diff options
Diffstat (limited to 'drivers/net/ethernet/intel/ice/ice_txrx.c')
-rw-r--r-- | drivers/net/ethernet/intel/ice/ice_txrx.c | 1373 |
1 files changed, 823 insertions, 550 deletions
diff --git a/drivers/net/ethernet/intel/ice/ice_txrx.c b/drivers/net/ethernet/intel/ice/ice_txrx.c index 4de61dbedd36..dbe80e5053a8 100644 --- a/drivers/net/ethernet/intel/ice/ice_txrx.c +++ b/drivers/net/ethernet/intel/ice/ice_txrx.c @@ -3,28 +3,119 @@ /* The driver transmit and receive code */ -#include <linux/prefetch.h> #include <linux/mm.h> +#include <linux/netdevice.h> +#include <linux/prefetch.h> #include <linux/bpf_trace.h> +#include <net/dsfield.h> +#include <net/mpls.h> #include <net/xdp.h> #include "ice_txrx_lib.h" #include "ice_lib.h" #include "ice.h" +#include "ice_trace.h" #include "ice_dcb_lib.h" #include "ice_xsk.h" +#include "ice_eswitch.h" #define ICE_RX_HDR_SIZE 256 +#define FDIR_DESC_RXDID 0x40 +#define ICE_FDIR_CLEAN_DELAY 10 + +/** + * ice_prgm_fdir_fltr - Program a Flow Director filter + * @vsi: VSI to send dummy packet + * @fdir_desc: flow director descriptor + * @raw_packet: allocated buffer for flow director + */ +int +ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, + u8 *raw_packet) +{ + struct ice_tx_buf *tx_buf, *first; + struct ice_fltr_desc *f_desc; + struct ice_tx_desc *tx_desc; + struct ice_tx_ring *tx_ring; + struct device *dev; + dma_addr_t dma; + u32 td_cmd; + u16 i; + + /* VSI and Tx ring */ + if (!vsi) + return -ENOENT; + tx_ring = vsi->tx_rings[0]; + if (!tx_ring || !tx_ring->desc) + return -ENOENT; + dev = tx_ring->dev; + + /* we are using two descriptors to add/del a filter and we can wait */ + for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { + if (!i) + return -EAGAIN; + msleep_interruptible(1); + } + + dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, + DMA_TO_DEVICE); + + if (dma_mapping_error(dev, dma)) + return -EINVAL; + + /* grab the next descriptor */ + i = tx_ring->next_to_use; + first = &tx_ring->tx_buf[i]; + f_desc = ICE_TX_FDIRDESC(tx_ring, i); + memcpy(f_desc, fdir_desc, sizeof(*f_desc)); + + i++; + i = (i < tx_ring->count) ? i : 0; + tx_desc = ICE_TX_DESC(tx_ring, i); + tx_buf = &tx_ring->tx_buf[i]; + + i++; + tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; + + memset(tx_buf, 0, sizeof(*tx_buf)); + dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); + dma_unmap_addr_set(tx_buf, dma, dma); + + tx_desc->buf_addr = cpu_to_le64(dma); + td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | + ICE_TX_DESC_CMD_RE; + + tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; + tx_buf->raw_buf = raw_packet; + + tx_desc->cmd_type_offset_bsz = + ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); + + /* Force memory write to complete before letting h/w know + * there are new descriptors to fetch. + */ + wmb(); + + /* mark the data descriptor to be watched */ + first->next_to_watch = tx_desc; + + writel(tx_ring->next_to_use, tx_ring->tail); + + return 0; +} + /** * ice_unmap_and_free_tx_buf - Release a Tx buffer * @ring: the ring that owns the buffer * @tx_buf: the buffer to free */ static void -ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) +ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf) { if (tx_buf->skb) { - if (ice_ring_is_xdp(ring)) + if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) + devm_kfree(ring->dev, tx_buf->raw_buf); + else if (ice_ring_is_xdp(ring)) page_frag_free(tx_buf->raw_buf); else dev_kfree_skb_any(tx_buf->skb); @@ -46,7 +137,7 @@ ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) /* tx_buf must be completely set up in the transmit path */ } -static struct netdev_queue *txring_txq(const struct ice_ring *ring) +static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring) { return netdev_get_tx_queue(ring->netdev, ring->q_index); } @@ -55,11 +146,12 @@ static struct netdev_queue *txring_txq(const struct ice_ring *ring) * ice_clean_tx_ring - Free any empty Tx buffers * @tx_ring: ring to be cleaned */ -void ice_clean_tx_ring(struct ice_ring *tx_ring) +void ice_clean_tx_ring(struct ice_tx_ring *tx_ring) { + u32 size; u16 i; - if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) { + if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { ice_xsk_clean_xdp_ring(tx_ring); goto tx_skip_free; } @@ -75,11 +167,15 @@ void ice_clean_tx_ring(struct ice_ring *tx_ring) tx_skip_free: memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); + size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), + PAGE_SIZE); /* Zero out the descriptor ring */ - memset(tx_ring->desc, 0, tx_ring->size); + memset(tx_ring->desc, 0, size); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; + tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1; + tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1; if (!tx_ring->netdev) return; @@ -94,14 +190,18 @@ tx_skip_free: * * Free all transmit software resources */ -void ice_free_tx_ring(struct ice_ring *tx_ring) +void ice_free_tx_ring(struct ice_tx_ring *tx_ring) { + u32 size; + ice_clean_tx_ring(tx_ring); devm_kfree(tx_ring->dev, tx_ring->tx_buf); tx_ring->tx_buf = NULL; if (tx_ring->desc) { - dmam_free_coherent(tx_ring->dev, tx_ring->size, + size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), + PAGE_SIZE); + dmam_free_coherent(tx_ring->dev, size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } @@ -114,7 +214,7 @@ void ice_free_tx_ring(struct ice_ring *tx_ring) * * Returns true if there's any budget left (e.g. the clean is finished) */ -static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) +static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget) { unsigned int total_bytes = 0, total_pkts = 0; unsigned int budget = ICE_DFLT_IRQ_WORK; @@ -123,6 +223,9 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) struct ice_tx_desc *tx_desc; struct ice_tx_buf *tx_buf; + /* get the bql data ready */ + netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring)); + tx_buf = &tx_ring->tx_buf[i]; tx_desc = ICE_TX_DESC(tx_ring, i); i -= tx_ring->count; @@ -136,8 +239,12 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) if (!eop_desc) break; + /* follow the guidelines of other drivers */ + prefetchw(&tx_buf->skb->users); + smp_rmb(); /* prevent any other reads prior to eop_desc */ + ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); /* if the descriptor isn't done, no work yet to do */ if (!(eop_desc->cmd_type_offset_bsz & cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) @@ -150,11 +257,8 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) total_bytes += tx_buf->bytecount; total_pkts += tx_buf->gso_segs; - if (ice_ring_is_xdp(tx_ring)) - page_frag_free(tx_buf->raw_buf); - else - /* free the skb */ - napi_consume_skb(tx_buf->skb, napi_budget); + /* free the skb */ + napi_consume_skb(tx_buf->skb, napi_budget); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, @@ -168,6 +272,7 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) /* unmap remaining buffers */ while (tx_desc != eop_desc) { + ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); tx_buf++; tx_desc++; i++; @@ -186,6 +291,7 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) dma_unmap_len_set(tx_buf, len, 0); } } + ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf); /* move us one more past the eop_desc for start of next pkt */ tx_buf++; @@ -207,12 +313,7 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) tx_ring->next_to_clean = i; ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); - - if (ice_ring_is_xdp(tx_ring)) - return !!budget; - - netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, - total_bytes); + netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes); #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && @@ -221,11 +322,9 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) * sees the new next_to_clean. */ smp_mb(); - if (__netif_subqueue_stopped(tx_ring->netdev, - tx_ring->q_index) && - !test_bit(__ICE_DOWN, vsi->state)) { - netif_wake_subqueue(tx_ring->netdev, - tx_ring->q_index); + if (netif_tx_queue_stopped(txring_txq(tx_ring)) && + !test_bit(ICE_VSI_DOWN, vsi->state)) { + netif_tx_wake_queue(txring_txq(tx_ring)); ++tx_ring->tx_stats.restart_q; } } @@ -239,9 +338,10 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) * * Return 0 on success, negative on error */ -int ice_setup_tx_ring(struct ice_ring *tx_ring) +int ice_setup_tx_ring(struct ice_tx_ring *tx_ring) { struct device *dev = tx_ring->dev; + u32 size; if (!dev) return -ENOMEM; @@ -249,19 +349,19 @@ int ice_setup_tx_ring(struct ice_ring *tx_ring) /* warn if we are about to overwrite the pointer */ WARN_ON(tx_ring->tx_buf); tx_ring->tx_buf = - devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, + devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count, GFP_KERNEL); if (!tx_ring->tx_buf) return -ENOMEM; /* round up to nearest page */ - tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), - PAGE_SIZE); - tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, + size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), + PAGE_SIZE); + tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) { dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", - tx_ring->size); + size); goto err; } @@ -280,16 +380,22 @@ err: * ice_clean_rx_ring - Free Rx buffers * @rx_ring: ring to be cleaned */ -void ice_clean_rx_ring(struct ice_ring *rx_ring) +void ice_clean_rx_ring(struct ice_rx_ring *rx_ring) { struct device *dev = rx_ring->dev; + u32 size; u16 i; /* ring already cleared, nothing to do */ if (!rx_ring->rx_buf) return; - if (rx_ring->xsk_umem) { + if (rx_ring->skb) { + dev_kfree_skb(rx_ring->skb); + rx_ring->skb = NULL; + } + + if (rx_ring->xsk_pool) { ice_xsk_clean_rx_ring(rx_ring); goto rx_skip_free; } @@ -298,10 +404,6 @@ void ice_clean_rx_ring(struct ice_ring *rx_ring) for (i = 0; i < rx_ring->count; i++) { struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; - if (rx_buf->skb) { - dev_kfree_skb(rx_buf->skb); - rx_buf->skb = NULL; - } if (!rx_buf->page) continue; @@ -323,10 +425,15 @@ void ice_clean_rx_ring(struct ice_ring *rx_ring) } rx_skip_free: - memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); + if (rx_ring->xsk_pool) + memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf))); + else + memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf))); /* Zero out the descriptor ring */ - memset(rx_ring->desc, 0, rx_ring->size); + size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), + PAGE_SIZE); + memset(rx_ring->desc, 0, size); rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; @@ -339,18 +446,27 @@ rx_skip_free: * * Free all receive software resources */ -void ice_free_rx_ring(struct ice_ring *rx_ring) +void ice_free_rx_ring(struct ice_rx_ring *rx_ring) { + u32 size; + ice_clean_rx_ring(rx_ring); if (rx_ring->vsi->type == ICE_VSI_PF) if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) xdp_rxq_info_unreg(&rx_ring->xdp_rxq); rx_ring->xdp_prog = NULL; - devm_kfree(rx_ring->dev, rx_ring->rx_buf); - rx_ring->rx_buf = NULL; + if (rx_ring->xsk_pool) { + kfree(rx_ring->xdp_buf); + rx_ring->xdp_buf = NULL; + } else { + kfree(rx_ring->rx_buf); + rx_ring->rx_buf = NULL; + } if (rx_ring->desc) { - dmam_free_coherent(rx_ring->dev, rx_ring->size, + size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), + PAGE_SIZE); + dmam_free_coherent(rx_ring->dev, size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } @@ -362,9 +478,10 @@ void ice_free_rx_ring(struct ice_ring *rx_ring) * * Return 0 on success, negative on error */ -int ice_setup_rx_ring(struct ice_ring *rx_ring) +int ice_setup_rx_ring(struct ice_rx_ring *rx_ring) { struct device *dev = rx_ring->dev; + u32 size; if (!dev) return -ENOMEM; @@ -372,19 +489,18 @@ int ice_setup_rx_ring(struct ice_ring *rx_ring) /* warn if we are about to overwrite the pointer */ WARN_ON(rx_ring->rx_buf); rx_ring->rx_buf = - devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, - GFP_KERNEL); + kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL); if (!rx_ring->rx_buf) return -ENOMEM; /* round up to nearest page */ - rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), - PAGE_SIZE); - rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, + size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), + PAGE_SIZE); + rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) { dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", - rx_ring->size); + size); goto err; } @@ -397,30 +513,30 @@ int ice_setup_rx_ring(struct ice_ring *rx_ring) if (rx_ring->vsi->type == ICE_VSI_PF && !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, - rx_ring->q_index)) + rx_ring->q_index, rx_ring->q_vector->napi.napi_id)) goto err; return 0; err: - devm_kfree(dev, rx_ring->rx_buf); + kfree(rx_ring->rx_buf); rx_ring->rx_buf = NULL; return -ENOMEM; } -/** - * ice_rx_offset - Return expected offset into page to access data - * @rx_ring: Ring we are requesting offset of - * - * Returns the offset value for ring into the data buffer. - */ -static unsigned int ice_rx_offset(struct ice_ring *rx_ring) +static unsigned int +ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size) { - if (ice_ring_uses_build_skb(rx_ring)) - return ICE_SKB_PAD; - else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) - return XDP_PACKET_HEADROOM; + unsigned int truesize; - return 0; +#if (PAGE_SIZE < 8192) + truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ +#else + truesize = rx_ring->rx_offset ? + SKB_DATA_ALIGN(rx_ring->rx_offset + size) + + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : + SKB_DATA_ALIGN(size); +#endif + return truesize; } /** @@ -428,41 +544,45 @@ static unsigned int ice_rx_offset(struct ice_ring *rx_ring) * @rx_ring: Rx ring * @xdp: xdp_buff used as input to the XDP program * @xdp_prog: XDP program to run + * @xdp_ring: ring to be used for XDP_TX action * * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} */ static int -ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, - struct bpf_prog *xdp_prog) +ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, + struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) { - int err, result = ICE_XDP_PASS; - struct ice_ring *xdp_ring; + int err; u32 act; act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: - break; + return ICE_XDP_PASS; case XDP_TX: - xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; - result = ice_xmit_xdp_buff(xdp, xdp_ring); - break; + if (static_branch_unlikely(&ice_xdp_locking_key)) + spin_lock(&xdp_ring->tx_lock); + err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring); + if (static_branch_unlikely(&ice_xdp_locking_key)) + spin_unlock(&xdp_ring->tx_lock); + if (err == ICE_XDP_CONSUMED) + goto out_failure; + return err; case XDP_REDIRECT: err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); - result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; - break; + if (err) + goto out_failure; + return ICE_XDP_REDIR; default: - bpf_warn_invalid_xdp_action(act); - /* fallthrough -- not supported action */ + bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); + fallthrough; case XDP_ABORTED: +out_failure: trace_xdp_exception(rx_ring->netdev, xdp_prog, act); - /* fallthrough -- handle aborts by dropping frame */ + fallthrough; case XDP_DROP: - result = ICE_XDP_CONSUMED; - break; + return ICE_XDP_CONSUMED; } - - return result; } /** @@ -472,8 +592,8 @@ ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, * @frames: XDP frames to be transmitted * @flags: transmit flags * - * Returns number of frames successfully sent. Frames that fail are - * free'ed via XDP return API. + * Returns number of frames successfully sent. Failed frames + * will be free'ed by XDP core. * For error cases, a negative errno code is returned and no-frames * are transmitted (caller must handle freeing frames). */ @@ -484,34 +604,46 @@ ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, struct ice_netdev_priv *np = netdev_priv(dev); unsigned int queue_index = smp_processor_id(); struct ice_vsi *vsi = np->vsi; - struct ice_ring *xdp_ring; - int drops = 0, i; + struct ice_tx_ring *xdp_ring; + int nxmit = 0, i; - if (test_bit(__ICE_DOWN, vsi->state)) + if (test_bit(ICE_VSI_DOWN, vsi->state)) return -ENETDOWN; - if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) + if (!ice_is_xdp_ena_vsi(vsi)) return -ENXIO; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; - xdp_ring = vsi->xdp_rings[queue_index]; + if (static_branch_unlikely(&ice_xdp_locking_key)) { + queue_index %= vsi->num_xdp_txq; + xdp_ring = vsi->xdp_rings[queue_index]; + spin_lock(&xdp_ring->tx_lock); + } else { + /* Generally, should not happen */ + if (unlikely(queue_index >= vsi->num_xdp_txq)) + return -ENXIO; + xdp_ring = vsi->xdp_rings[queue_index]; + } + for (i = 0; i < n; i++) { struct xdp_frame *xdpf = frames[i]; int err; err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); - if (err != ICE_XDP_TX) { - xdp_return_frame_rx_napi(xdpf); - drops++; - } + if (err != ICE_XDP_TX) + break; + nxmit++; } if (unlikely(flags & XDP_XMIT_FLUSH)) ice_xdp_ring_update_tail(xdp_ring); - return n - drops; + if (static_branch_unlikely(&ice_xdp_locking_key)) + spin_unlock(&xdp_ring->tx_lock); + + return nxmit; } /** @@ -523,16 +655,14 @@ ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, * reused. */ static bool -ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) +ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ - if (likely(page)) { - rx_ring->rx_stats.page_reuse_count++; + if (likely(page)) return true; - } /* alloc new page for storage */ page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); @@ -556,7 +686,7 @@ ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) bi->dma = dma; bi->page = page; - bi->page_offset = ice_rx_offset(rx_ring); + bi->page_offset = rx_ring->rx_offset; page_ref_add(page, USHRT_MAX - 1); bi->pagecnt_bias = USHRT_MAX; @@ -576,14 +706,15 @@ ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) * buffers. Then bump tail at most one time. Grouping like this lets us avoid * multiple tail writes per call. */ -bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) +bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count) { union ice_32b_rx_flex_desc *rx_desc; u16 ntu = rx_ring->next_to_use; struct ice_rx_buf *bi; /* do nothing if no valid netdev defined */ - if (!rx_ring->netdev || !cleaned_count) + if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || + !cleaned_count) return false; /* get the Rx descriptor and buffer based on next_to_use */ @@ -628,15 +759,6 @@ bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) } /** - * ice_page_is_reserved - check if reuse is possible - * @page: page struct to check - */ -static bool ice_page_is_reserved(struct page *page) -{ - return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); -} - -/** * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse * @rx_buf: Rx buffer to adjust * @size: Size of adjustment @@ -661,24 +783,26 @@ ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) /** * ice_can_reuse_rx_page - Determine if page can be reused for another Rx * @rx_buf: buffer containing the page + * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call * * If page is reusable, we have a green light for calling ice_reuse_rx_page, * which will assign the current buffer to the buffer that next_to_alloc is * pointing to; otherwise, the DMA mapping needs to be destroyed and * page freed */ -static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) +static bool +ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) { unsigned int pagecnt_bias = rx_buf->pagecnt_bias; struct page *page = rx_buf->page; - /* avoid re-using remote pages */ - if (unlikely(ice_page_is_reserved(page))) + /* avoid re-using remote and pfmemalloc pages */ + if (!dev_page_is_reusable(page)) return false; #if (PAGE_SIZE < 8192) /* if we are only owner of page we can reuse it */ - if (unlikely((page_count(page) - pagecnt_bias) > 1)) + if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) return false; #else #define ICE_LAST_OFFSET \ @@ -711,11 +835,11 @@ static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf) * The function will then update the page offset. */ static void -ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, +ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, struct sk_buff *skb, unsigned int size) { #if (PAGE_SIZE >= 8192) - unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring)); + unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset); #else unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; #endif @@ -737,7 +861,7 @@ ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, * Synchronizes page for reuse by the adapter */ static void -ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) +ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf) { u16 nta = rx_ring->next_to_alloc; struct ice_rx_buf *new_buf; @@ -761,21 +885,26 @@ ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) /** * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use * @rx_ring: Rx descriptor ring to transact packets on - * @skb: skb to be used * @size: size of buffer to add to skb + * @rx_buf_pgcnt: rx_buf page refcount * * This function will pull an Rx buffer from the ring and synchronize it * for use by the CPU. */ static struct ice_rx_buf * -ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, - const unsigned int size) +ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size, + int *rx_buf_pgcnt) { struct ice_rx_buf *rx_buf; rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; + *rx_buf_pgcnt = +#if (PAGE_SIZE < 8192) + page_count(rx_buf->page); +#else + 0; +#endif prefetchw(rx_buf->page); - *skb = rx_buf->skb; if (!size) return rx_buf; @@ -800,10 +929,10 @@ ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, * to set up the skb correctly and avoid any memcpy overhead. */ static struct sk_buff * -ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, +ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, struct xdp_buff *xdp) { - unsigned int metasize = xdp->data - xdp->data_meta; + u8 metasize = xdp->data - xdp->data_meta; #if (PAGE_SIZE < 8192) unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; #else @@ -818,12 +947,9 @@ ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, * likely have a consumer accessing first few bytes of meta * data, and then actual data. */ - prefetch(xdp->data_meta); -#if L1_CACHE_BYTES < 128 - prefetch((void *)(xdp->data + L1_CACHE_BYTES)); -#endif + net_prefetch(xdp->data_meta); /* build an skb around the page buffer */ - skb = build_skb(xdp->data_hard_start, truesize); + skb = napi_build_skb(xdp->data_hard_start, truesize); if (unlikely(!skb)) return NULL; @@ -855,21 +981,20 @@ ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, * skb correctly. */ static struct sk_buff * -ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, +ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, struct xdp_buff *xdp) { + unsigned int metasize = xdp->data - xdp->data_meta; unsigned int size = xdp->data_end - xdp->data; unsigned int headlen; struct sk_buff *skb; /* prefetch first cache line of first page */ - prefetch(xdp->data); -#if L1_CACHE_BYTES < 128 - prefetch((void *)(xdp->data + L1_CACHE_BYTES)); -#endif /* L1_CACHE_BYTES */ + net_prefetch(xdp->data_meta); /* allocate a skb to store the frags */ - skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, + skb = __napi_alloc_skb(&rx_ring->q_vector->napi, + ICE_RX_HDR_SIZE + metasize, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!skb)) return NULL; @@ -881,8 +1006,13 @@ ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); /* align pull length to size of long to optimize memcpy performance */ - memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, - sizeof(long))); + memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, + ALIGN(headlen + metasize, sizeof(long))); + + if (metasize) { + skb_metadata_set(skb, metasize); + __skb_pull(skb, metasize); + } /* if we exhaust the linear part then add what is left as a frag */ size -= headlen; @@ -911,14 +1041,17 @@ ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, * ice_put_rx_buf - Clean up used buffer and either recycle or free * @rx_ring: Rx descriptor ring to transact packets on * @rx_buf: Rx buffer to pull data from + * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect() * * This function will update next_to_clean and then clean up the contents * of the rx_buf. It will either recycle the buffer or unmap it and free * the associated resources. */ -static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) +static void +ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf, + int rx_buf_pgcnt) { - u32 ntc = rx_ring->next_to_clean + 1; + u16 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; @@ -927,10 +1060,9 @@ static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) if (!rx_buf) return; - if (ice_can_reuse_rx_page(rx_buf)) { + if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { /* hand second half of page back to the ring */ ice_reuse_rx_page(rx_ring, rx_buf); - rx_ring->rx_stats.page_reuse_count++; } else { /* we are not reusing the buffer so unmap it */ dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, @@ -941,29 +1073,24 @@ static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) /* clear contents of buffer_info */ rx_buf->page = NULL; - rx_buf->skb = NULL; } /** * ice_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer - * @skb: Current socket buffer containing buffer in progress * * If the buffer is an EOP buffer, this function exits returning false, * otherwise return true indicating that this is in fact a non-EOP buffer. */ static bool -ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, - struct sk_buff *skb) +ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc) { /* if we are the last buffer then there is nothing else to do */ #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) - if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) + if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF))) return false; - /* place skb in next buffer to be received */ - rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb; rx_ring->rx_stats.non_eop_descs++; return true; @@ -981,26 +1108,38 @@ ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, * * Returns amount of work completed */ -static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) +int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget) { - unsigned int total_rx_bytes = 0, total_rx_pkts = 0; + unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0; u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); + unsigned int offset = rx_ring->rx_offset; + struct ice_tx_ring *xdp_ring = NULL; unsigned int xdp_res, xdp_xmit = 0; + struct sk_buff *skb = rx_ring->skb; struct bpf_prog *xdp_prog = NULL; struct xdp_buff xdp; bool failure; - xdp.rxq = &rx_ring->xdp_rxq; + /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ +#if (PAGE_SIZE < 8192) + frame_sz = ice_rx_frame_truesize(rx_ring, 0); +#endif + xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); + + xdp_prog = READ_ONCE(rx_ring->xdp_prog); + if (xdp_prog) + xdp_ring = rx_ring->xdp_ring; /* start the loop to process Rx packets bounded by 'budget' */ while (likely(total_rx_pkts < (unsigned int)budget)) { union ice_32b_rx_flex_desc *rx_desc; struct ice_rx_buf *rx_buf; - struct sk_buff *skb; + unsigned char *hard_start; unsigned int size; u16 stat_err_bits; + int rx_buf_pgcnt; u16 vlan_tag = 0; - u8 rx_ptype; + u16 rx_ptype; /* get the Rx desc from Rx ring based on 'next_to_clean' */ rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); @@ -1011,7 +1150,7 @@ static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) * hardware wrote DD then it will be non-zero */ stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); - if (!ice_test_staterr(rx_desc, stat_err_bits)) + if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) break; /* This memory barrier is needed to keep us from reading @@ -1020,11 +1159,23 @@ static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) */ dma_rmb(); + ice_trace(clean_rx_irq, rx_ring, rx_desc); + if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { + struct ice_vsi *ctrl_vsi = rx_ring->vsi; + + if (rx_desc->wb.rxdid == FDIR_DESC_RXDID && + ctrl_vsi->vf) + ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc); + ice_put_rx_buf(rx_ring, NULL, 0); + cleaned_count++; + continue; + } + size = le16_to_cpu(rx_desc->wb.pkt_len) & ICE_RX_FLX_DESC_PKT_LEN_M; /* retrieve a buffer from the ring */ - rx_buf = ice_get_rx_buf(rx_ring, &skb, size); + rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt); if (!size) { xdp.data = NULL; @@ -1034,33 +1185,23 @@ static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) goto construct_skb; } - xdp.data = page_address(rx_buf->page) + rx_buf->page_offset; - xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring); - xdp.data_meta = xdp.data; - xdp.data_end = xdp.data + size; + hard_start = page_address(rx_buf->page) + rx_buf->page_offset - + offset; + xdp_prepare_buff(&xdp, hard_start, offset, size, true); +#if (PAGE_SIZE > 4096) + /* At larger PAGE_SIZE, frame_sz depend on len size */ + xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); +#endif - rcu_read_lock(); - xdp_prog = READ_ONCE(rx_ring->xdp_prog); - if (!xdp_prog) { - rcu_read_unlock(); + if (!xdp_prog) goto construct_skb; - } - xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); - rcu_read_unlock(); + xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring); if (!xdp_res) goto construct_skb; if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { - unsigned int truesize; - -#if (PAGE_SIZE < 8192) - truesize = ice_rx_pg_size(rx_ring) / 2; -#else - truesize = SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + - size); -#endif xdp_xmit |= xdp_res; - ice_rx_buf_adjust_pg_offset(rx_buf, truesize); + ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); } else { rx_buf->pagecnt_bias++; } @@ -1068,7 +1209,7 @@ static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) total_rx_pkts++; cleaned_count++; - ice_put_rx_buf(rx_ring, rx_buf); + ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); continue; construct_skb: if (skb) { @@ -1087,22 +1228,21 @@ construct_skb: break; } - ice_put_rx_buf(rx_ring, rx_buf); + ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); cleaned_count++; /* skip if it is NOP desc */ - if (ice_is_non_eop(rx_ring, rx_desc, skb)) + if (ice_is_non_eop(rx_ring, rx_desc)) continue; stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); - if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { + if (unlikely(ice_test_staterr(rx_desc->wb.status_error0, + stat_err_bits))) { dev_kfree_skb_any(skb); continue; } - stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); - if (ice_test_staterr(rx_desc, stat_err_bits)) - vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); + vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); /* pad the skb if needed, to make a valid ethernet frame */ if (eth_skb_pad(skb)) { @@ -1119,8 +1259,10 @@ construct_skb: ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); + ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb); /* send completed skb up the stack */ ice_receive_skb(rx_ring, skb, vlan_tag); + skb = NULL; /* update budget accounting */ total_rx_pkts++; @@ -1130,7 +1272,8 @@ construct_skb: failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); if (xdp_prog) - ice_finalize_xdp_rx(rx_ring, xdp_xmit); + ice_finalize_xdp_rx(xdp_ring, xdp_xmit); + rx_ring->skb = skb; ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); @@ -1138,218 +1281,68 @@ construct_skb: return failure ? budget : (int)total_rx_pkts; } -/** - * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic - * @port_info: port_info structure containing the current link speed - * @avg_pkt_size: average size of Tx or Rx packets based on clean routine - * @itr: ITR value to update - * - * Calculate how big of an increment should be applied to the ITR value passed - * in based on wmem_default, SKB overhead, Ethernet overhead, and the current - * link speed. - * - * The following is a calculation derived from: - * wmem_default / (size + overhead) = desired_pkts_per_int - * rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate - * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value - * - * Assuming wmem_default is 212992 and overhead is 640 bytes per - * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the - * formula down to: - * - * wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24 - * ITR = -------------------------------------------- * -------------- - * rate pkt_size + 640 - */ -static unsigned int -ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info, - unsigned int avg_pkt_size, - unsigned int itr) +static void __ice_update_sample(struct ice_q_vector *q_vector, + struct ice_ring_container *rc, + struct dim_sample *sample, + bool is_tx) { - switch (port_info->phy.link_info.link_speed) { - case ICE_AQ_LINK_SPEED_100GB: - itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24), - avg_pkt_size + 640); - break; - case ICE_AQ_LINK_SPEED_50GB: - itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24), - avg_pkt_size + 640); - break; - case ICE_AQ_LINK_SPEED_40GB: - itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24), - avg_pkt_size + 640); - break; - case ICE_AQ_LINK_SPEED_25GB: - itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24), - avg_pkt_size + 640); - break; - case ICE_AQ_LINK_SPEED_20GB: - itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24), - avg_pkt_size + 640); - break; - case ICE_AQ_LINK_SPEED_10GB: - /* fall through */ - default: - itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24), - avg_pkt_size + 640); - break; - } + u64 packets = 0, bytes = 0; + + if (is_tx) { + struct ice_tx_ring *tx_ring; - if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { - itr &= ICE_ITR_ADAPTIVE_LATENCY; - itr += ICE_ITR_ADAPTIVE_MAX_USECS; + ice_for_each_tx_ring(tx_ring, *rc) { + packets += tx_ring->stats.pkts; + bytes += tx_ring->stats.bytes; + } + } else { + struct ice_rx_ring *rx_ring; + + ice_for_each_rx_ring(rx_ring, *rc) { + packets += rx_ring->stats.pkts; + bytes += rx_ring->stats.bytes; + } } - return itr; + dim_update_sample(q_vector->total_events, packets, bytes, sample); + sample->comp_ctr = 0; + + /* if dim settings get stale, like when not updated for 1 + * second or longer, force it to start again. This addresses the + * frequent case of an idle queue being switched to by the + * scheduler. The 1,000 here means 1,000 milliseconds. + */ + if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000) + rc->dim.state = DIM_START_MEASURE; } /** - * ice_update_itr - update the adaptive ITR value based on statistics - * @q_vector: structure containing interrupt and ring information - * @rc: structure containing ring performance data + * ice_net_dim - Update net DIM algorithm + * @q_vector: the vector associated with the interrupt + * + * Create a DIM sample and notify net_dim() so that it can possibly decide + * a new ITR value based on incoming packets, bytes, and interrupts. * - * Stores a new ITR value based on packets and byte - * counts during the last interrupt. The advantage of per interrupt - * computation is faster updates and more accurate ITR for the current - * traffic pattern. Constants in this function were computed - * based on theoretical maximum wire speed and thresholds were set based - * on testing data as well as attempting to minimize response time - * while increasing bulk throughput. + * This function is a no-op if the ring is not configured to dynamic ITR. */ -static void -ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) +static void ice_net_dim(struct ice_q_vector *q_vector) { - unsigned long next_update = jiffies; - unsigned int packets, bytes, itr; - bool container_is_rx; + struct ice_ring_container *tx = &q_vector->tx; + struct ice_ring_container *rx = &q_vector->rx; - if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) - return; + if (ITR_IS_DYNAMIC(tx)) { + struct dim_sample dim_sample; - /* If itr_countdown is set it means we programmed an ITR within - * the last 4 interrupt cycles. This has a side effect of us - * potentially firing an early interrupt. In order to work around - * this we need to throw out any data received for a few - * interrupts following the update. - */ - if (q_vector->itr_countdown) { - itr = rc->target_itr; - goto clear_counts; + __ice_update_sample(q_vector, tx, &dim_sample, true); + net_dim(&tx->dim, dim_sample); } - container_is_rx = (&q_vector->rx == rc); - /* For Rx we want to push the delay up and default to low latency. - * for Tx we want to pull the delay down and default to high latency. - */ - itr = container_is_rx ? - ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : - ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; - - /* If we didn't update within up to 1 - 2 jiffies we can assume - * that either packets are coming in so slow there hasn't been - * any work, or that there is so much work that NAPI is dealing - * with interrupt moderation and we don't need to do anything. - */ - if (time_after(next_update, rc->next_update)) - goto clear_counts; - - prefetch(q_vector->vsi->port_info); - - packets = rc->total_pkts; - bytes = rc->total_bytes; + if (ITR_IS_DYNAMIC(rx)) { + struct dim_sample dim_sample; - if (container_is_rx) { - /* If Rx there are 1 to 4 packets and bytes are less than - * 9000 assume insufficient data to use bulk rate limiting - * approach unless Tx is already in bulk rate limiting. We - * are likely latency driven. - */ - if (packets && packets < 4 && bytes < 9000 && - (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { - itr = ICE_ITR_ADAPTIVE_LATENCY; - goto adjust_by_size_and_speed; - } - } else if (packets < 4) { - /* If we have Tx and Rx ITR maxed and Tx ITR is running in - * bulk mode and we are receiving 4 or fewer packets just - * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so - * that the Rx can relax. - */ - if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && - (q_vector->rx.target_itr & ICE_ITR_MASK) == - ICE_ITR_ADAPTIVE_MAX_USECS) - goto clear_counts; - } else if (packets > 32) { - /* If we have processed over 32 packets in a single interrupt - * for Tx assume we need to switch over to "bulk" mode. - */ - rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; - } - - /* We have no packets to actually measure against. This means - * either one of the other queues on this vector is active or - * we are a Tx queue doing TSO with too high of an interrupt rate. - * - * Between 4 and 56 we can assume that our current interrupt delay - * is only slightly too low. As such we should increase it by a small - * fixed amount. - */ - if (packets < 56) { - itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; - if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { - itr &= ICE_ITR_ADAPTIVE_LATENCY; - itr += ICE_ITR_ADAPTIVE_MAX_USECS; - } - goto clear_counts; + __ice_update_sample(q_vector, rx, &dim_sample, false); + net_dim(&rx->dim, dim_sample); } - - if (packets <= 256) { - itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); - itr &= ICE_ITR_MASK; - - /* Between 56 and 112 is our "goldilocks" zone where we are - * working out "just right". Just report that our current - * ITR is good for us. - */ - if (packets <= 112) - goto clear_counts; - - /* If packet count is 128 or greater we are likely looking - * at a slight overrun of the delay we want. Try halving - * our delay to see if that will cut the number of packets - * in half per interrupt. - */ - itr >>= 1; - itr &= ICE_ITR_MASK; - if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) - itr = ICE_ITR_ADAPTIVE_MIN_USECS; - - goto clear_counts; - } - - /* The paths below assume we are dealing with a bulk ITR since - * number of packets is greater than 256. We are just going to have - * to compute a value and try to bring the count under control, - * though for smaller packet sizes there isn't much we can do as - * NAPI polling will likely be kicking in sooner rather than later. - */ - itr = ICE_ITR_ADAPTIVE_BULK; - -adjust_by_size_and_speed: - - /* based on checks above packets cannot be 0 so division is safe */ - itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info, - bytes / packets, itr); - -clear_counts: - /* write back value */ - rc->target_itr = itr; - - /* next update should occur within next jiffy */ - rc->next_update = next_update + 1; - - rc->total_bytes = 0; - rc->total_pkts = 0; } /** @@ -1373,85 +1366,45 @@ static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); } -/* The act of updating the ITR will cause it to immediately trigger. In order - * to prevent this from throwing off adaptive update statistics we defer the - * update so that it can only happen so often. So after either Tx or Rx are - * updated we make the adaptive scheme wait until either the ITR completely - * expires via the next_update expiration or we have been through at least - * 3 interrupts. - */ -#define ITR_COUNTDOWN_START 3 - /** - * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt - * @q_vector: q_vector for which ITR is being updated and interrupt enabled + * ice_enable_interrupt - re-enable MSI-X interrupt + * @q_vector: the vector associated with the interrupt to enable + * + * If the VSI is down, the interrupt will not be re-enabled. Also, + * when enabling the interrupt always reset the wb_on_itr to false + * and trigger a software interrupt to clean out internal state. */ -static void ice_update_ena_itr(struct ice_q_vector *q_vector) +static void ice_enable_interrupt(struct ice_q_vector *q_vector) { - struct ice_ring_container *tx = &q_vector->tx; - struct ice_ring_container *rx = &q_vector->rx; struct ice_vsi *vsi = q_vector->vsi; + bool wb_en = q_vector->wb_on_itr; u32 itr_val; - /* when exiting WB_ON_ITR lets set a low ITR value and trigger - * interrupts to expire right away in case we have more work ready to go - * already - */ - if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) { - itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS); - wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); - /* set target back to last user set value */ - rx->target_itr = rx->itr_setting; - /* set current to what we just wrote and dynamic if needed */ - rx->current_itr = ICE_WB_ON_ITR_USECS | - (rx->itr_setting & ICE_ITR_DYNAMIC); - /* allow normal interrupt flow to start */ - q_vector->itr_countdown = 0; + if (test_bit(ICE_DOWN, vsi->state)) return; - } - /* This will do nothing if dynamic updates are not enabled */ - ice_update_itr(q_vector, tx); - ice_update_itr(q_vector, rx); - - /* This block of logic allows us to get away with only updating - * one ITR value with each interrupt. The idea is to perform a - * pseudo-lazy update with the following criteria. - * - * 1. Rx is given higher priority than Tx if both are in same state - * 2. If we must reduce an ITR that is given highest priority. - * 3. We then give priority to increasing ITR based on amount. + /* trigger an ITR delayed software interrupt when exiting busy poll, to + * make sure to catch any pending cleanups that might have been missed + * due to interrupt state transition. If busy poll or poll isn't + * enabled, then don't update ITR, and just enable the interrupt. */ - if (rx->target_itr < rx->current_itr) { - /* Rx ITR needs to be reduced, this is highest priority */ - itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); - rx->current_itr = rx->target_itr; - q_vector->itr_countdown = ITR_COUNTDOWN_START; - } else if ((tx->target_itr < tx->current_itr) || - ((rx->target_itr - rx->current_itr) < - (tx->target_itr - tx->current_itr))) { - /* Tx ITR needs to be reduced, this is second priority - * Tx ITR needs to be increased more than Rx, fourth priority - */ - itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); - tx->current_itr = tx->target_itr; - q_vector->itr_countdown = ITR_COUNTDOWN_START; - } else if (rx->current_itr != rx->target_itr) { - /* Rx ITR needs to be increased, third priority */ - itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); - rx->current_itr = rx->target_itr; - q_vector->itr_countdown = ITR_COUNTDOWN_START; - } else { - /* Still have to re-enable the interrupts */ + if (!wb_en) { itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); - if (q_vector->itr_countdown) - q_vector->itr_countdown--; - } + } else { + q_vector->wb_on_itr = false; - if (!test_bit(__ICE_DOWN, q_vector->vsi->state)) - wr32(&q_vector->vsi->back->hw, - GLINT_DYN_CTL(q_vector->reg_idx), - itr_val); + /* do two things here with a single write. Set up the third ITR + * index to be used for software interrupt moderation, and then + * trigger a software interrupt with a rate limit of 20K on + * software interrupts, this will help avoid high interrupt + * loads due to frequently polling and exiting polling. + */ + itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K); + itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M | + ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S | + GLINT_DYN_CTL_SW_ITR_INDX_ENA_M; + } + wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); } /** @@ -1461,32 +1414,31 @@ static void ice_update_ena_itr(struct ice_q_vector *q_vector) * We need to tell hardware to write-back completed descriptors even when * interrupts are disabled. Descriptors will be written back on cache line * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR - * descriptors may not be written back if they don't fill a cache line until the - * next interrupt. + * descriptors may not be written back if they don't fill a cache line until + * the next interrupt. * - * This sets the write-back frequency to 2 microseconds as that is the minimum - * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to - * make sure hardware knows we aren't meddling with the INTENA_M bit. + * This sets the write-back frequency to whatever was set previously for the + * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we + * aren't meddling with the INTENA_M bit. */ static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) { struct ice_vsi *vsi = q_vector->vsi; - /* already in WB_ON_ITR mode no need to change it */ - if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) + /* already in wb_on_itr mode no need to change it */ + if (q_vector->wb_on_itr) return; - if (q_vector->num_ring_rx) - wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), - ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, - ICE_RX_ITR)); - - if (q_vector->num_ring_tx) - wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), - ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, - ICE_TX_ITR)); + /* use previously set ITR values for all of the ITR indices by + * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and + * be static in non-adaptive mode (user configured) + */ + wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), + ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) & + GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | + GLINT_DYN_CTL_WB_ON_ITR_M); - q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE; + q_vector->wb_on_itr = true; } /** @@ -1502,18 +1454,24 @@ int ice_napi_poll(struct napi_struct *napi, int budget) { struct ice_q_vector *q_vector = container_of(napi, struct ice_q_vector, napi); + struct ice_tx_ring *tx_ring; + struct ice_rx_ring *rx_ring; bool clean_complete = true; - struct ice_ring *ring; int budget_per_ring; int work_done = 0; /* Since the actual Tx work is minimal, we can give the Tx a larger * budget and be more aggressive about cleaning up the Tx descriptors. */ - ice_for_each_ring(ring, q_vector->tx) { - bool wd = ring->xsk_umem ? - ice_clean_tx_irq_zc(ring, budget) : - ice_clean_tx_irq(ring, budget); + ice_for_each_tx_ring(tx_ring, q_vector->tx) { + bool wd; + + if (tx_ring->xsk_pool) + wd = ice_xmit_zc(tx_ring); + else if (ice_ring_is_xdp(tx_ring)) + wd = true; + else + wd = ice_clean_tx_irq(tx_ring, budget); if (!wd) clean_complete = false; @@ -1529,21 +1487,21 @@ int ice_napi_poll(struct napi_struct *napi, int budget) * don't allow the budget to go below 1 because that would exit * polling early. */ - budget_per_ring = max(budget / q_vector->num_ring_rx, 1); + budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); else /* Max of 1 Rx ring in this q_vector so give it the budget */ budget_per_ring = budget; - ice_for_each_ring(ring, q_vector->rx) { + ice_for_each_rx_ring(rx_ring, q_vector->rx) { int cleaned; /* A dedicated path for zero-copy allows making a single * comparison in the irq context instead of many inside the * ice_clean_rx_irq function and makes the codebase cleaner. */ - cleaned = ring->xsk_umem ? - ice_clean_rx_irq_zc(ring, budget_per_ring) : - ice_clean_rx_irq(ring, budget_per_ring); + cleaned = rx_ring->xsk_pool ? + ice_clean_rx_irq_zc(rx_ring, budget_per_ring) : + ice_clean_rx_irq(rx_ring, budget_per_ring); work_done += cleaned; /* if we clean as many as budgeted, we must not be done */ if (cleaned >= budget_per_ring) @@ -1551,16 +1509,23 @@ int ice_napi_poll(struct napi_struct *napi, int budget) } /* If work not completed, return budget and polling will return */ - if (!clean_complete) + if (!clean_complete) { + /* Set the writeback on ITR so partial completions of + * cache-lines will still continue even if we're polling. + */ + ice_set_wb_on_itr(q_vector); return budget; + } /* Exit the polling mode, but don't re-enable interrupts if stack might * poll us due to busy-polling */ - if (likely(napi_complete_done(napi, work_done))) - ice_update_ena_itr(q_vector); - else + if (napi_complete_done(napi, work_done)) { + ice_net_dim(q_vector); + ice_enable_interrupt(q_vector); + } else { ice_set_wb_on_itr(q_vector); + } return min_t(int, work_done, budget - 1); } @@ -1572,9 +1537,9 @@ int ice_napi_poll(struct napi_struct *napi, int budget) * * Returns -EBUSY if a stop is needed, else 0 */ -static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) +static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) { - netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); + netif_tx_stop_queue(txring_txq(tx_ring)); /* Memory barrier before checking head and tail */ smp_mb(); @@ -1582,8 +1547,8 @@ static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) if (likely(ICE_DESC_UNUSED(tx_ring) < size)) return -EBUSY; - /* A reprieve! - use start_subqueue because it doesn't call schedule */ - netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); + /* A reprieve! - use start_queue because it doesn't call schedule */ + netif_tx_start_queue(txring_txq(tx_ring)); ++tx_ring->tx_stats.restart_q; return 0; } @@ -1595,7 +1560,7 @@ static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) * * Returns 0 if stop is not needed */ -static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) +static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size) { if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) return 0; @@ -1614,7 +1579,7 @@ static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) * it and the length into the transmit descriptor. */ static void -ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, +ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first, struct ice_tx_offload_params *off) { u64 td_offset, td_tag, td_cmd; @@ -1625,6 +1590,7 @@ ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, struct sk_buff *skb; skb_frag_t *frag; dma_addr_t dma; + bool kick; td_tag = off->td_l2tag1; td_cmd = off->td_cmd; @@ -1665,7 +1631,8 @@ ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, */ while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { tx_desc->cmd_type_offset_bsz = - build_ctob(td_cmd, td_offset, max_data, td_tag); + ice_build_ctob(td_cmd, td_offset, max_data, + td_tag); tx_desc++; i++; @@ -1685,8 +1652,8 @@ ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, if (likely(!data_len)) break; - tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, - size, td_tag); + tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, + size, td_tag); tx_desc++; i++; @@ -1705,9 +1672,6 @@ ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, tx_buf = &tx_ring->tx_buf[i]; } - /* record bytecount for BQL */ - netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); - /* record SW timestamp if HW timestamp is not available */ skb_tx_timestamp(first->skb); @@ -1717,8 +1681,8 @@ ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, /* write last descriptor with RS and EOP bits */ td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; - tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size, - td_tag); + tx_desc->cmd_type_offset_bsz = + ice_build_ctob(td_cmd, td_offset, size, td_tag); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. @@ -1736,7 +1700,10 @@ ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, ice_maybe_stop_tx(tx_ring, DESC_NEEDED); /* notify HW of packet */ - if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) + kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount, + netdev_xmit_more()); + if (kick) + /* notify HW of packet */ writel(i, tx_ring->tail); return; @@ -1785,19 +1752,112 @@ int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; - ip.hdr = skb_network_header(skb); - l4.hdr = skb_transport_header(skb); + protocol = vlan_get_protocol(skb); + + if (eth_p_mpls(protocol)) { + ip.hdr = skb_inner_network_header(skb); + l4.hdr = skb_checksum_start(skb); + } else { + ip.hdr = skb_network_header(skb); + l4.hdr = skb_transport_header(skb); + } /* compute outer L2 header size */ l2_len = ip.hdr - skb->data; offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; - if (skb->encapsulation) - return -1; + /* set the tx_flags to indicate the IP protocol type. this is + * required so that checksum header computation below is accurate. + */ + if (ip.v4->version == 4) + first->tx_flags |= ICE_TX_FLAGS_IPV4; + else if (ip.v6->version == 6) + first->tx_flags |= ICE_TX_FLAGS_IPV6; + + if (skb->encapsulation) { + bool gso_ena = false; + u32 tunnel = 0; + + /* define outer network header type */ + if (first->tx_flags & ICE_TX_FLAGS_IPV4) { + tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? + ICE_TX_CTX_EIPT_IPV4 : + ICE_TX_CTX_EIPT_IPV4_NO_CSUM; + l4_proto = ip.v4->protocol; + } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { + int ret; + + tunnel |= ICE_TX_CTX_EIPT_IPV6; + exthdr = ip.hdr + sizeof(*ip.v6); + l4_proto = ip.v6->nexthdr; + ret = ipv6_skip_exthdr(skb, exthdr - skb->data, + &l4_proto, &frag_off); + if (ret < 0) + return -1; + } + + /* define outer transport */ + switch (l4_proto) { + case IPPROTO_UDP: + tunnel |= ICE_TXD_CTX_UDP_TUNNELING; + first->tx_flags |= ICE_TX_FLAGS_TUNNEL; + break; + case IPPROTO_GRE: + tunnel |= ICE_TXD_CTX_GRE_TUNNELING; + first->tx_flags |= ICE_TX_FLAGS_TUNNEL; + break; + case IPPROTO_IPIP: + case IPPROTO_IPV6: + first->tx_flags |= ICE_TX_FLAGS_TUNNEL; + l4.hdr = skb_inner_network_header(skb); + break; + default: + if (first->tx_flags & ICE_TX_FLAGS_TSO) + return -1; + + skb_checksum_help(skb); + return 0; + } + + /* compute outer L3 header size */ + tunnel |= ((l4.hdr - ip.hdr) / 4) << + ICE_TXD_CTX_QW0_EIPLEN_S; + + /* switch IP header pointer from outer to inner header */ + ip.hdr = skb_inner_network_header(skb); + + /* compute tunnel header size */ + tunnel |= ((ip.hdr - l4.hdr) / 2) << + ICE_TXD_CTX_QW0_NATLEN_S; + + gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; + /* indicate if we need to offload outer UDP header */ + if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && + (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) + tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; + + /* record tunnel offload values */ + off->cd_tunnel_params |= tunnel; + + /* set DTYP=1 to indicate that it's an Tx context descriptor + * in IPsec tunnel mode with Tx offloads in Quad word 1 + */ + off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; + + /* switch L4 header pointer from outer to inner */ + l4.hdr = skb_inner_transport_header(skb); + l4_proto = 0; + + /* reset type as we transition from outer to inner headers */ + first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); + if (ip.v4->version == 4) + first->tx_flags |= ICE_TX_FLAGS_IPV4; + if (ip.v6->version == 6) + first->tx_flags |= ICE_TX_FLAGS_IPV6; + } /* Enable IP checksum offloads */ - protocol = vlan_get_protocol(skb); - if (protocol == htons(ETH_P_IP)) { + if (first->tx_flags & ICE_TX_FLAGS_IPV4) { l4_proto = ip.v4->protocol; /* the stack computes the IP header already, the only time we * need the hardware to recompute it is in the case of TSO. @@ -1807,7 +1867,7 @@ int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) else cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; - } else if (protocol == htons(ETH_P_IPV6)) { + } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; exthdr = ip.hdr + sizeof(*ip.v6); l4_proto = ip.v6->nexthdr; @@ -1862,49 +1922,29 @@ int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) * * Checks the skb and set up correspondingly several generic transmit flags * related to VLAN tagging for the HW, such as VLAN, DCB, etc. - * - * Returns error code indicate the frame should be dropped upon error and the - * otherwise returns 0 to indicate the flags has been set properly. */ -static int -ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) +static void +ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first) { struct sk_buff *skb = first->skb; - __be16 protocol = skb->protocol; - - if (protocol == htons(ETH_P_8021Q) && - !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { - /* when HW VLAN acceleration is turned off by the user the - * stack sets the protocol to 8021q so that the driver - * can take any steps required to support the SW only - * VLAN handling. In our case the driver doesn't need - * to take any further steps so just set the protocol - * to the encapsulated ethertype. - */ - skb->protocol = vlan_get_protocol(skb); - return 0; - } - /* if we have a HW VLAN tag being added, default to the HW one */ + /* nothing left to do, software offloaded VLAN */ + if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) + return; + + /* the VLAN ethertype/tpid is determined by VSI configuration and netdev + * feature flags, which the driver only allows either 802.1Q or 802.1ad + * VLAN offloads exclusively so we only care about the VLAN ID here + */ if (skb_vlan_tag_present(skb)) { first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; - first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; - } else if (protocol == htons(ETH_P_8021Q)) { - struct vlan_hdr *vhdr, _vhdr; - - /* for SW VLAN, check the next protocol and store the tag */ - vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN, - sizeof(_vhdr), - &_vhdr); - if (!vhdr) - return -EINVAL; - - first->tx_flags |= ntohs(vhdr->h_vlan_TCI) << - ICE_TX_FLAGS_VLAN_S; - first->tx_flags |= ICE_TX_FLAGS_SW_VLAN; + if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2) + first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN; + else + first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; } - return ice_tx_prepare_vlan_flags_dcb(tx_ring, first); + ice_tx_prepare_vlan_flags_dcb(tx_ring, first); } /** @@ -1929,7 +1969,9 @@ int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) unsigned char *hdr; } l4; u64 cd_mss, cd_tso_len; - u32 paylen, l4_start; + __be16 protocol; + u32 paylen; + u8 l4_start; int err; if (skb->ip_summed != CHECKSUM_PARTIAL) @@ -1943,8 +1985,13 @@ int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) return err; /* cppcheck-suppress unreadVariable */ - ip.hdr = skb_network_header(skb); - l4.hdr = skb_transport_header(skb); + protocol = vlan_get_protocol(skb); + + if (eth_p_mpls(protocol)) + ip.hdr = skb_inner_network_header(skb); + else + ip.hdr = skb_network_header(skb); + l4.hdr = skb_checksum_start(skb); /* initialize outer IP header fields */ if (ip.v4->version == 4) { @@ -1954,8 +2001,42 @@ int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) ip.v6->payload_len = 0; } + if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | + SKB_GSO_GRE_CSUM | + SKB_GSO_IPXIP4 | + SKB_GSO_IPXIP6 | + SKB_GSO_UDP_TUNNEL | + SKB_GSO_UDP_TUNNEL_CSUM)) { + if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && + (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { + l4.udp->len = 0; + + /* determine offset of outer transport header */ + l4_start = (u8)(l4.hdr - skb->data); + + /* remove payload length from outer checksum */ + paylen = skb->len - l4_start; + csum_replace_by_diff(&l4.udp->check, + (__force __wsum)htonl(paylen)); + } + + /* reset pointers to inner headers */ + + /* cppcheck-suppress unreadVariable */ + ip.hdr = skb_inner_network_header(skb); + l4.hdr = skb_inner_transport_header(skb); + + /* initialize inner IP header fields */ + if (ip.v4->version == 4) { + ip.v4->tot_len = 0; + ip.v4->check = 0; + } else { + ip.v6->payload_len = 0; + } + } + /* determine offset of transport header */ - l4_start = l4.hdr - skb->data; + l4_start = (u8)(l4.hdr - skb->data); /* remove payload length from checksum */ paylen = skb->len - l4_start; @@ -1964,12 +2045,12 @@ int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); /* compute length of UDP segmentation header */ - off->header_len = sizeof(l4.udp) + l4_start; + off->header_len = (u8)sizeof(l4.udp) + l4_start; } else { csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); /* compute length of TCP segmentation header */ - off->header_len = (l4.tcp->doff * 4) + l4_start; + off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); } /* update gso_segs and bytecount */ @@ -2092,10 +2173,30 @@ static bool __ice_chk_linearize(struct sk_buff *skb) /* Walk through fragments adding latest fragment, testing it, and * then removing stale fragments from the sum. */ - stale = &skb_shinfo(skb)->frags[0]; - for (;;) { + for (stale = &skb_shinfo(skb)->frags[0];; stale++) { + int stale_size = skb_frag_size(stale); + sum += skb_frag_size(frag++); + /* The stale fragment may present us with a smaller + * descriptor than the actual fragment size. To account + * for that we need to remove all the data on the front and + * figure out what the remainder would be in the last + * descriptor associated with the fragment. + */ + if (stale_size > ICE_MAX_DATA_PER_TXD) { + int align_pad = -(skb_frag_off(stale)) & + (ICE_MAX_READ_REQ_SIZE - 1); + + sum -= align_pad; + stale_size -= align_pad; + + do { + sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; + stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; + } while (stale_size > ICE_MAX_DATA_PER_TXD); + } + /* if sum is negative we failed to make sufficient progress */ if (sum < 0) return true; @@ -2103,7 +2204,7 @@ static bool __ice_chk_linearize(struct sk_buff *skb) if (!nr_frags--) break; - sum -= skb_frag_size(stale++); + sum -= stale_size; } return false; @@ -2132,6 +2233,43 @@ static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) } /** + * ice_tstamp - set up context descriptor for hardware timestamp + * @tx_ring: pointer to the Tx ring to send buffer on + * @skb: pointer to the SKB we're sending + * @first: Tx buffer + * @off: Tx offload parameters + */ +static void +ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb, + struct ice_tx_buf *first, struct ice_tx_offload_params *off) +{ + s8 idx; + + /* only timestamp the outbound packet if the user has requested it */ + if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) + return; + + if (!tx_ring->ptp_tx) + return; + + /* Tx timestamps cannot be sampled when doing TSO */ + if (first->tx_flags & ICE_TX_FLAGS_TSO) + return; + + /* Grab an open timestamp slot */ + idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb); + if (idx < 0) { + tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++; + return; + } + + off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | + (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) | + ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S)); + first->tx_flags |= ICE_TX_FLAGS_TSYN; +} + +/** * ice_xmit_frame_ring - Sends buffer on Tx ring * @skb: send buffer * @tx_ring: ring to send buffer on @@ -2139,14 +2277,17 @@ static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) * Returns NETDEV_TX_OK if sent, else an error code */ static netdev_tx_t -ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) +ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring) { struct ice_tx_offload_params offload = { 0 }; struct ice_vsi *vsi = tx_ring->vsi; struct ice_tx_buf *first; + struct ethhdr *eth; unsigned int count; int tso, csum; + ice_trace(xmit_frame_ring, tx_ring, skb); + count = ice_xmit_desc_count(skb); if (ice_chk_linearize(skb, count)) { if (__skb_linearize(skb)) @@ -2167,6 +2308,9 @@ ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) return NETDEV_TX_BUSY; } + /* prefetch for bql data which is infrequently used */ + netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring)); + offload.tx_ring = tx_ring; /* record the location of the first descriptor for this packet */ @@ -2177,8 +2321,14 @@ ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) first->tx_flags = 0; /* prepare the VLAN tagging flags for Tx */ - if (ice_tx_prepare_vlan_flags(tx_ring, first)) - goto out_drop; + ice_tx_prepare_vlan_flags(tx_ring, first); + if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) { + offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | + (ICE_TX_CTX_DESC_IL2TAG2 << + ICE_TXD_CTX_QW1_CMD_S)); + offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> + ICE_TX_FLAGS_VLAN_S; + } /* set up TSO offload */ tso = ice_tso(first, &offload); @@ -2191,16 +2341,22 @@ ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) goto out_drop; /* allow CONTROL frames egress from main VSI if FW LLDP disabled */ - if (unlikely(skb->priority == TC_PRIO_CONTROL && + eth = (struct ethhdr *)skb_mac_header(skb); + if (unlikely((skb->priority == TC_PRIO_CONTROL || + eth->h_proto == htons(ETH_P_LLDP)) && vsi->type == ICE_VSI_PF && - vsi->port_info->is_sw_lldp)) + vsi->port_info->qos_cfg.is_sw_lldp)) offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | ICE_TX_CTX_DESC_SWTCH_UPLINK << ICE_TXD_CTX_QW1_CMD_S); + ice_tstamp(tx_ring, skb, first, &offload); + if (ice_is_switchdev_running(vsi->back)) + ice_eswitch_set_target_vsi(skb, &offload); + if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { struct ice_tx_ctx_desc *cdesc; - int i = tx_ring->next_to_use; + u16 i = tx_ring->next_to_use; /* grab the next descriptor */ cdesc = ICE_TX_CTX_DESC(tx_ring, i); @@ -2218,6 +2374,7 @@ ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) return NETDEV_TX_OK; out_drop: + ice_trace(xmit_frame_ring_drop, tx_ring, skb); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } @@ -2233,7 +2390,7 @@ netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_vsi *vsi = np->vsi; - struct ice_ring *tx_ring; + struct ice_tx_ring *tx_ring; tx_ring = vsi->tx_rings[skb->queue_mapping]; @@ -2245,3 +2402,119 @@ netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) return ice_xmit_frame_ring(skb, tx_ring); } + +/** + * ice_get_dscp_up - return the UP/TC value for a SKB + * @dcbcfg: DCB config that contains DSCP to UP/TC mapping + * @skb: SKB to query for info to determine UP/TC + * + * This function is to only be called when the PF is in L3 DSCP PFC mode + */ +static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb) +{ + u8 dscp = 0; + + if (skb->protocol == htons(ETH_P_IP)) + dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2; + else if (skb->protocol == htons(ETH_P_IPV6)) + dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2; + + return dcbcfg->dscp_map[dscp]; +} + +u16 +ice_select_queue(struct net_device *netdev, struct sk_buff *skb, + struct net_device *sb_dev) +{ + struct ice_pf *pf = ice_netdev_to_pf(netdev); + struct ice_dcbx_cfg *dcbcfg; + + dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; + if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) + skb->priority = ice_get_dscp_up(dcbcfg, skb); + + return netdev_pick_tx(netdev, skb, sb_dev); +} + +/** + * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue + * @tx_ring: tx_ring to clean + */ +void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring) +{ + struct ice_vsi *vsi = tx_ring->vsi; + s16 i = tx_ring->next_to_clean; + int budget = ICE_DFLT_IRQ_WORK; + struct ice_tx_desc *tx_desc; + struct ice_tx_buf *tx_buf; + + tx_buf = &tx_ring->tx_buf[i]; + tx_desc = ICE_TX_DESC(tx_ring, i); + i -= tx_ring->count; + + do { + struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; + + /* if next_to_watch is not set then there is no pending work */ + if (!eop_desc) + break; + + /* prevent any other reads prior to eop_desc */ + smp_rmb(); + + /* if the descriptor isn't done, no work to do */ + if (!(eop_desc->cmd_type_offset_bsz & + cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) + break; + + /* clear next_to_watch to prevent false hangs */ + tx_buf->next_to_watch = NULL; + tx_desc->buf_addr = 0; + tx_desc->cmd_type_offset_bsz = 0; + + /* move past filter desc */ + tx_buf++; + tx_desc++; + i++; + if (unlikely(!i)) { + i -= tx_ring->count; + tx_buf = tx_ring->tx_buf; + tx_desc = ICE_TX_DESC(tx_ring, 0); + } + + /* unmap the data header */ + if (dma_unmap_len(tx_buf, len)) + dma_unmap_single(tx_ring->dev, + dma_unmap_addr(tx_buf, dma), + dma_unmap_len(tx_buf, len), + DMA_TO_DEVICE); + if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) + devm_kfree(tx_ring->dev, tx_buf->raw_buf); + + /* clear next_to_watch to prevent false hangs */ + tx_buf->raw_buf = NULL; + tx_buf->tx_flags = 0; + tx_buf->next_to_watch = NULL; + dma_unmap_len_set(tx_buf, len, 0); + tx_desc->buf_addr = 0; + tx_desc->cmd_type_offset_bsz = 0; + + /* move past eop_desc for start of next FD desc */ + tx_buf++; + tx_desc++; + i++; + if (unlikely(!i)) { + i -= tx_ring->count; + tx_buf = tx_ring->tx_buf; + tx_desc = ICE_TX_DESC(tx_ring, 0); + } + + budget--; + } while (likely(budget)); + + i += tx_ring->count; + tx_ring->next_to_clean = i; + + /* re-enable interrupt if needed */ + ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); +} |