphy(hw, 0x1F76, 0xC0FF);
- /* Set AHT master delay to 127 msec */
- e1e_wphy(hw, 0x1F77, 0x1DEC);
- /* Set scan bits for AHT */
- e1e_wphy(hw, 0x1F78, 0xF9EF);
- /* Set AHT Preset bits */
- e1e_wphy(hw, 0x1F79, 0x0210);
- /* Change integ_factor of channel A to 3 */
- e1e_wphy(hw, 0x1895, 0x0003);
- /* Change prop_factor of channels BCD to 8 */
- e1e_wphy(hw, 0x1796, 0x0008);
- /* Change cg_icount + enable integbp for channels BCD */
- e1e_wphy(hw, 0x1798, 0xD008);
- /*
- * Change cg_icount + enable integbp + change prop_factor_master
- * to 8 for channel A
- */
- e1e_wphy(hw, 0x1898, 0xD918);
- /* Disable AHT in Slave mode on channel A */
- e1e_wphy(hw, 0x187A, 0x0800);
- /*
- * Enable LPLU and disable AN to 1000 in non-D0a states,
- * Enable SPD+B2B
- */
- e1e_wphy(hw, 0x0019, 0x008D);
- /* Enable restart AN on an1000_dis change */
- e1e_wphy(hw, 0x001B, 0x2080);
- /* Enable wh_fifo read clock in 10/100 modes */
- e1e_wphy(hw, 0x0014, 0x0045);
- /* Restart AN, Speed selection is 1000 */
- e1e_wphy(hw, 0x0000, 0x1340);
-
- return 0;
-}
-
-/* Internal function pointers */
-
-/**
- * e1000_get_phy_cfg_done - Generic PHY configuration done
- * @hw: pointer to the HW structure
- *
- * Return success if silicon family did not implement a family specific
- * get_cfg_done function.
- **/
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
-{
- if (hw->phy.ops.get_cfg_done)
- return hw->phy.ops.get_cfg_done(hw);
-
- return 0;
-}
-
-/**
- * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
- * @hw: pointer to the HW structure
- *
- * When the silicon family has not implemented a forced speed/duplex
- * function for the PHY, simply return 0.
- **/
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
-{
- if (hw->phy.ops.force_speed_duplex)
- return hw->phy.ops.force_speed_duplex(hw);
-
- return 0;
-}
-
-/**
- * e1000e_get_phy_type_from_id - Get PHY type from id
- * @phy_id: phy_id read from the phy
- *
- * Returns the phy type from the id.
- **/
-enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
-{
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- switch (phy_id) {
- case M88E1000_I_PHY_ID:
- case M88E1000_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- phy_type = e1000_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
- phy_type = e1000_phy_igp_2;
- break;
- case GG82563_E_PHY_ID:
- phy_type = e1000_phy_gg82563;
- break;
- case IGP03E1000_E_PHY_ID:
- phy_type = e1000_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- phy_type = e1000_phy_ife;
- break;
- case BME1000_E_PHY_ID:
- case BME1000_E_PHY_ID_R2:
- phy_type = e1000_phy_bm;
- break;
- case I82578_E_PHY_ID:
- phy_type = e1000_phy_82578;
- break;
- case I82577_E_PHY_ID:
- phy_type = e1000_phy_82577;
- break;
- case I82579_E_PHY_ID:
- phy_type = e1000_phy_82579;
- break;
- default:
- phy_type = e1000_phy_unknown;
- break;
- }
- return phy_type;
-}
-
-/**
- * e1000e_determine_phy_address - Determines PHY address.
- * @hw: pointer to the HW structure
- *
- * This uses a trial and error method to loop through possible PHY
- * addresses. It tests each by reading the PHY ID registers and
- * checking for a match.
- **/
-s32 e1000e_determine_phy_address(struct e1000_hw *hw)
-{
- s32 ret_val = -E1000_ERR_PHY_TYPE;
- u32 phy_addr = 0;
- u32 i;
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- hw->phy.id = phy_type;
-
- for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
- hw->phy.addr = phy_addr;
- i = 0;
-
- do {
- e1000e_get_phy_id(hw);
- phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
-
- /*
- * If phy_type is valid, break - we found our
- * PHY address
- */
- if (phy_type != e1000_phy_unknown) {
- ret_val = 0;
- goto out;
- }
- usleep_range(1000, 2000);
- i++;
- } while (i < 10);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
- * @page: page to access
- *
- * Returns the phy address for the page requested.
- **/
-static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
-{
- u32 phy_addr = 2;
-
- if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
- phy_addr = 1;
-
- return phy_addr;
-}
-
-/**
- * e1000e_write_phy_reg_bm - Write BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
- u32 page = offset >> IGP_PAGE_SHIFT;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, false);
- goto out;
- }
-
- hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- u32 page_shift, page_select;
-
- /*
- * Page select is register 31 for phy address 1 and 22 for
- * phy address 2 and 3. Page select is shifted only for
- * phy address 1.
- */
- if (hw->phy.addr == 1) {
- page_shift = IGP_PAGE_SHIFT;
- page_select = IGP01E1000_PHY_PAGE_SELECT;
- } else {
- page_shift = 0;
- page_select = BM_PHY_PAGE_SELECT;
- }
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
- (page << page_shift));
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000e_read_phy_reg_bm - Read BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
- u32 page = offset >> IGP_PAGE_SHIFT;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, false);
- goto out;
- }
-
- hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- u32 page_shift, page_select;
-
- /*
- * Page select is register 31 for phy address 1 and 22 for
- * phy address 2 and 3. Page select is shifted only for
- * phy address 1.
- */
- if (hw->phy.addr == 1) {
- page_shift = IGP_PAGE_SHIFT;
- page_select = IGP01E1000_PHY_PAGE_SELECT;
- } else {
- page_shift = 0;
- page_select = BM_PHY_PAGE_SELECT;
- }
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
- (page << page_shift));
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000e_read_phy_reg_bm2 - Read BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
- u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, false);
- goto out;
- }
-
- hw->phy.addr = 1;
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
- page);
-
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000e_write_phy_reg_bm2 - Write BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
- u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, false);
- goto out;
- }
-
- hw->phy.addr = 1;
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
- page);
-
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
- * @hw: pointer to the HW structure
- * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
- *
- * Assumes semaphore already acquired and phy_reg points to a valid memory
- * address to store contents of the BM_WUC_ENABLE_REG register.
- **/
-s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
-{
- s32 ret_val;
- u16 temp;
-
- /* All page select, port ctrl and wakeup registers use phy address 1 */
- hw->phy.addr = 1;
-
- /* Select Port Control Registers page */
- ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
- if (ret_val) {
- e_dbg("Could not set Port Control page\n");
- goto out;
- }
-
- ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
- if (ret_val) {
- e_dbg("Could not read PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
- goto out;
- }
-
- /*
- * Enable both PHY wakeup mode and Wakeup register page writes.
- * Prevent a power state change by disabling ME and Host PHY wakeup.
- */
- temp = *phy_reg;
- temp |= BM_WUC_ENABLE_BIT;
- temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
-
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
- if (ret_val) {
- e_dbg("Could not write PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
- goto out;
- }
-
- /* Select Host Wakeup Registers page */
- ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
-
- /* caller now able to write registers on the Wakeup registers page */
-out:
- return ret_val;
-}
-
-/**
- * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
- * @hw: pointer to the HW structure
- * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
- *
- * Restore BM_WUC_ENABLE_REG to its original value.
- *
- * Assumes semaphore already acquired and *phy_reg is the contents of the
- * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
- * caller.
- **/
-s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
-{
- s32 ret_val = 0;
-
- /* Select Port Control Registers page */
- ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
- if (ret_val) {
- e_dbg("Could not set Port Control page\n");
- goto out;
- }
-
- /* Restore 769.17 to its original value */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
- if (ret_val)
- e_dbg("Could not restore PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
-out:
- return ret_val;
-}
-
-/**
- * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read or written
- * @data: pointer to the data to read or write
- * @read: determines if operation is read or write
- * @page_set: BM_WUC_PAGE already set and access enabled
- *
- * Read the PHY register at offset and store the retrieved information in
- * data, or write data to PHY register at offset. Note the procedure to
- * access the PHY wakeup registers is different than reading the other PHY
- * registers. It works as such:
- * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
- * 2) Set page to 800 for host (801 if we were manageability)
- * 3) Write the address using the address opcode (0x11)
- * 4) Read or write the data using the data opcode (0x12)
- * 5) Restore 769.17.2 to its original value
- *
- * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
- * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
- *
- * Assumes semaphore is already acquired. When page_set==true, assumes
- * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
- * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
- **/
-static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read, bool page_set)
-{
- s32 ret_val;
- u16 reg = BM_PHY_REG_NUM(offset);
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 phy_reg = 0;
-
- /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
- if ((hw->mac.type == e1000_pchlan) &&
- (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
- e_dbg("Attempting to access page %d while gig enabled.\n",
- page);
-
- if (!page_set) {
- /* Enable access to PHY wakeup registers */
- ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
- if (ret_val) {
- e_dbg("Could not enable PHY wakeup reg access\n");
- goto out;
- }
- }
-
- e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
-
- /* Write the Wakeup register page offset value using opcode 0x11 */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
- if (ret_val) {
- e_dbg("Could not write address opcode to page %d\n", page);
- goto out;
- }
-
- if (read) {
- /* Read the Wakeup register page value using opcode 0x12 */
- ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
- data);
- } else {
- /* Write the Wakeup register page value using opcode 0x12 */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
- *data);
- }
-
- if (ret_val) {
- e_dbg("Could not access PHY reg %d.%d\n", page, reg);
- goto out;
- }
-
- if (!page_set)
- ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_up_phy_copper(struct e1000_hw *hw)
-{
- u16 mii_reg = 0;
-
- /* The PHY will retain its settings across a power down/up cycle */
- e1e_rphy(hw, PHY_CONTROL, &mii_reg);
- mii_reg &= ~MII_CR_POWER_DOWN;
- e1e_wphy(hw, PHY_CONTROL, mii_reg);
-}
-
-/**
- * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_down_phy_copper(struct e1000_hw *hw)
-{
- u16 mii_reg = 0;
-
- /* The PHY will retain its settings across a power down/up cycle */
- e1e_rphy(hw, PHY_CONTROL, &mii_reg);
- mii_reg |= MII_CR_POWER_DOWN;
- e1e_wphy(hw, PHY_CONTROL, mii_reg);
- usleep_range(1000, 2000);
-}
-
-/**
- * e1000e_commit_phy - Soft PHY reset
- * @hw: pointer to the HW structure
- *
- * Performs a soft PHY reset on those that apply. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000e_commit_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.commit)
- return hw->phy.ops.commit(hw);
-
- return 0;
-}
-
-/**
- * e1000_set_d0_lplu_state - Sets low power link up state for D0
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D0
- * and SmartSpeed is disabled when active is true, else clear lplu for D0
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained. This is a function pointer entry point called by drivers.
- **/
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
-{
- if (hw->phy.ops.set_d0_lplu_state)
- return hw->phy.ops.set_d0_lplu_state(hw, active);
-
- return 0;
-}
-
-/**
- * __e1000_read_phy_reg_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and stores the retrieved information in data. Release any acquired
- * semaphore before exiting.
- **/
-static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked, bool page_set)
-{
- s32 ret_val;
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 reg = BM_PHY_REG_NUM(offset);
- u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
- if (!locked) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, page_set);
- goto out;
- }
-
- if (page > 0 && page < HV_INTC_FC_PAGE_START) {
- ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
- data, true);
- goto out;
- }
-
- if (!page_set) {
- if (page == HV_INTC_FC_PAGE_START)
- page = 0;
-
- if (reg > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_set_page_igp(hw,
- (page << IGP_PAGE_SHIFT));
-
- hw->phy.addr = phy_addr;
-
- if (ret_val)
- goto out;
- }
- }
-
- e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
- page << IGP_PAGE_SHIFT, reg);
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
- data);
-out:
- if (!locked)
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset and stores
- * the retrieved information in data. Release the acquired semaphore
- * before exiting.
- **/
-s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
-}
-
-/**
- * e1000_read_phy_reg_hv_locked - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired.
- **/
-s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
-}
-
-/**
- * e1000_read_phy_reg_page_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired and page already set.
- **/
-s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
-}
-
-/**
- * __e1000_write_phy_reg_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked, bool page_set)
-{
- s32 ret_val;
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 reg = BM_PHY_REG_NUM(offset);
- u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
- if (!locked) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, page_set);
- goto out;
- }
-
- if (page > 0 && page < HV_INTC_FC_PAGE_START) {
- ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
- &data, false);
- goto out;
- }
-
- if (!page_set) {
- if (page == HV_INTC_FC_PAGE_START)
- page = 0;
-
- /*
- * Workaround MDIO accesses being disabled after entering IEEE
- * Power Down (when bit 11 of the PHY Control register is set)
- */
- if ((hw->phy.type == e1000_phy_82578) &&
- (hw->phy.revision >= 1) &&
- (hw->phy.addr == 2) &&
- ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
- u16 data2 = 0x7EFF;
- ret_val = e1000_access_phy_debug_regs_hv(hw,
- (1 << 6) | 0x3,
- &data2, false);
- if (ret_val)
- goto out;
- }
-
- if (reg > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_set_page_igp(hw,
- (page << IGP_PAGE_SHIFT));
-
- hw->phy.addr = phy_addr;
-
- if (ret_val)
- goto out;
- }
- }
-
- e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
- page << IGP_PAGE_SHIFT, reg);
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
- data);
-
-out:
- if (!locked)
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to PHY register at the offset.
- * Release the acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
-}
-
-/**
- * e1000_write_phy_reg_hv_locked - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset. Assumes semaphore
- * already acquired.
- **/
-s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
-}
-
-/**
- * e1000_write_phy_reg_page_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset. Assumes semaphore
- * already acquired and page already set.
- **/
-s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
-}
-
-/**
- * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
- * @page: page to be accessed
- **/
-static u32 e1000_get_phy_addr_for_hv_page(u32 page)
-{
- u32 phy_addr = 2;
-
- if (page >= HV_INTC_FC_PAGE_START)
- phy_addr = 1;
-
- return phy_addr;
-}
-
-/**
- * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
- * @hw: pointer to the HW structure
- * @offset: register offset to be read or written
- * @data: pointer to the data to be read or written
- * @read: determines if operation is read or write
- *
- * Reads the PHY register at offset and stores the retreived information
- * in data. Assumes semaphore already acquired. Note that the procedure
- * to access these regs uses the address port and data port to read/write.
- * These accesses done with PHY address 2 and without using pages.
- **/
-static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read)
-{
- s32 ret_val;
- u32 addr_reg = 0;
- u32 data_reg = 0;
-
- /* This takes care of the difference with desktop vs mobile phy */
- addr_reg = (hw->phy.type == e1000_phy_82578) ?
- I82578_ADDR_REG : I82577_ADDR_REG;
- data_reg = addr_reg + 1;
-
- /* All operations in this function are phy address 2 */
- hw->phy.addr = 2;
-
- /* masking with 0x3F to remove the page from offset */
- ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
- if (ret_val) {
- e_dbg("Could not write the Address Offset port register\n");
- goto out;
- }
-
- /* Read or write the data value next */
- if (read)
- ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
- else
- ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
-
- if (ret_val) {
- e_dbg("Could not access the Data port register\n");
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_link_stall_workaround_hv - Si workaround
- * @hw: pointer to the HW structure
- *
- * This function works around a Si bug where the link partner can get
- * a link up indication before the PHY does. If small packets are sent
- * by the link partner they can be placed in the packet buffer without
- * being properly accounted for by the PHY and will stall preventing
- * further packets from being received. The workaround is to clear the
- * packet buffer after the PHY detects link up.
- **/
-s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 data;
-
- if (hw->phy.type != e1000_phy_82578)
- goto out;
-
- /* Do not apply workaround if in PHY loopback bit 14 set */
- e1e_rphy(hw, PHY_CONTROL, &data);
- if (data & PHY_CONTROL_LB)
- goto out;
-
- /* check if link is up and at 1Gbps */
- ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
- if (ret_val)
- goto out;
-
- data &= BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK;
-
- if (data != (BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_1000))
- goto out;
-
- mdelay(200);
-
- /* flush the packets in the fifo buffer */
- ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
- HV_MUX_DATA_CTRL_FORCE_SPEED);
- if (ret_val)
- goto out;
-
- ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_82577 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex.
- **/
-s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- goto out;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- goto out;
-
- udelay(1);
-
- if (phy->autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
-
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
-
- if (!link)
- e_dbg("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- e_dbg("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- phy->polarity_correction = true;
-
- ret_val = e1000_check_polarity_82577(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
- if (ret_val)
- goto out;
-
- phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
-
- if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
- I82577_PHY_STATUS2_SPEED_1000MBPS) {
- ret_val = hw->phy.ops.get_cable_length(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- goto out;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the diagnostic status register and verifies result is valid before
- * placing it in the phy_cable_length field.
- **/
-s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, length;
-
- ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
- I82577_DSTATUS_CABLE_LENGTH_SHIFT;
-
- if (length == E1000_CABLE_LENGTH_UNDEFINED)
- ret_val = -E1000_ERR_PHY;
-
- phy->cable_length = length;
-
-out:
- return ret_val;
-}